Difference between revisions of "Kazdan inequality"
(Importing text file) |
m (AUTOMATIC EDIT (latexlist): Replaced 21 formulas out of 21 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 21 formulas, 21 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|done}} | |
+ | Let $V$ be a real $N$-dimensional scalar inner product space (cf. also [[Inner product|Inner product]]; [[Pre-Hilbert space|Pre-Hilbert space]]), let $\mathcal{L} ( V )$ be the space of linear operators of $V$, and let $\mathcal{R} ( t ) \in \mathcal{L} ( V )$ be a given family of symmetric linear operators depending continuously on $t \in \mathbf{R}$. For $s \in \mathbf{R}$, denote by $C _ { S } : \mathbf{R} \rightarrow \mathcal{L} ( V )$ the solution of the initial value problem | ||
− | + | \begin{equation*} X ^ { \prime \prime } ( t ) + \mathcal{R} ( t ) \circ X ( t ) = 0 \end{equation*} | |
− | + | \begin{equation*} X ( s ) = 0 , X ^ { \prime } ( s ) = I. \end{equation*} | |
− | + | Suppose that $C _ { 0 } ( t )$ is invertible for all $t \in ( 0 , \pi )$. Then for every positive $C ^ { 2 }$-function $f$ on $( 0 , \pi )$ satisfying $f ( \pi - t ) = f ( t )$ on $( 0 , \pi )$, one has | |
− | with equality if and only if | + | \begin{equation*} \int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { det } C _ { s } ( t ) d t \geq \end{equation*} |
+ | |||
+ | \begin{equation*} \geq \int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { sin } ^ { N } ( t - s ) d t, \end{equation*} | ||
+ | |||
+ | with equality if and only if $\mathcal{R} ( t ) = I$ for all $t \in ( 0 , \pi )$. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> J.L. Kazdan, "An inequality arising in geometry" A.L. Besse (ed.) , ''Manifolds all of whose Geodesics are Closed'' , Springer (1978) pp. 243–246; Appendix E</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> I. Chavel, "Riemannian geometry: A modern introduction" , Cambridge Univ. Press (1995)</td></tr></table> |
Latest revision as of 16:46, 1 July 2020
Let $V$ be a real $N$-dimensional scalar inner product space (cf. also Inner product; Pre-Hilbert space), let $\mathcal{L} ( V )$ be the space of linear operators of $V$, and let $\mathcal{R} ( t ) \in \mathcal{L} ( V )$ be a given family of symmetric linear operators depending continuously on $t \in \mathbf{R}$. For $s \in \mathbf{R}$, denote by $C _ { S } : \mathbf{R} \rightarrow \mathcal{L} ( V )$ the solution of the initial value problem
\begin{equation*} X ^ { \prime \prime } ( t ) + \mathcal{R} ( t ) \circ X ( t ) = 0 \end{equation*}
\begin{equation*} X ( s ) = 0 , X ^ { \prime } ( s ) = I. \end{equation*}
Suppose that $C _ { 0 } ( t )$ is invertible for all $t \in ( 0 , \pi )$. Then for every positive $C ^ { 2 }$-function $f$ on $( 0 , \pi )$ satisfying $f ( \pi - t ) = f ( t )$ on $( 0 , \pi )$, one has
\begin{equation*} \int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { det } C _ { s } ( t ) d t \geq \end{equation*}
\begin{equation*} \geq \int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { sin } ^ { N } ( t - s ) d t, \end{equation*}
with equality if and only if $\mathcal{R} ( t ) = I$ for all $t \in ( 0 , \pi )$.
References
[a1] | J.L. Kazdan, "An inequality arising in geometry" A.L. Besse (ed.) , Manifolds all of whose Geodesics are Closed , Springer (1978) pp. 243–246; Appendix E |
[a2] | I. Chavel, "Riemannian geometry: A modern introduction" , Cambridge Univ. Press (1995) |
Kazdan inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kazdan_inequality&oldid=17407