Namespaces
Variants
Actions

Difference between revisions of "Skorokhod equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 45 formulas out of 45 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 45 formulas, 45 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
''Skorohod equation''
 
''Skorohod equation''
  
A stochastic equation describing a reflecting Brownian motion. Given a one-dimensional [[Brownian motion|Brownian motion]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303601.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303602.png" />, the reflecting Brownian motion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303603.png" /> is defined by
+
A stochastic equation describing a reflecting Brownian motion. Given a one-dimensional [[Brownian motion|Brownian motion]] $X _ { t }$ on $\mathbf{R} ^ { 1 } = ( - \infty , \infty )$, the reflecting Brownian motion $X _ { t } ^ { + }$ is defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303604.png" /></td> </tr></table>
+
\begin{equation*} X _ { t } ^ { + } = | X _ { t } | , t \geq 0, \end{equation*}
  
which is a [[Markov process|Markov process]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303605.png" /> with continuous sample paths.
+
which is a [[Markov process|Markov process]] on $[ 0 , \infty )$ with continuous sample paths.
  
A.V. Skorokhod discovered that the reflecting Brownian motion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303606.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303607.png" />, is identical in law with the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303608.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303609.png" />, of the equation
+
A.V. Skorokhod discovered that the reflecting Brownian motion $X _ { t } ^ { + }$, $t \geq 0$, is identical in law with the solution $Y _ { t }$, $t \geq 0$, of the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036010.png" /></td> </tr></table>
+
\begin{equation*} Y _ { t } = Y _ { 0 } + B _ { t } + \text{l} _ { t } , t \geq 0, \end{equation*}
  
where the triple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036011.png" /> is a system of real continuous stochastic processes (cf. also [[Stochastic process|Stochastic process]]) required to have the following properties:
+
where the triple $\{ Y _ { t } , B _ { t } , \text{l} _ { t } \}$ is a system of real continuous stochastic processes (cf. also [[Stochastic process|Stochastic process]]) required to have the following properties:
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036012.png" /> is a one-dimensional Brownian motion starting at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036013.png" /> and independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036014.png" />;
+
$B _ { t }$ is a one-dimensional Brownian motion starting at $0$ and independent of $Y _ { 0 }$;
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036015.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036016.png" />;
+
$Y _ { t } \geq 0$ for all $t \geq 0$;
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036017.png" /> is increasing in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036018.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036020.png" />.
+
$ \operatorname{ l}_t$ is increasing in $t \geq 0$ with $\mathbf{l} _ { 0 } = 0$ and $\int _ { 0 } ^ { t } I _ { ( 0 ) } ( Y _ { s } ) d \text{l} _ { s } = \text{l} _ { t }$.
  
In fact, the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036021.png" /> of this Skorokhod equation can be described uniquely and deterministically by the given Brownian motion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036022.png" /> as
+
In fact, the solution $Y _ { t }$ of this Skorokhod equation can be described uniquely and deterministically by the given Brownian motion $B _ { t }$ as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036023.png" /></td> </tr></table>
+
\begin{equation*} Y _ { t } = B _ { t } - \operatorname { min } _ { 0 \leq s \leq t } B _ { s } \bigwedge 0, \end{equation*}
  
a formula due to P. Lévy in case that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036024.png" />. Further, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036025.png" /> is twice the Lévy local time of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036026.png" /> at the origin.
+
a formula due to P. Lévy in case that $Y _ { 0 } = 0$. Further, $ \operatorname{ l}_t$ is twice the Lévy local time of $B _ { t }$ at the origin.
  
The Skorokhod equation has been extended to the higher-dimensional case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036028.png" />, to describe a normally reflecting Brownian motion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036029.png" /> on the closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036030.png" /> of a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036031.png" />. In this case, the equation takes the form
+
The Skorokhod equation has been extended to the higher-dimensional case $\mathbf{R} ^ { d }$, $d \geq 2$, to describe a normally reflecting Brownian motion $Y _ { t }$ on the closure $\overline{ D }$ of a domain $D \subset \mathbf R ^ { d }$. In this case, the equation takes the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036032.png" /></td> </tr></table>
+
\begin{equation*} Y _ { t } = Y _ { 0 } + B _ { t } + \int _ { 0 } ^ { t } \mathbf{n} ( Y _ { s } ) d \text{l} _ { s } ,\; t \geq 0, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036033.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036034.png" />-dimensional Brownian motion starting at the origin, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036036.png" />, is the inward normal vector field on the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036038.png" /> is a real increasing process such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036040.png" />. The third term at the right-hand side of the equation expresses a singular drift, keeping the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036041.png" /> inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036042.png" /> against the isotropic nature of the Brownian motion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036043.png" />. For a bounded convex domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036044.png" /> the Skorokhod equation has a unique solution. For other domains, the Skorokhod equations are studied not only from the point of view of stochastic differential equations, but also in relation to other principles, e.g. submartingale problems or Dirichlet forms. Obliquely reflecting Brownian motions, where the vector fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036045.png" /> in the Skorokhod equations are different from the normal vector field, also arise naturally in the diffusion approximation in stochastic network theory.
+
where $B _ { t }$ is a $d$-dimensional Brownian motion starting at the origin, $\mathbf{n} ( x )$, $x \in \partial D$, is the inward normal vector field on the boundary $\partial D$ and $\operatorname{l}$ is a real increasing process such that $\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d \text{l} _ { s } = \text{l} _ { t }$, $t \geq 0$. The third term at the right-hand side of the equation expresses a singular drift, keeping the process $Y _ { t }$ inside $\overline{ D }$ against the isotropic nature of the Brownian motion $B _ { t }$. For a bounded convex domain in $\mathbf{R} ^ { d }$ the Skorokhod equation has a unique solution. For other domains, the Skorokhod equations are studied not only from the point of view of stochastic differential equations, but also in relation to other principles, e.g. submartingale problems or Dirichlet forms. Obliquely reflecting Brownian motions, where the vector fields $\bf n$ in the Skorokhod equations are different from the normal vector field, also arise naturally in the diffusion approximation in stochastic network theory.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N. Ikeda,  S. Watanabe,  "Stochastic differential equations and diffusions" , North-Holland  (1989)  (Edition: Second)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  N. Ikeda,  S. Watanabe,  "Stochastic differential equations and diffusions" , North-Holland  (1989)  (Edition: Second)</td></tr></table>

Latest revision as of 16:56, 1 July 2020

Skorohod equation

A stochastic equation describing a reflecting Brownian motion. Given a one-dimensional Brownian motion $X _ { t }$ on $\mathbf{R} ^ { 1 } = ( - \infty , \infty )$, the reflecting Brownian motion $X _ { t } ^ { + }$ is defined by

\begin{equation*} X _ { t } ^ { + } = | X _ { t } | , t \geq 0, \end{equation*}

which is a Markov process on $[ 0 , \infty )$ with continuous sample paths.

A.V. Skorokhod discovered that the reflecting Brownian motion $X _ { t } ^ { + }$, $t \geq 0$, is identical in law with the solution $Y _ { t }$, $t \geq 0$, of the equation

\begin{equation*} Y _ { t } = Y _ { 0 } + B _ { t } + \text{l} _ { t } , t \geq 0, \end{equation*}

where the triple $\{ Y _ { t } , B _ { t } , \text{l} _ { t } \}$ is a system of real continuous stochastic processes (cf. also Stochastic process) required to have the following properties:

$B _ { t }$ is a one-dimensional Brownian motion starting at $0$ and independent of $Y _ { 0 }$;

$Y _ { t } \geq 0$ for all $t \geq 0$;

$ \operatorname{ l}_t$ is increasing in $t \geq 0$ with $\mathbf{l} _ { 0 } = 0$ and $\int _ { 0 } ^ { t } I _ { ( 0 ) } ( Y _ { s } ) d \text{l} _ { s } = \text{l} _ { t }$.

In fact, the solution $Y _ { t }$ of this Skorokhod equation can be described uniquely and deterministically by the given Brownian motion $B _ { t }$ as

\begin{equation*} Y _ { t } = B _ { t } - \operatorname { min } _ { 0 \leq s \leq t } B _ { s } \bigwedge 0, \end{equation*}

a formula due to P. Lévy in case that $Y _ { 0 } = 0$. Further, $ \operatorname{ l}_t$ is twice the Lévy local time of $B _ { t }$ at the origin.

The Skorokhod equation has been extended to the higher-dimensional case $\mathbf{R} ^ { d }$, $d \geq 2$, to describe a normally reflecting Brownian motion $Y _ { t }$ on the closure $\overline{ D }$ of a domain $D \subset \mathbf R ^ { d }$. In this case, the equation takes the form

\begin{equation*} Y _ { t } = Y _ { 0 } + B _ { t } + \int _ { 0 } ^ { t } \mathbf{n} ( Y _ { s } ) d \text{l} _ { s } ,\; t \geq 0, \end{equation*}

where $B _ { t }$ is a $d$-dimensional Brownian motion starting at the origin, $\mathbf{n} ( x )$, $x \in \partial D$, is the inward normal vector field on the boundary $\partial D$ and $\operatorname{l}$ is a real increasing process such that $\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d \text{l} _ { s } = \text{l} _ { t }$, $t \geq 0$. The third term at the right-hand side of the equation expresses a singular drift, keeping the process $Y _ { t }$ inside $\overline{ D }$ against the isotropic nature of the Brownian motion $B _ { t }$. For a bounded convex domain in $\mathbf{R} ^ { d }$ the Skorokhod equation has a unique solution. For other domains, the Skorokhod equations are studied not only from the point of view of stochastic differential equations, but also in relation to other principles, e.g. submartingale problems or Dirichlet forms. Obliquely reflecting Brownian motions, where the vector fields $\bf n$ in the Skorokhod equations are different from the normal vector field, also arise naturally in the diffusion approximation in stochastic network theory.

References

[a1] N. Ikeda, S. Watanabe, "Stochastic differential equations and diffusions" , North-Holland (1989) (Edition: Second)
How to Cite This Entry:
Skorokhod equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Skorokhod_equation&oldid=15361
This article was adapted from an original article by Masatoshi Fukushima (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article