Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/70"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 70 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(15 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031048.png ; $M ( K )$ ; confidence 0.989
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021051.png ; $k = 1 , \ldots , r = \operatorname { dim } \mathfrak{a} / \mathfrak{p}$ ; confidence 0.264 ; test
  
2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a1200403.png ; $D ( A )$ ; confidence 0.997
+
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201009.png ; $( \mathcal{L} F ) _ { n } ( X ) = \{ H _ { n } , F _ { n } ( X ) \}$ ; confidence 0.264
  
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040485.png ; $\Phi$ ; confidence 0.539
+
3. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302806.png ; $A \mathbf{x} \not\le \mathbf{b}$ ; confidence 0.264
  
4. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040466.png ; $D ( K )$ ; confidence 0.689
+
4. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080940/r08094048.png ; $\{ a _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.264
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040127.png ; $\psi$ ; confidence 0.749
+
5. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012025.png ; $T _ { \text{V} }$ ; confidence 0.264
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050192.png ; $A ( p )$ ; confidence 0.733
+
6. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110258.png ; $\{ u \in \mathcal{S} ^ { \prime } ( \mathbf{R} ^ { n } ) : \forall a \in S ( m , G ) , a ^ { w } u \in L ^ { 2 } ( \mathbf{R} ^ { n } ) \}.$ ; confidence 0.264
  
7. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050142.png ; $G ( n )$ ; confidence 0.999
+
7. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200141.png ; $\geq \frac { 1 } { n } \left( \frac { n } { 16 e ( m + n ) } \right) ^ { n } \times \times \operatorname{min} _ { k _ { 1 } \leq l _ { 1 } \leq k \leq l _ { 2 } \leq k _ { 2 } } | b _ {l_{ 1} } + \ldots + b _ {l_{  2 }} |.$ ; confidence 0.264
  
8. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050170.png ; $K ( n )$ ; confidence 0.460
+
8. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960306.png ; $\ddot { z } - \mu \left( z - \frac { \dot{z} \square ^ { 3 } } { 3 } \right) + z = 0,$ ; confidence 0.264
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050182.png ; $a ( n )$ ; confidence 0.892
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016073.png ; $\lambda c _ { 1 } + \lambda ^ { 2 } c _ { 1 } + \ldots$ ; confidence 0.264
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050143.png ; $P ( n )$ ; confidence 0.963
+
10. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021045.png ; $c _ { 1 } ( \lambda ) , \ldots , c _ { j  - 1} ( \lambda )$ ; confidence 0.264
  
11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050200.png ; $p ( n )$ ; confidence 0.561
+
11. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067036.png ; $u: M \supset U \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.264
  
12. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005031.png ; $A ( t )$ ; confidence 1.000
+
12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200177.png ; $G _ { 1 } ( r ) = \sum _ { j = 1 } ^ { n } P _ { j } ( r ) z _ { j } ^ { r }$ ; confidence 0.264
  
13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005098.png ; $A ( . )$ ; confidence 0.813
+
13. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010013.png ; $y _ { 1 } = y _ { 0 } + h \sum _ { i = 1 } ^ { s } b _ { i }\, f ( x _ { 0 } + c _ { i } h , g _ { i } ).$ ; confidence 0.263
  
14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a1200507.png ; $f ( . )$ ; confidence 0.961
+
14. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009028.png ; $L_{i ,\, j}$ ; confidence 0.263
  
15. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005092.png ; $B ( . )$ ; confidence 0.747
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032022.png ; $A _ { i j } ( z ) = \sum _ { l = 0 } ^ { \rho _ { i } } R _ { l + 1 } ^ { ( i ) } ( c _ { i } z ) c _ { i } ^ { l + 1 } \lambda _ { l j } ^ { ( i ) },$ ; confidence 0.263
  
16. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006018.png ; $b ( x )$ ; confidence 1.000
+
16. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026022.png ; $\operatorname{deg}_{B}[f, \operatorname{int} K, 0]$ ; confidence 0.263
  
17. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006061.png ; $L ( X )$ ; confidence 0.995
+
17. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009017.png ; $\overline { c }_ 0 = \overline { c } _ { N } = 2$ ; confidence 0.263
  
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006039.png ; $f ( t )$ ; confidence 1.000
+
18. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170164.png ; $K ^ { n } \times 1$ ; confidence 0.263
  
19. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046069.png ; $P ( x )$ ; confidence 0.996
+
19. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002085.png ; $f ^ { * } : H ^ { q } ( Y , G ) \rightarrow H ^ { q } ( X , G )$ ; confidence 0.263
  
20. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006059.png ; $B ( t )$ ; confidence 1.000
+
20. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014078.png ; $d \overline { \zeta } [ k ] = d \overline { \zeta } _ { 1 } \wedge \ldots \wedge d \overline { \zeta } _ { k - 1 } \wedge d \overline { \zeta }_{ k + 1} \wedge \ldots \wedge d \overline { \zeta }_{n}$ ; confidence 0.263
  
21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070120.png ; $u ( v )$ ; confidence 0.994
+
21. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260127.png ; $0 \rightarrow A \rightarrow X \stackrel { \pi } { \rightarrow }  B \rightarrow 0.$ ; confidence 0.263
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060130.png ; $90 > 1$ ; confidence 0.833
+
22. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300404.png ; $f : G \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.262
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008054.png ; $A ( t )$ ; confidence 0.997
+
23. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140109.png ; $r_{i,\,j} = \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { 2 } ( S _ { j } , S _ { i } )$ ; confidence 0.262
  
24. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008031.png ; $S ( t )$ ; confidence 0.907
+
24. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c020280152.png ; $x \in K$ ; confidence 0.262
  
25. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008016.png ; $m ( x )$ ; confidence 0.603
+
25. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008019.png ; $y ^ { 2 } = R _ { g } ( \lambda )$ ; confidence 0.262
  
26. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008027.png ; $A u = f$ ; confidence 0.962
+
26. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000153.png ; $\vdash ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007071.png ; $Q ( x )$ ; confidence 0.713
+
27. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007017.png ; $\rho ( h _ { i } ) = \frac { 1 } { 2 } a _ { i i }$ ; confidence 0.262
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007082.png ; $H ( x )$ ; confidence 0.941
+
28. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100106.png ; $\mathbf{C} ^ { n } \backslash K$ ; confidence 0.262
  
29. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007033.png ; $< 1$ ; confidence 0.999
+
29. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200243.png ; $* ( x ) - \text { li } x$ ; confidence 0.262
  
30. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046080.png ; $f ( x )$ ; confidence 1.000
+
30. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022080.png ; $x \in T$ ; confidence 0.262
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a1300805.png ; $h ( x )$ ; confidence 0.994
+
31. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016810/b01681032.png ; $\mathbf{r}$ ; confidence 0.262
  
32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a1300909.png ; $\pi z$ ; confidence 0.549
+
32. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017023.png ; $\mathbf{R}[ x _ { 1 } , \dots , x _ { n } ]$ ; confidence 0.262
  
33. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032027.png ; $i m + 1$ ; confidence 0.627
+
33. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120160.png ; $\hat{\tau}$ ; confidence 0.262
  
34. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015046.png ; $( G ) X$ ; confidence 0.755
+
34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020035.png ; $\operatorname { inf } _ { z _ { 1 } , \ldots , z _ { n } \in U } \operatorname { max } _ { k \in S } \frac { \operatorname { Re } g _ { 1 } ( k ) } { M _ { d } (  k  ) }$ ; confidence 0.262
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016022.png ; $u ( t )$ ; confidence 0.999
+
35. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f1201701.png ; $G = \langle x _ { 1 } , \dots , x _ { n } : r = 1 \rangle$ ; confidence 0.261
  
36. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016055.png ; $P ( t )$ ; confidence 1.000
+
36. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019019.png ; $\operatorname{Dom} ( - \Delta_{\text{ Dir}} ) = H _ { 0 } ^ { 1 } ( \Omega ) \bigcap H ^ { 2 } ( \Omega ).$ ; confidence 0.261
  
37. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016051.png ; $X ( t )$ ; confidence 0.987
+
37. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021067.png ; $A ( C , q , z ) = ( 1 - z ) ^ { r } z ^ { n - r } t \left( M _ { C } ; \frac { 1 + ( q - 1 ) z } { 1 - z } , \frac { 1 } { z } \right),$ ; confidence 0.261
  
38. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016044.png ; $f ( u )$ ; confidence 0.999
+
38. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k1200809.png ; $p = \{ p _ { 0 } , \dots , p _ { m } \}$ ; confidence 0.261
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016053.png ; $N ( . )$ ; confidence 0.872
+
39. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001019.png ; $= \left\{ \begin{array} { l l } { \sum _ { - n \leq i \leq - 1 } f ( i ) g ( i + n ) , } & { n = - m > 0, } \\ { - \sum _ { n \leq i \leq - 1 } f ( i - n ) g ( i ) , } & { n = - m < 0, } \\ { 0 , } & { \left\{ \begin{array} { l } { n + m \neq 0, } \\ { n = m = 0. } \end{array} \right.} \end{array} \right.$ ; confidence 0.261
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016048.png ; $g ( W )$ ; confidence 0.977
+
40. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062570/m06257041.png ; $V _ { k }$ ; confidence 0.261
  
41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016082.png ; $A V / P$ ; confidence 0.968
+
41. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011026.png ; $\varphi \in \mathcal{P}_{*}$ ; confidence 0.261
  
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012041.png ; $4 \mu$ ; confidence 1.000
+
42. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006099.png ; $K _ {i ,\, j } ( A ) : =$ ; confidence 0.261
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017015.png ; $b ( t )$ ; confidence 0.998
+
43. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160122.png ; $j ^ { \prime } = p _ { t + 1} , \ldots , p$ ; confidence 0.261
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020026.png ; $p ( t )$ ; confidence 1.000
+
44. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013037.png ; $L _ { a } ^ { 2 } ( G )$ ; confidence 0.261
  
45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a1302203.png ; $Z ( R )$ ; confidence 0.997
+
45. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021050.png ; $\{ \mathcal{L} _ { n } \}$ ; confidence 0.261
  
46. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021052.png ; $f ( z )$ ; confidence 1.000
+
46. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023050.png ; $f ( t ) = A ( \sigma _ { t } ) = \int _ { a } ^ { b } L ( x , y ( x ) + t z ( x ) , y ^ { \prime } ( x ) + t z ^ { \prime } ( x ) ) d x$ ; confidence 0.261
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025029.png ; $L ( V )$ ; confidence 0.983
+
47. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003030.png ; $\Delta _ { x }$ ; confidence 0.261
  
48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024027.png ; $Z ( C )$ ; confidence 0.639
+
48. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180276.png ; $\nabla ( \Theta \bigotimes \Phi ) = \nabla \Theta \bigotimes \Phi + \tau _ { p + 1 } ( \Theta \bigotimes \nabla \Phi ) \in$ ; confidence 0.260
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450177.png ; $X ( C )$ ; confidence 0.814
+
49. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120204.png ; $K _ { \text{tot }S }$ ; confidence 0.260
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025025.png ; $q = 32$ ; confidence 0.998
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301301.png ; $\left\{ \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q _t = - \frac { 1 } { 2 } q _{x x} + q ^ { 2 } r, } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r _t = \frac { 1 } { 2 } r _{xx} - q r ^ { 2 }. } \end{array} \right.$ ; confidence 0.260
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260113.png ; $A ( X )$ ; confidence 0.875
+
51. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b1201201.png ; $M = M ^ { n }$ ; confidence 0.260
  
52. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420166.png ; $2 n$ ; confidence 1.000
+
52. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012058.png ; $e R C$ ; confidence 0.260
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027010.png ; $\rho$ ; confidence 0.727
+
53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011026.png ; $\partial _ { n } \ldots \partial _ { 1 } \mathfrak { S } _ { w _ { n + 1 } } = \mathfrak { S } _ { w _ { n } }$ ; confidence 0.260
  
54. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160062.png ; $\pm 1$ ; confidence 1.000
+
54. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010064.png ; $\exists x ( \emptyset \in x \bigwedge \forall y ( y \in x \rightarrow y \bigcup \{ y \} \in x ) ).$ ; confidence 0.260
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028018.png ; $R ( n )$ ; confidence 0.421
+
55. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009037.png ; $g _ { 0 } , \ldots , g _ { n }$ ; confidence 0.260
  
56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029065.png ; $M ( Q )$ ; confidence 0.690
+
56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180188.png ; $\mathsf{RCA}$ ; confidence 0.260
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029033.png ; $M ( P )$ ; confidence 0.983
+
57. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139032.png ; $\nu _ { i }$ ; confidence 0.260
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010021.png ; $C ( X )$ ; confidence 0.981
+
58. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022090.png ; $q_{l}$ ; confidence 0.260
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030097.png ; $c ( K )$ ; confidence 0.520
+
59. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340130.png ; $\mathcal{M} ( \tilde { x } _ { - } , \tilde { x } _ { + } )$ ; confidence 0.259
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030074.png ; $B ( E )$ ; confidence 0.938
+
60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230141.png ; $( S _ { 1 } , \dots , S _ { r } ) \sim L _ { r } ^ { ( 1 ) } ( f , n _ { 1 } / 2 , \dots , n _ { r } / 2 )$ ; confidence 0.259
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030063.png ; $I ( T )$ ; confidence 0.956
+
61. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702032.png ; $A _ { l ^ n}$ ; confidence 0.259
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031061.png ; $\leq$ ; confidence 0.177
+
62. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022037.png ; $r _ { \text{ess} } ( T )$ ; confidence 0.259
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031096.png ; $D E X P$ ; confidence 0.734
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201308.png ; $-$ ; confidence 0.259
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031098.png ; $N E X P$ ; confidence 0.760
+
64. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( \widehat{t ^ { * }} \square ^ { - 1 } \beta _ { 3 } ),$ ; confidence 0.259
  
65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010047.png ; $U ( t )$ ; confidence 0.999
+
65. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009096.png ; $\ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} },$ ; confidence 0.259
  
66. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010051.png ; $1,00$ ; confidence 0.093
+
66. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220222.png ; $\mathcal{MM} _ { \text{Q} }$ ; confidence 0.259
  
67. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010032.png ; $G ( t )$ ; confidence 1.000
+
67. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045060.png ; $\rho _ { S } = 12 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } u v d C _ { X , Y } ( u , v ) - 3 =$ ; confidence 0.259
  
68. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021047.png ; $V ( a )$ ; confidence 0.983
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030015.png ; $( T V _{\leq n} , d ) \rightarrow C_{ *} \Omega X _ { n  + 1}$ ; confidence 0.259
  
69. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021059.png ; $Z ( g )$ ; confidence 0.433
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023083.png ; $d _ { q } ( \Omega ) = \operatorname { max } _ { \overline{\Omega} } | z ^ {  q } |$ ; confidence 0.259
  
70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021057.png ; $U ( n )$ ; confidence 0.389
+
70. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043067.png ; $\Psi ( x \bigotimes x ) = q ^ { 2 } x \bigotimes x,$ ; confidence 0.259
  
71. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066069.png ; $T ( 1 )$ ; confidence 1.000
+
71. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013028.png ; $\tilde { A } _ { 7 }$ ; confidence 0.259
  
72. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130180/b13018013.png ; $a + i b$ ; confidence 0.893
+
72. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012020.png ; $C_{abcd}$ ; confidence 0.258
  
73. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001013.png ; $G ( R )$ ; confidence 0.987
+
73. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009099.png ; $I _ { n } ( g ) = \int _ { [ 0,1 ] ^ { n } } g ( t _ { 1 } , \ldots , t _ { n } ) d B ( t _ { 1 } ) \ldots d B ( t _ { n } ),$ ; confidence 0.258
  
74. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001017.png ; $G ( Q )$ ; confidence 0.735
+
74. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d0319508.png ; $g_{2}$ ; confidence 0.258
  
75. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b130020105.png ; $M ( A )$ ; confidence 0.959
+
75. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002078.png ; $( \alpha _ { 1 } , \alpha _ { 2 } \cup \gamma ^ { d } , \dots , \alpha _ { q } )$ ; confidence 0.258
  
76. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040158.png ; $f = x y$ ; confidence 1.000
+
76. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009095.png ; $H _ { n } ^ { ( k ) } ( \mathbf{x} ) = F _ { n } ^ { ( k ) } ( x )$ ; confidence 0.258
  
77. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004065.png ; $1 < p x$ ; confidence 0.765
+
77. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005027.png ; $x _ { 0 } \notin \{ p _ { 1 } , \dots , p _ { m } \}$ ; confidence 0.258
  
78. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005025.png ; $H ( U )$ ; confidence 0.993
+
78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012079.png ; $x _ { t } \geq A y _ { t  + 1}$ ; confidence 0.258
  
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005038.png ; $M ( A )$ ; confidence 0.988
+
79. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004095.png ; $\operatorname{WF} _ { s } u \cap \Gamma = \emptyset$ ; confidence 0.258
  
80. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007012.png ; $n | = 1$ ; confidence 0.734
+
80. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030141.png ; $\operatorname{ind}_{\alpha} ( D _ { + } ) = \int _ { M } \hat { A } ( M ) \operatorname{Ch} ( E ) - \frac { \eta ( D _ { 0 } ) + h } { 2 }.$ ; confidence 0.258
  
81. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009014.png ; $u | < 1$ ; confidence 0.951
+
81. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016095.png ; $L ( n )$ ; confidence 0.258
  
82. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022073.png ; $A ( j )$ ; confidence 0.998
+
82. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004013.png ; $w _ { i } ( x _ { 1 } , \ldots , x _ { n } ) = e \text { for every } \ w_ { i } \in X,$ ; confidence 0.257
  
83. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022012.png ; $h ( X )$ ; confidence 0.977
+
83. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130113.png ; $\operatorname{Hom}_{K ^ { b } ( P _ { \Lambda } )}  ( T , T [ i ] )  = 0$ ; confidence 0.257
  
84. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b11026028.png ; $k = 2 m$ ; confidence 0.989
+
84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180217.png ; $h \otimes k \in \mathsf{S} ^ { 2 } \mathcal{E} \otimes \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.257
  
85. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201407.png ; $2 t + 1$ ; confidence 1.000
+
85. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007071.png ; $p_{M}$ ; confidence 0.257
  
86. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014040.png ; $b ( z )$ ; confidence 0.996
+
86. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015027.png ; $r_1$ ; confidence 0.257
  
87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201405.png ; $S ( z )$ ; confidence 0.955
+
87. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130230/c13023010.png ; $L _ { - } \sim _ { c } L _ { - } ^ { \prime }$ ; confidence 0.257
  
88. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014041.png ; $q ( z )$ ; confidence 0.469
+
88. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040109.png ; $S ( \phi ) = \int \langle \xi ( x ) , \phi ( x ) \rangle \theta ( x ) d \mathcal{H} ^ { m } | _ { R ( x ) },$ ; confidence 0.257
  
89. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a01033011.png ; $p ( x )$ ; confidence 0.996
+
89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016018.png ; $g _ { n } = \mathcal{M} _ { t }\, f _ { 2  n - 1}$ ; confidence 0.257
  
90. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012032.png ; $t | < 1$ ; confidence 0.859
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040189.png ; $\mathfrak{A}^{*S*S}$ ; confidence 0.257
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068013.png ; $F ( z )$ ; confidence 0.998
+
91. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014036.png ; $f v _ { 1 } , \dots , v _ { \rho  ( f )}$ ; confidence 0.257
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110250/b11025029.png ; $g ( t )$ ; confidence 1.000
+
92. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833607.png ; $P _ { n } ( z ) = \frac { 1 } { 2 \pi i } \int _ { C } \frac { ( t ^ { 2 } - 1 ) ^ { n } } { 2 ^ { n } ( t - z ) ^ { n + 1 } } d t,$ ; confidence 0.256
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197078.png ; $2 \pi$ ; confidence 1.000
+
93. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017065.png ; $\succsim_{i}$ ; confidence 0.256
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b1301709.png ; $C ( t )$ ; confidence 0.840
+
94. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148046.png ; $a_{0}$ ; confidence 0.256
  
95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027020.png ; $R ( t )$ ; confidence 1.000
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040400.png ; $\operatorname{Mod} ^ { *  S}  \mathcal{D}  = \mathbf{P} _ { \text{SD} } \operatorname{Mod}  ^ { *\text{L}}  \mathcal{D} $ ; confidence 0.256
  
96. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027064.png ; $b ( . )$ ; confidence 0.947
+
96. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006026.png ; $\operatorname{Bel}_{E _ { 1 }}$ ; confidence 0.256
  
97. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027016.png ; $N ( t )$ ; confidence 1.000
+
97. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029092.png ; $q_{ m}$ ; confidence 0.256
  
98. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027073.png ; $U ( . )$ ; confidence 0.868
+
98. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001011.png ; $\hat { f } ( k ) = ( 2 \pi ) ^ { - n } \int _ { \text{T} ^ { n } } f ( x ) e ^ { - i k x } d x$ ; confidence 0.256
  
99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034050.png ; $H ( M )$ ; confidence 0.960
+
99. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013027.png ; $\tilde{A} _ { 6 }$ ; confidence 0.256
  
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036012.png ; $P ( E )$ ; confidence 0.864
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a01329044.png ; $\sum _ { n }$ ; confidence 0.256
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a011480121.png ; $g ( x )$ ; confidence 0.998
+
101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030044.png ; $\mathcal{O} _ { N }$ ; confidence 0.255
  
102. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019011.png ; $f ( m )$ ; confidence 1.000
+
102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029049.png ; $x \in V \subset U \subset X$ ; confidence 0.255
  
103. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019061.png ; $b ( m )$ ; confidence 0.998
+
103. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017055.png ; $x \succsim_{i} z$ ; confidence 0.255
  
104. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019055.png ; $M , 2 M$ ; confidence 0.981
+
104. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b1302806.png ; $\mathcal{U}_{*}$ ; confidence 0.255
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020073.png ; $9 -$ ; confidence 0.467
+
105. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140174.png ; $q_{C}$ ; confidence 0.255
  
106. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042041.png ; $\Psi$ ; confidence 0.788
+
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040531.png ; $\varphi _ { 0 } , \ldots , \varphi _ { n  - 1} , \varphi _ { n }$ ; confidence 0.255
  
107. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420171.png ; $D ( H )$ ; confidence 0.998
+
107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029020.png ; $\operatorname{HF} _ { * } ^ { \text{symp} } ( M , L _ { 0 } , L _ { 1 } )$ ; confidence 0.255
  
108. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042096.png ; $1002$ ; confidence 0.969
+
108. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010520.png ; $\xi _ { k }$ ; confidence 0.255
  
109. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420154.png ; $D ( C )$ ; confidence 0.862
+
109. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044270/g044270146.png ; $K _ { s }$ ; confidence 0.255
  
110. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042097.png ; $2 + 2 z$ ; confidence 0.500
+
110. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012098.png ; $( w _ { i } ^ { ( t + 1 ) } , \ldots , w _ { n } ^ { ( t + 1 ) } )$ ; confidence 0.255
  
111. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420155.png ; $Z ( C )$ ; confidence 0.797
+
111. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002023.png ; $\underline { f } _ { + \text{ap } } = + \infty$ ; confidence 0.254
  
112. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042086.png ; $Z / n Z$ ; confidence 0.344
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200803.png ; $\sum _ { i ,\, j = 1 } ^ { m } a _ { i ,\, j } ( x ) n _ { i } ( x ) \partial u / \partial x _ { j } = 0$ ; confidence 0.254
  
113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420129.png ; $A ( R )$ ; confidence 0.987
+
113. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d031850339.png ; $( u _ { 1 } , \ldots , u _ { m } )$ ; confidence 0.254
  
114. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110670/b11067054.png ; $B ( R )$ ; confidence 0.987
+
114. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110197.png ; $\tilde{Q}$ ; confidence 0.254
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110660/a11066088.png ; $B ( H )$ ; confidence 0.997
+
115. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010033.png ; $f _ { s \text{l}t } ( x ) : = - \frac { 1 } { 4 \pi } \int _ { S ^ { 1 } } \hat { f } _ { p p } ( \alpha , \alpha \cdot x ) d \alpha,$ ; confidence 0.254
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043050.png ; $[ m ] q$ ; confidence 0.865
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040241.png ; $\Gamma \vdash _ { \mathcal{D} } \varphi \text { iff } K ( \Gamma ) \approx L ( \Gamma ) \vDash _ { \text{K} } K ( \varphi ) \approx L ( \varphi ),$ ; confidence 0.254
  
117. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022048.png ; $F ( u )$ ; confidence 0.985
+
117. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013031.png ; $ i  = 2$ ; confidence 0.254
  
118. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023064.png ; $u | = n$ ; confidence 0.980
+
118. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120160/c12016013.png ; $j = i :\, a _ { i i } = \sum _ { k = 1 } ^ { i } r _ { k i } ^ { 2 },$ ; confidence 0.254
  
119. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023059.png ; $5 ( n )$ ; confidence 0.181
+
119. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090080/s09008044.png ; $\tilde { W }$ ; confidence 0.254
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209055.png ; $J ( R )$ ; confidence 0.998
+
120. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l1300803.png ; $\operatorname{exp} ( h )$ ; confidence 0.253
  
121. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b130260104.png ; $B ( 1 )$ ; confidence 0.997
+
121. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f1202104.png ; $a ^ { [ n ] } ( z ) = \sum _ { i = 0 } ^ { \infty } a _ { i } ^ { n } z ^ { i }$ ; confidence 0.253
  
122. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b1302709.png ; $K ( H )$ ; confidence 0.925
+
122. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031680/d03168030.png ; $y _ { n }$ ; confidence 0.253
  
123. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027031.png ; $Q ( H )$ ; confidence 0.930
+
123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032051.png ; $\mathbf{l}^{p}$ ; confidence 0.253
  
124. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027019.png ; $B ( H )$ ; confidence 0.983
+
124. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007064.png ; $\sum _ { i ,\, j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 ,\, \forall t \in \mathbf{C} ^ { n } ,\, \forall x _ { i } \in E,$ ; confidence 0.253
  
125. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b01747072.png ; $B ( n )$ ; confidence 0.997
+
125. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253
  
126. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028025.png ; $G ( 8 )$ ; confidence 0.997
+
126. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c1202005.png ; $\alpha \wedge ( d \alpha ) ^ { n - 1 } \neq 0$ ; confidence 0.253
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011800/a01180076.png ; $T ( n )$ ; confidence 0.847
+
127. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030870/d03087012.png ; $e _ { \alpha }$ ; confidence 0.253
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052013.png ; $x y + 1$ ; confidence 0.555
+
128. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066035.png ; $\| H f \| _ { * } \leq G \| f \| _ { \infty }.$ ; confidence 0.253
  
129. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290112.png ; $R ( I )$ ; confidence 0.556
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260108.png ; $\hat { y } _ { i } \in \hat { A } [ [ X _ { 1 } , \dots , X _ { s _ { i } } ] ]$ ; confidence 0.253
  
130. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290222.png ; $R ( m )$ ; confidence 0.968
+
130. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016600/b01660012.png ; $\mathbf{v}$ ; confidence 0.253
  
131. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290186.png ; $R ( I )$ ; confidence 0.514
+
131. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140166.png ; $H ^ { 2 } ( \mathbf{C} ^ { n } )$ ; confidence 0.253
  
132. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111040/b11104018.png ; $a x + b$ ; confidence 0.987
+
132. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020133.png ; $\hat{c}_{k}^{1} \leq 0$ ; confidence 0.252
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052024.png ; $f ( n )$ ; confidence 1.000
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302801.png ; $a = a_0$ ; confidence 0.252
  
134. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030042.png ; $3 m - 2$ ; confidence 0.997
+
134. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520175.png ; $J = \left\| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { J ( e _ { i } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right\|.$ ; confidence 0.252
  
135. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055040.png ; $C ( N )$ ; confidence 0.916
+
135. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c02074095.png ; $p ^ { * }$ ; confidence 0.252
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a013000105.png ; $A ( E )$ ; confidence 0.997
+
136. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018061.png ; $P \in M$ ; confidence 0.252
  
137. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001041.png ; $T ( E )$ ; confidence 1.000
+
137. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052039.png ; $y = F ( x _ { + } ) - F ( x _ { c } )$ ; confidence 0.252
  
138. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001047.png ; $T ( F )$ ; confidence 0.999
+
138. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301704.png ; $A _ { 2 } ( G ) = \left\{ \overline { k } *  \breve{ l } : k , l \in \mathcal{L} _ { C } ^ { 2 } ( G ) \right\}$ ; confidence 0.252
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121022.png ; $v ( x )$ ; confidence 0.987
+
139. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017039.png ; $\psi  _ { t }$ ; confidence 0.252
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012930/a01293050.png ; $u ( x )$ ; confidence 0.976
+
140. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020012.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { | \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } | } { M _ { d } ( k ) },$ ; confidence 0.252
  
141. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003016.png ; $\| .1$ ; confidence 0.612
+
141. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060105.png ; $\mathfrak { E } ( \lambda ) = \operatorname { ker } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma ),$ ; confidence 0.252
  
142. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004013.png ; $y ( z )$ ; confidence 0.413
+
142. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021037.png ; $\hat{X}_i$ ; confidence 0.252
  
143. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007073.png ; $A = Ab$ ; confidence 0.803
+
143. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043480/g04348025.png ; $S ^ { r - 1}$ ; confidence 0.252
  
144. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070140.png ; $k [ C ]$ ; confidence 0.976
+
144. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017040.png ; $\hat { X } = X \oplus 0 \in \operatorname { ker } \delta _ { \hat{A} , B }$ ; confidence 0.252
  
145. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070173.png ; $R ( P )$ ; confidence 0.963
+
145. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v1300503.png ; $V ^ { \natural  } = \oplus _ { n  \geq - 1} V _ { n } ^ { \natural  }$ ; confidence 0.251
  
146. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070115.png ; $d ( Q )$ ; confidence 0.919
+
146. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005013.png ; $\gamma _ { n } = S _ { n } ( 0 )$ ; confidence 0.251
  
147. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070148.png ; $k ( C )$ ; confidence 0.949
+
147. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013035.png ; $\Psi _ { + } = e ^ { i e \chi / \hbar } \Psi _ { - } = e ^ { 2 i e g \phi / \hbar } \Psi _ { - },$ ; confidence 0.251
  
148. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070170.png ; $C ( P )$ ; confidence 0.755
+
148. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s1305006.png ; $\left( \begin{array} { l } { n } \\ { 0 } \end{array} \right) < \ldots < \left( \begin{array} { c } { n } \\ { \lfloor n / 2 \rfloor } \end{array} \right) = \left( \begin{array} { c } { n } \\ { \lceil n / 2 \rceil } \end{array} \right) > \ldots > \left( \begin{array} { l } { n } \\ { n } \end{array} \right),$ ; confidence 0.251
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145094.png ; $2 g - 2$ ; confidence 1.000
+
149. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003046.png ; $qd$ ; confidence 0.251
  
150. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008014.png ; $N ( p )$ ; confidence 0.570
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240242.png ; $\text{SS} _ { \mathcal{H} } = \sum _ { i = 1 } ^ { q } z _ { i } ^ { 2 }$ ; confidence 0.251
  
151. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009038.png ; $O ( N )$ ; confidence 0.948
+
151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037092.png ; $\sum _ { 1 } ^ { 1 }$ ; confidence 0.251
  
152. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017350/b01735084.png ; $L u = f$ ; confidence 0.897
+
152. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021036.png ; $P _ { m } ( A _ { m } ) \rightarrow 0$ ; confidence 0.251
  
153. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010023.png ; $a 0 = 0$ ; confidence 0.580
+
153. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001022.png ; $| s D |$ ; confidence 0.251
  
154. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327024.png ; $r ( A )$ ; confidence 0.999
+
154. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010044.png ; $(S) \int _ { A } f d m = \operatorname { sup } _ { \alpha \in [ 0 , + \infty ] } [ \alpha \bigwedge m ( A \bigcap F _ { \alpha } ) ],$ ; confidence 0.251
  
155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170118.png ; $f ( r )$ ; confidence 0.554
+
155. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220104.png ; $H _ { \text{DR} } ^ { i } ( X_{ / \mathbf{R}} )$ ; confidence 0.251
  
156. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170159.png ; $M ( n )$ ; confidence 0.878
+
156. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034024.png ; $\operatorname{SH} ^ { * } ( M , \omega , \phi ) = \operatorname{SH} ^ { * } ( N , \tilde { \omega } , L _ { + } , L - )$ ; confidence 0.251
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406099.png ; $\rho$ ; confidence 0.686
+
157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012012.png ; $v ^ { \perp }$ ; confidence 0.251
  
158. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170146.png ; $M ( 1 )$ ; confidence 0.798
+
158. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070134.png ; $\Delta t ^ { i } \square_{ j} = t ^ { i } \square _ { a } \bigotimes t ^ { a } \square_{ j} ,\, \epsilon t ^ { i } \square _j = \delta ^ { i } \square_ j$ ; confidence 0.251
  
159. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170166.png ; $2 k - 1$ ; confidence 0.999
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011800/a011800102.png ; $\text{NC}$ ; confidence 0.251
  
160. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170150.png ; $M ( n )$ ; confidence 0.969
+
160. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026600/c026600118.png ; $x \in X _ { 0 }$ ; confidence 0.251
  
161. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016018.png ; $i ( n )$ ; confidence 0.397
+
161. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009023.png ; $\mathcal{H} ( \mathbf{C} ^ { n } )$ ; confidence 0.251
  
162. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160144.png ; $s ( n )$ ; confidence 0.855
+
162. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002056.png ; $a , b _ { 1 } , \dots , b _ { n }$ ; confidence 0.251
  
163. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016010.png ; $t ( n )$ ; confidence 0.998
+
163. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620383.png ; $\operatorname{ch}$ ; confidence 0.251
  
164. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160169.png ; $M ( w )$ ; confidence 0.992
+
164. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011860/a01186049.png ; $\mathfrak{G}$ ; confidence 0.251
  
165. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016089.png ; $F ( C )$ ; confidence 0.915
+
165. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507051.png ; $\gamma _ { \omega }$ ; confidence 0.251
  
166. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160104.png ; $f ( w )$ ; confidence 0.997
+
166. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015065.png ; $\frac { 1 } { \beta _ { p } ( a , b ) } | U | ^ { a - ( p + 1 ) / 2 } | I _ { p } - U | ^ { b - ( p + 1 ) / 2 },$ ; confidence 0.250
  
167. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180503.png ; $R ( g )$ ; confidence 0.965
+
167. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021072.png ; $h _ { M } ( x )$ ; confidence 0.250
  
168. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028022.png ; $k = - 1$ ; confidence 0.999
+
168. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110450/c11045030.png ; $A / N$ ; confidence 0.250
  
169. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180317.png ; $R ( g )$ ; confidence 1.000
+
169. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032020/d03202028.png ; $l = n$ ; confidence 0.250
  
170. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180248.png ; $A ( g )$ ; confidence 0.999
+
170. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150182.png ; $\nu ( A ) = \operatorname { sup } _ { M } \text { inf } \{ \| A x \| : x \in M , \| x \| = 1 \}$ ; confidence 0.250
  
171. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180230.png ; $W ( g )$ ; confidence 0.470
+
171. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053068.png ; $\text{St} = \sum _ { P } \pm 1 _ { P } ^ { G },$ ; confidence 0.250
  
172. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180443.png ; $B ( g )$ ; confidence 0.996
+
172. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e1300107.png ; $f ^ { \rho } \in I : = ( f _ { 1 } , \dots , f _ { m} )$ ; confidence 0.250
  
173. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023030/c0230302.png ; $T ( g )$ ; confidence 1.000
+
173. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018021.png ; $\partial \mathbf{D}$ ; confidence 0.250
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013820/a0138205.png ; $g ( P )$ ; confidence 1.000
+
174. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037038.png ; $g_{k}$ ; confidence 0.250
  
175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180319.png ; $S ( g )$ ; confidence 0.935
+
175. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003062.png ; $\hat { u } = ( L - \operatorname { Re } ( \lambda ) I ) ^ { - 1 } f$ ; confidence 0.250
  
176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180335.png ; $C ( g )$ ; confidence 0.950
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212027.png ; $G_i$ ; confidence 0.250
  
177. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019068.png ; $h ( S )$ ; confidence 0.852
+
177. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752075.png ; $e _ { j } ^ { n _ { i j } }$ ; confidence 0.250
  
178. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110390/b11039077.png ; $B \Pi$ ; confidence 0.330
+
178. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202307.png ; $[ K _ { 1 } , [ K _ { 2 } , K _ { 3 } ] ] = [ [ K _ { 1 } , K _ { 2 } ] , K _ { 3 } ] + ( - 1 ) ^ { k _ { 1 } k _ { 2 } } [ K _ { 2 } , [ K _ { 1 }, K _ { 3 }] ].$ ; confidence 0.250
  
179. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202805.png ; $X *$ ; confidence 0.383
+
179. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030045.png ; $C _{*} \Omega g \circ \theta_{ X}$ ; confidence 0.250
  
180. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030080.png ; $U ( H )$ ; confidence 0.967
+
180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040612.png ; $\mathfrak{M}$ ; confidence 0.250
  
181. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002084.png ; $( LD )$ ; confidence 0.772
+
181. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e1300509.png ; $\sum _ { n \in Z } \frac { [ \lambda + \alpha ; n ] [ \mu - n + 1 ; n ] } { [ \mu - n + \beta ; n ] [ \lambda + 1 ; n ] } x ^ { \lambda + n } y ^ { \mu - n },$ ; confidence 0.249
  
182. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d1200206.png ; $( P D )$ ; confidence 0.753
+
182. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650267.png ; $x _ { 1 } , \dots , x _ { k }$ ; confidence 0.249
  
183. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020106.png ; $( LP )$ ; confidence 0.692
+
183. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e120020122.png ; $Y ^ { 1 }$ ; confidence 0.249
  
184. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020176.png ; $( MP )$ ; confidence 0.813
+
184. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015570/b01557039.png ; $\partial U$ ; confidence 0.249
  
185. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d1200507.png ; $f ( y )$ ; confidence 1.000
+
185. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004036.png ; $\mathbf{D} Q _ { n } ( x ) : = x ^ { n }$ ; confidence 0.249
  
186. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005059.png ; $f ( E )$ ; confidence 1.000
+
186. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024019.png ; $k _ { 1 } , \dots , k _ { n }$ ; confidence 0.249
  
187. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200608.png ; $u [ 1 ]$ ; confidence 0.999
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030016.png ; $X _ { n  + 1}$ ; confidence 0.249
  
188. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302801.png ; $( V P )$ ; confidence 0.991
+
188. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017058.png ; $\delta _ { A , B } ( X ) \in \mathcal{N} _ { \epsilon } ^ { \prime } \Rightarrow \delta _ { A ^ { * } , B ^ { * } } ( X ) \in  \mathcal{N}_ { \epsilon }$ ; confidence 0.249
  
189. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d1300508.png ; $K ( m )$ ; confidence 0.924
+
189. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040183.png ; $\mathcal{T} ^ { n } = \mathbf{R} ^ { n } / ( 2 \pi \mathbf{Z} ) ^ { n }$ ; confidence 0.249
  
190. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006089.png ; $m B$ ; confidence 0.535
+
190. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001023.png ; $\{ \alpha , \alpha ^ { q } , \ldots , \alpha ^ { q ^ { n - 1 } } \}$ ; confidence 0.249
  
191. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060125.png ; $B e l x$ ; confidence 0.214
+
191. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004055.png ; $q _ { X } = \operatorname { lim } _ { s \rightarrow 0 + } \frac { \operatorname { log } s } { \operatorname { log } \| D _ { s } \| _ { X } },$ ; confidence 0.248
  
192. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008072.png ; $1 ( B )$ ; confidence 0.443
+
192. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010090.png ; $J = \left( \begin{array} { c c } { 0 } & { I _ { n } } \\ { - I _ { n } } & { 0 } \end{array} \right),$ ; confidence 0.248
  
193. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081038.png ; $( . . )$ ; confidence 0.772
+
193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042093.png ; $v$ ; confidence 0.248
  
194. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012025.png ; $U : Ca$ ; confidence 0.940
+
194. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020220.png ; $\overline{x} = \sum _ { k \in P ^ { \prime } } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R ^ { \prime } } \overline { \mu } _ { k } \tilde{x} ^ { ( k ) }$ ; confidence 0.248
  
195. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013017.png ; $S ( V )$ ; confidence 0.980
+
195. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012041.png ; $d ^ { \prime } _{X}$ ; confidence 0.248
  
196. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201405.png ; $< n + 2$ ; confidence 0.365
+
196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002047.png ; $\| \beta _ { n , F } - \beta _ { n } \| = o \left( \frac { 1 } { n ^ { 1 / 2 - \varepsilon } } \right) \ \text{a.s.}\ .$ ; confidence 0.248
  
197. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023110/c023110101.png ; $Z G$ ; confidence 0.957
+
197. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle |^ { 2 } } { \lambda }  d \lambda < E _ { 0 }.$ ; confidence 0.248
  
198. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016044.png ; $C ( T )$ ; confidence 0.908
+
198. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007053.png ; $P ( x _ { 1 } ^ { - 1 } , \ldots , x _ { n } ^ { - 1 } ) / P ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.248
  
199. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011028.png ; $C ( 4 )$ ; confidence 0.436
+
199. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d032150131.png ; $\tilde { U }$ ; confidence 0.248
  
200. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011034.png ; $H ( 2 )$ ; confidence 0.682
+
200. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010145.png ; $\rho \leq c  _ { 1 } \left( \frac { \operatorname { ln } | \operatorname { ln } \delta | } { | \operatorname { ln } \delta | } \right) ^ { c _ { 2 } },$ ; confidence 0.248
  
201. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011039.png ; $\in C$ ; confidence 0.806
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015079.png ; $= \frac { 1 } { n ! } \sum _ { \pi \text { a permutation } } d ( x _ { \pi ( 1 )} , \ldots , x _ { \pi  ( n )} ) ,\; ( x _ { 1 } , \ldots , x _ { n } ) \in \{ 0,1 \} ^ { n },$ ; confidence 0.248
  
202. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a1106101.png ; $U ( 1 )$ ; confidence 0.999
+
202. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663053.png ; $r_1 = \ldots r _ { n } = r$ ; confidence 0.247
  
203. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013096.png ; $n = - 1$ ; confidence 0.998
+
203. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007016.png ; $\left. + ( - 1 ) ^ { n + 1 } \operatorname { pr }_{ ( \alpha _ { 2 } , \dots , \alpha _ { n + 1 } ) }\right\}_{ ( \alpha _ { 1 } , \dots , \alpha _ { n + 1 } )}$ ; confidence 0.247
  
204. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018029.png ; $A ( D )$ ; confidence 0.635
+
204. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180386.png ; $\tilde { g }$ ; confidence 0.247
  
205. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c02028095.png ; $C ( K )$ ; confidence 0.942
+
205. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020103.png ; $\overline { q }$ ; confidence 0.247
  
206. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018083.png ; $A ( G )$ ; confidence 0.994
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301308.png ; $\operatorname{sl} _ { 2 }$ ; confidence 0.247
  
207. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018075.png ; $P ( K )$ ; confidence 0.979
+
207. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006053.png ; $\tilde { \gamma } ^ { \prime } = \gamma ^ { \prime \prime }$ ; confidence 0.247
  
208. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018014.png ; $A ( K )$ ; confidence 0.965
+
208. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029023.png ; $\text{l} _ { A } ( M / \text{q}M ) = e _ { \text{q} } ^ { 0 } ( M )$ ; confidence 0.247
  
209. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018015.png ; $R ( K )$ ; confidence 0.991
+
209. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004037.png ; $\#$ ; confidence 0.246
  
210. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020022.png ; $H ( G )$ ; confidence 0.989
+
210. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010154.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \frac { f ( \zeta ) s \wedge ( \overline { \partial } s ) ^ { n - 1 } } { \langle \zeta - z , s \rangle ^ { n } } ,\; z \in E.$ ; confidence 0.246
  
211. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013170/a01317032.png ; $L ( x )$ ; confidence 0.972
+
211. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w1200204.png ; $\operatorname {l} _ { 1 } ( P , Q ) = \operatorname { inf } \{ \mathsf{E} d ( X , Y ) \}$ ; confidence 0.246
  
212. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018051.png ; $A ( X )$ ; confidence 0.632
+
212. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001093.png ; $\tilde{\pi} ^ { c }$ ; confidence 0.246
  
213. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660149.png ; $I ( f )$ ; confidence 0.998
+
213. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040526.png ; $\operatorname {Co} _ { \text{Alg}  \operatorname {FMod} ^ { * \text{L}}  \mathcal{ D }} \mathbf{A}$ ; confidence 0.246
  
214. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024052.png ; $U ( h )$ ; confidence 0.537
+
214. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003022.png ; $X\cdot f = ( \langle X , \cdot \rangle \otimes \operatorname {id} _ { A } ) L ( f )$ ; confidence 0.246
  
215. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024082.png ; $s ( n )$ ; confidence 0.615
+
215. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l1300602.png ; $z _ { i  + 1} \equiv a z _ { i } + r ( \operatorname { mod } m ) ,\, 0 \leq z _ { i } < m,$ ; confidence 0.246
  
216. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202503.png ; $f [ U ]$ ; confidence 0.995
+
216. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023012.png ; $+ ( - 1 ) ^ { k } \left( d \varphi \bigwedge i _ { X } \psi \bigotimes Y + i _{Y} \varphi \bigwedge d \psi \bigotimes X \right),$ ; confidence 0.246
  
217. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026028.png ; $w ( t )$ ; confidence 0.987
+
217. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002024.png ; $\varphi _ { I } = \int _ { I } \varphi d \vartheta / | I |$ ; confidence 0.246
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b01733052.png ; $A ( D )$ ; confidence 0.995
+
218. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280126.png ; $g \in H ^ { n ,\, n - 1 } ( \mathbf{C} ^ { n } \backslash D )$ ; confidence 0.246
  
219. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023180/c02318027.png ; $2 n - 2$ ; confidence 1.000
+
219. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024012.png ; $\operatorname {Cl} _ { i = 1 } ^ { \infty } ( X _ { i } , x _ { i_0 } ) = ( X , x _ { 0 } )$ ; confidence 0.246
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012380/a01238019.png ; $2 n - 1$ ; confidence 0.999
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018058.png ; $( S _ { n + 1} )$ ; confidence 0.246
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017420/b01742013.png ; $A ( U )$ ; confidence 0.956
+
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042014.png ; $\Psi : \otimes \rightarrow \otimes ^ { \text{ op} }$ ; confidence 0.245
  
222. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029065.png ; $f ( q )$ ; confidence 1.000
+
222. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009019.png ; $\pi _X \circ \pi_ Y ( a ) = \pi_ X ( a )$ ; confidence 0.245
  
223. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030037.png ; $\mu Y$ ; confidence 0.391
+
223. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508019.png ; $w _ { 0 } \in \mathbf{C} ^ { n }$ ; confidence 0.245
  
224. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030038.png ; $\mu z$ ; confidence 0.517
+
224. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140116.png ; $q_{ R}$ ; confidence 0.245
  
225. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d1203107.png ; $f ( T )$ ; confidence 0.999
+
225. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024064.png ; $t_0 \in \mathbf{R}$ ; confidence 0.245
  
226. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002059.png ; $[ . . ]$ ; confidence 0.596
+
226. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110118.png ; $\mathcal{S} ^ { \prime } ( D ^ { n } ) \subset \mathcal{D} ^ { \prime } ( \mathbf{R} ^ { n } )$ ; confidence 0.245
  
227. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002023.png ; $74$ ; confidence 0.496
+
227. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049042.png ; $\nabla ( \mathcal{A} ) : = \{ q \in N _ { k  + 1} : q > p \ \text { for some } p \in \mathcal{A} \}$ ; confidence 0.244
  
228. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070103.png ; $P ( k )$ ; confidence 1.000
+
228. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050116.png ; $x \in \Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f )$ ; confidence 0.244
  
229. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011050.png ; $q f = 0$ ; confidence 0.481
+
229. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011042.png ; $= \left[ ( - 1 ) ^ { p - m - n } \prod _ { j = 1 } ^ { p } \left( x \frac { d } { d x } - a _j + 1 \right) \prod _ { j = 1 } ^ { q } \left( x \frac { d } { d x } - b _ { j } \right) \right].$ ; confidence 0.244
  
230. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030710/d03071014.png ; $4 \pi$ ; confidence 1.000
+
230. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202005.png ; $A _ { 1 } , \dots , A _ { m } \subset S ^ { n }$ ; confidence 0.244
  
231. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500093.png ; $H ( U )$ ; confidence 0.335
+
231. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022036.png ; $y ^ { ( i ) } ( x _ { j } ) = a_{ij}$ ; confidence 0.244
  
232. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547040.png ; $2 n + 1$ ; confidence 0.999
+
232. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031052.png ; $e ^ { \operatorname { ran } } ( Q _ { n } , F _ { d } ) = \operatorname { sup } \{ \mathsf{E} ( | I _ { d } ( f ) - Q _ { n } ( f ) | ) : f \in F _ { d } \},$ ; confidence 0.244
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110670/b11067011.png ; $m = 2 n$ ; confidence 0.997
+
233. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003074.png ; $\dot{\varphi}$ ; confidence 0.244
  
234. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024044.png ; $E ( Q )$ ; confidence 0.384
+
234. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160100.png ; $z_{i j }$ ; confidence 0.244
  
235. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024026.png ; $K ( L )$ ; confidence 0.989
+
235. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009094.png ; $r , s , l _ { i } , t , m_ { j }  \in \mathbf{Z}_{ \geq 0}$ ; confidence 0.243
  
236. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024069.png ; $E ( K )$ ; confidence 0.968
+
236. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004073.png ; $\frac { \lambda _ { 2 } ( \Omega ) } { \lambda _ { 1 } ( \Omega ) } \leq \frac { j _ { n / 2,1 } ^ { 2 } } { j _ { n / 2 - 1,1 } ^ { 2 } },$ ; confidence 0.243
  
237. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024093.png ; $2 r > 2$ ; confidence 0.903
+
237. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c02028055.png ; $L ^ { * }$ ; confidence 0.243
  
238. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240108.png ; $Y ( N )$ ; confidence 0.896
+
238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043041.png ; $\varepsilon x = 0 , S x = - x$ ; confidence 0.243
  
239. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f1200101.png ; $S h$ ; confidence 0.739
+
239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004018.png ; $\cap _ { n = 0 } ^ { \infty } I _ {n}$ ; confidence 0.243
  
240. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001011.png ; $S [ i ]$ ; confidence 0.956
+
240. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320128.png ; $\operatorname { ev } _ { x } ( \varphi ^ { * } ( a ) ) = \operatorname { ev } _ { \varphi _ { 0 } ( x ) } ( a )$ ; confidence 0.243
  
241. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001067.png ; $Q [ x ]$ ; confidence 0.472
+
241. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340158.png ; $\alpha _ { H } ( \tilde{y} ) - \alpha _ { H } (  \tilde { x } )$ ; confidence 0.243
  
242. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f1300101.png ; $Z [ x ]$ ; confidence 0.644
+
242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009033.png ; $\widehat{\square}$ ; confidence 0.243
  
243. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002024.png ; $( - q )$ ; confidence 0.990
+
243. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059053.png ; $\frac { d \psi ( t ) } { d t } = \frac { q ^ { 1 / 2 } } { 2 \kappa \sqrt { \pi } } e ^ { - ( \operatorname { ln } t / 2 \kappa ) ^ { 2 } } ,\, q = e ^ { - 2 \kappa ^ { 2 } }.$ ; confidence 0.242
  
244. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017220/b01722033.png ; $K ( X )$ ; confidence 0.991
+
244. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002010.png ; $\mathsf{P} = \prod _ { x \in \mathbf{Z} } \mu _ { x }$ ; confidence 0.242
  
245. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002040.png ; $K [ X ]$ ; confidence 0.988
+
245. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015018.png ; $0 \rightarrow \mathcal{K} ( H ^ { 2 } ( \mathbf{T} ) ) \triangleleft  \mathcal{T} ( \mathbf{T} ) \rightarrow \mathcal{C} ( \mathbf{T} ) \rightarrow 0$ ; confidence 0.242
  
246. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002043.png ; $A ( X )$ ; confidence 0.957
+
246. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016067.png ; $\overset{\rightharpoonup} { f n n m e } ( U ^ { \prime } )$ ; confidence 0.242
  
247. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016680/b01668015.png ; $H ( t )$ ; confidence 1.000
+
247. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b120310102.png ; $\| S _ { R } ^ { \delta }\, f - f \| _ { 1 } \rightarrow 0$ ; confidence 0.242
  
248. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200503.png ; $F ( T )$ ; confidence 0.973
+
248. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005022.png ; $H ^ { 1 } ( \mathbf{R} ^ { n } )$ ; confidence 0.242
  
249. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005014.png ; $F [ T ]$ ; confidence 0.978
+
249. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016033.png ; $( \mathfrak{A} b _ { 1 } \dots b _ { t } )$ ; confidence 0.242
  
250. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012024.png ; $1 ( A )$ ; confidence 0.875
+
250. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220192.png ; $F ^ { m } H _ { \text{DR} } ^ { 2 m - 1 } ( X_{ / \mathbf{R}} ) \overset{\sim} {\rightarrow} H _ { \text{B} } ^ { 2 m - 1 } ( X _{ / \mathbf{R}} , \mathbf{R} ( m - 1 ) ),$ ; confidence 0.242
  
251. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012022.png ; $h ( G )$ ; confidence 0.943
+
251. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220174.png ; $\operatorname{CH} ^ { m } ( X ) \rightarrow H _ { \text{B} } ^ { 2 m } ( X _ { \text{C} } , \mathbf{Z} ( m ) )$ ; confidence 0.242
  
252. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130160/f13016022.png ; $C ( X )$ ; confidence 0.810
+
252. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009069.png ; $TM \times \mathfrak{g}$ ; confidence 0.242
  
253. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021027.png ; $B ( G )$ ; confidence 0.991
+
253. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006074.png ; $z _ { i } \equiv a _ { i } z _ { i - 1 } + \ldots + a _ { i } z _ { i - r } ( \operatorname { mod } p )$ ; confidence 0.242
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139025.png ; $M ( G )$ ; confidence 0.992
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027081.png ; $r _ { P } ( a \cdot b ) = r _ { P } ( a ) \cdot r _ { P } ( b ) \cdot ( a , b ) _ { P }.$ ; confidence 0.24
  
255. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021048.png ; $B ( G )$ ; confidence 0.991
+
255. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008099.png ; $T _ { 00 } = I _ { n }$ ; confidence 0.242
  
256. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080194.png ; $A ( R )$ ; confidence 0.585
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028016.png ; $U _ { z }$ ; confidence 0.242
  
257. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080104.png ; $= \| M$ ; confidence 0.982
+
257. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022920/c02292065.png ; $c_{3}$ ; confidence 0.242
  
258. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008026.png ; $P ( G )$ ; confidence 0.886
+
258. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022850/c0228508.png ; $N_{2}$ ; confidence 0.242
  
259. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008091.png ; $= \| M$ ; confidence 0.579
+
259. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001033.png ; $v _ { \operatorname {MAP} } = \operatorname { arg } \operatorname { max } _ { v _ { j } \in \mathcal{V} } \prod _ { i } \mathsf{P} ( a _ { i } | v _ { j } ) \cdot \mathsf{P} ( v _ { j } ) .$ ; confidence 0.242
  
260. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010063.png ; $j ( z )$ ; confidence 0.990
+
260. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004023.png ; $\| d \| _ { a _ { p } } = \sum _ { n = 0 } ^ { \infty } 2 ^ { n / p ^ { \prime } } \left\{ \sum _ { k = 2 ^ { n } } ^ { 2 ^ { n + 1 } - 1 } | \Delta d _ { k } | ^ { p } \right\} ^ { 1 / p } < \infty .$ ; confidence 0.241
  
261. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010015.png ; $c ( n )$ ; confidence 0.937
+
261. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080107.png ; $u _ { ij } \in \mathbf{R} ^ { m }$ ; confidence 0.241
  
262. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820114.png ; $f ( Z )$ ; confidence 0.984
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040227.png ; $\Gamma \approx \Delta \models _ { \text{K} } \varphi \approx \psi \text { iff } E ( \Gamma , \Delta ) \vdash _ { \mathcal{D} } E ( \varphi , \psi ),$ ; confidence 0.241
  
263. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016950/b01695026.png ; $p ( n )$ ; confidence 0.948
+
263. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021078.png ; $t ( M ; x , y ) = \sum _ { S \subseteq E } \left( \prod _ { e \in S } p ( e ) \right) \left( \prod _ { e \notin S } ( 1 - p ( e ) ) \right)\times $ ; confidence 0.241
  
264. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010074.png ; $L ( s )$ ; confidence 0.970
+
264. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008085.png ; $\mathsf{E} [ W ]_{ \text{PS}}$ ; confidence 0.241
  
265. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110107.png ; $Q [ K ]$ ; confidence 0.758
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004050.png ; $\mathfrak { A } = \langle \text{A} , F \rangle$ ; confidence 0.241
  
266. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110184.png ; $J ( D )$ ; confidence 0.998
+
266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051092.png ; $d = d - \alpha y _ { n  - 1}$ ; confidence 0.241
  
267. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160195.png ; $\sim$ ; confidence 0.800
+
267. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040137.png ; $M ^ { ( k ) }$ ; confidence 0.241
  
268. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016095.png ; $[ ( n )$ ; confidence 0.258
+
268. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005090.png ; $\mu _ { i _ { 1 } , \ldots , i _ { s } }$ ; confidence 0.241
  
269. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f1101606.png ; $L ( 0 )$ ; confidence 0.997
+
269. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022054.png ; $\operatorname { ch } _ { \mathcal{M} } : K _ { i } ( X ) \rightarrow \oplus H ^ { 2 j - i _ { \mathcal{M} }} ( X , \mathbf{Q} ( j ) ) $ ; confidence 0.241
  
270. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016010.png ; $c x + 1$ ; confidence 0.154
+
270. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021027.png ; $C _ { r } < C _ { s }$ ; confidence 0.240
  
271. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014018.png ; $D ( h )$ ; confidence 0.991
+
271. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024076.png ; $x ( t_0 )$ ; confidence 0.240
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103307.png ; $F ( x )$ ; confidence 0.998
+
272. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230138.png ; $n r$ ; confidence 0.240
  
273. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250155.png ; $N ( A )$ ; confidence 0.817
+
273. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005047.png ; $C _ { A } ( g ) = \{ a \in A : a ^ { g } = a \} = \{ 1 \}$ ; confidence 0.240
  
274. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201604.png ; $T X - I$ ; confidence 0.920
+
274. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027190/c02719017.png ; $\mathbf{Z} ^ { n }$ ; confidence 0.240
  
275. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201603.png ; $X T - I$ ; confidence 0.933
+
275. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005012.png ; $\Sigma ^ { i } ( f ) = \{ x \in V : \operatorname { dim } \operatorname { Ker } d f _ { x } = i \}.$ ; confidence 0.240
  
276. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f1201606.png ; $ker T$ ; confidence 0.131
+
276. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023063.png ; $b _ { q , s } = \int _{\Omega}  z ^{q} \overline{z} ^ { s } d v$ ; confidence 0.240
  
277. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017023.png ; $N ( r )$ ; confidence 1.000
+
277. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001052.png ; $\overline { d } _ { ( 1 ^ { n } ) } \preceq \overline { d } _ { ( 2,1 ^ { n - 2 } ) } \preceq \ldots \preceq \overline { d } _ { ( k , 1 ^ { n - k } ) } \preceq \ldots \preceq \overline { d } _ { ( n ) }.$ ; confidence 0.240
  
278. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019044.png ; $N H = G$ ; confidence 0.940
+
278. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } \left( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } \right)$ ; confidence 0.240
  
279. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019016.png ; $G = N H$ ; confidence 0.999
+
279. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016039.png ; $c _ { n  + i}$ ; confidence 0.240
  
280. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019095.png ; $K [ N ]$ ; confidence 0.677
+
280. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b11042028.png ; $s \in \mathbf{R}$ ; confidence 0.240
  
281. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021086.png ; $\eta$ ; confidence 0.063
+
281. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090154.png ; $\overline{\mathbf{Q}}$ ; confidence 0.240
  
282. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452045.png ; $x ( . )$ ; confidence 0.977
+
282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120460/b12046045.png ; $\chi _ { e }$ ; confidence 0.240
  
283. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024040.png ; $i ( t )$ ; confidence 0.840
+
283. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014070.png ; $D = ( \partial / \partial x _ { 1 } , \dots , \partial / \partial x _ { n } )$ ; confidence 0.240
  
284. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081039.png ; $x ( t )$ ; confidence 0.996
+
284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009014.png ; $S ^ { \sigma } = ( \rho , J / c )$ ; confidence 0.240
  
285. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024076.png ; $x ( t )$ ; confidence 0.240
+
285. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013040.png ; $\Gamma = \operatorname { End } _ { \Lambda } ( T ) ^ { \text{ op} }$ ; confidence 0.240
  
286. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017590/b0175908.png ; $h ( t )$ ; confidence 0.999
+
286. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220108.png ; $\rightarrow H _ { \mathcal{D} } ^ { i + 1 } ( X_{ / \mathbf{R}} , \mathbf{R} ( i + 1 - m ) ) \rightarrow 0.$ ; confidence 0.240
  
287. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302803.png ; $A x < b$ ; confidence 0.699
+
287. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i1300107.png ; $d _ { \chi } ^ { G } ( A ) : = \sum _ { \sigma \in G } \chi ( \sigma ) \prod _ { i = 1 } ^ { n } a _ {i  \sigma ( i ) }.$ ; confidence 0.240
  
288. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029018.png ; $\tau$ ; confidence 0.096
+
288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430173.png ; $\Delta f = 1 \bigotimes f + x \bigotimes \partial _ { q , x } \,f + y \bigotimes \partial _ { q , y } \,f +\dots ,$ ; confidence 0.239
  
289. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029056.png ; $T ( u )$ ; confidence 0.993
+
289. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007016.png ; $\mathbf{f} = ( f _ { 1 } , \dots , f _ { l } ) \in R ^ { l }$ ; confidence 0.239
  
290. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290175.png ; $R ( M )$ ; confidence 0.952
+
290. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007021.png ; $a \circ_{h} b$ ; confidence 0.239
  
291. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290174.png ; $R ( L )$ ; confidence 0.662
+
291. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026018.png ; $C_{ [ 0,1 ]}$ ; confidence 0.239
  
292. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001090.png ; $Z ( e )$ ; confidence 0.980
+
292. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060112.png ; $l _ { \mathcal{E} } - i \Phi ( \xi _ { 1 } A _ { 1 } + \xi _ { 2 } A _ { 2 } - \xi _ { 1 } \lambda _ { 1 } - \xi _ { 2 } \lambda _ { 2 } ) ^ { - 1 } \Phi ^ { * } ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ),$ ; confidence 0.239
  
293. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200309.png ; $3 n + 1$ ; confidence 1.000
+
293. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059032.png ; $Q _ { 2 n } ( z ) = \frac { 1 } { H _ { 2 n } ^ { ( - 2 n ) } } \left| \begin{array} { c c c c } { c _ { - 2 n } } & { \cdots } & { c _ { - 1 } } & { z ^ { - n } } \\ { \vdots } & { \square } & { \vdots } & { \vdots } \\ { c _ { - 1 } } & { \cdots } & { c _ { 2 n - 2 } } & { z ^ { n - 1 } } \\ { c_0 } & { \cdots } & { c _ { 2 n - 1 } } & { z ^ { n } e n d } \end{array} \right|,$ ; confidence 0.239
  
294. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040136.png ; $N ( S )$ ; confidence 0.438
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240527.png ; $\Theta$ ; confidence 0.239
  
295. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005056.png ; $2 d - 1$ ; confidence 1.000
+
295. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007016.png ; $H ^ { \otimes 3 }$ ; confidence 0.239
  
296. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036670/e03667019.png ; $s > s 0$ ; confidence 0.950
+
296. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q1200205.png ; $| T _ { i _ { 1 } , \ldots , i _ { k } } ^ { 1 , \ldots , k } | _ { q }$ ; confidence 0.239
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a01406028.png ; $20$ ; confidence 0.906
+
297. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120207.png ; $\alpha _ { 0 } : \cup _ { \text { p } ^ { \prime } \in S ^ { \prime } } G ( K _ { \text { p } ^ { \prime } } ) \rightarrow G$ ; confidence 0.239
  
298. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007039.png ; $R \pi$ ; confidence 0.983
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002011.png ; $\nu _ { n } = \sum _ { k = 0 } ^ { n - 1 } \mu _ { k } / n$ ; confidence 0.239
  
299. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033120/d03312014.png ; $\pi 1$ ; confidence 0.860
+
299. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d03386039.png ; $I _ { A }$ ; confidence 0.239
  
300. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002035.png ; $F ( S )$ ; confidence 0.998
+
300. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007035.png ; $i ^ { * }$ ; confidence 0.238

Latest revision as of 13:55, 1 July 2020

List

1. b12021051.png ; $k = 1 , \ldots , r = \operatorname { dim } \mathfrak{a} / \mathfrak{p}$ ; confidence 0.264 ; test

2. b1201009.png ; $( \mathcal{L} F ) _ { n } ( X ) = \{ H _ { n } , F _ { n } ( X ) \}$ ; confidence 0.264

3. f1302806.png ; $A \mathbf{x} \not\le \mathbf{b}$ ; confidence 0.264

4. r08094048.png ; $\{ a _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.264

5. w13012025.png ; $T _ { \text{V} }$ ; confidence 0.264

6. w120110258.png ; $\{ u \in \mathcal{S} ^ { \prime } ( \mathbf{R} ^ { n } ) : \forall a \in S ( m , G ) , a ^ { w } u \in L ^ { 2 } ( \mathbf{R} ^ { n } ) \}.$ ; confidence 0.264

7. t120200141.png ; $\geq \frac { 1 } { n } \left( \frac { n } { 16 e ( m + n ) } \right) ^ { n } \times \times \operatorname{min} _ { k _ { 1 } \leq l _ { 1 } \leq k \leq l _ { 2 } \leq k _ { 2 } } | b _ {l_{ 1} } + \ldots + b _ {l_{ 2 }} |.$ ; confidence 0.264

8. v0960306.png ; $\ddot { z } - \mu \left( z - \frac { \dot{z} \square ^ { 3 } } { 3 } \right) + z = 0,$ ; confidence 0.264

9. a12016073.png ; $\lambda c _ { 1 } + \lambda ^ { 2 } c _ { 1 } + \ldots$ ; confidence 0.264

10. f12021045.png ; $c _ { 1 } ( \lambda ) , \ldots , c _ { j - 1} ( \lambda )$ ; confidence 0.264

11. s09067036.png ; $u: M \supset U \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.264

12. t120200177.png ; $G _ { 1 } ( r ) = \sum _ { j = 1 } ^ { n } P _ { j } ( r ) z _ { j } ^ { r }$ ; confidence 0.264

13. n12010013.png ; $y _ { 1 } = y _ { 0 } + h \sum _ { i = 1 } ^ { s } b _ { i }\, f ( x _ { 0 } + c _ { i } h , g _ { i } ).$ ; confidence 0.263

14. c13009028.png ; $L_{i ,\, j}$ ; confidence 0.263

15. a11032022.png ; $A _ { i j } ( z ) = \sum _ { l = 0 } ^ { \rho _ { i } } R _ { l + 1 } ^ { ( i ) } ( c _ { i } z ) c _ { i } ^ { l + 1 } \lambda _ { l j } ^ { ( i ) },$ ; confidence 0.263

16. b13026022.png ; $\operatorname{deg}_{B}[f, \operatorname{int} K, 0]$ ; confidence 0.263

17. c13009017.png ; $\overline { c }_ 0 = \overline { c } _ { N } = 2$ ; confidence 0.263

18. l120170164.png ; $K ^ { n } \times 1$ ; confidence 0.263

19. v12002085.png ; $f ^ { * } : H ^ { q } ( Y , G ) \rightarrow H ^ { q } ( X , G )$ ; confidence 0.263

20. m13014078.png ; $d \overline { \zeta } [ k ] = d \overline { \zeta } _ { 1 } \wedge \ldots \wedge d \overline { \zeta } _ { k - 1 } \wedge d \overline { \zeta }_{ k + 1} \wedge \ldots \wedge d \overline { \zeta }_{n}$ ; confidence 0.263

21. m130260127.png ; $0 \rightarrow A \rightarrow X \stackrel { \pi } { \rightarrow } B \rightarrow 0.$ ; confidence 0.263

22. q1300404.png ; $f : G \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.262

23. t130140109.png ; $r_{i,\,j} = \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { 2 } ( S _ { j } , S _ { i } )$ ; confidence 0.262

24. c020280152.png ; $x \in K$ ; confidence 0.262

25. w13008019.png ; $y ^ { 2 } = R _ { g } ( \lambda )$ ; confidence 0.262

26. l057000153.png ; $\vdash ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262

27. w13007017.png ; $\rho ( h _ { i } ) = \frac { 1 } { 2 } a _ { i i }$ ; confidence 0.262

28. p130100106.png ; $\mathbf{C} ^ { n } \backslash K$ ; confidence 0.262

29. t120200243.png ; $* ( x ) - \text { li } x$ ; confidence 0.262

30. b13022080.png ; $x \in T$ ; confidence 0.262

31. b01681032.png ; $\mathbf{r}$ ; confidence 0.262

32. c12017023.png ; $\mathbf{R}[ x _ { 1 } , \dots , x _ { n } ]$ ; confidence 0.262

33. h120120160.png ; $\hat{\tau}$ ; confidence 0.262

34. t12020035.png ; $\operatorname { inf } _ { z _ { 1 } , \ldots , z _ { n } \in U } \operatorname { max } _ { k \in S } \frac { \operatorname { Re } g _ { 1 } ( k ) } { M _ { d } ( k ) }$ ; confidence 0.262

35. f1201701.png ; $G = \langle x _ { 1 } , \dots , x _ { n } : r = 1 \rangle$ ; confidence 0.261

36. d12019019.png ; $\operatorname{Dom} ( - \Delta_{\text{ Dir}} ) = H _ { 0 } ^ { 1 } ( \Omega ) \bigcap H ^ { 2 } ( \Omega ).$ ; confidence 0.261

37. t12021067.png ; $A ( C , q , z ) = ( 1 - z ) ^ { r } z ^ { n - r } t \left( M _ { C } ; \frac { 1 + ( q - 1 ) z } { 1 - z } , \frac { 1 } { z } \right),$ ; confidence 0.261

38. k1200809.png ; $p = \{ p _ { 0 } , \dots , p _ { m } \}$ ; confidence 0.261

39. w12001019.png ; $= \left\{ \begin{array} { l l } { \sum _ { - n \leq i \leq - 1 } f ( i ) g ( i + n ) , } & { n = - m > 0, } \\ { - \sum _ { n \leq i \leq - 1 } f ( i - n ) g ( i ) , } & { n = - m < 0, } \\ { 0 , } & { \left\{ \begin{array} { l } { n + m \neq 0, } \\ { n = m = 0. } \end{array} \right.} \end{array} \right.$ ; confidence 0.261

40. m06257041.png ; $V _ { k }$ ; confidence 0.261

41. f12011026.png ; $\varphi \in \mathcal{P}_{*}$ ; confidence 0.261

42. g13006099.png ; $K _ {i ,\, j } ( A ) : =$ ; confidence 0.261

43. a120160122.png ; $j ^ { \prime } = p _ { t + 1} , \ldots , p$ ; confidence 0.261

44. b12013037.png ; $L _ { a } ^ { 2 } ( G )$ ; confidence 0.261

45. c12021050.png ; $\{ \mathcal{L} _ { n } \}$ ; confidence 0.261

46. e12023050.png ; $f ( t ) = A ( \sigma _ { t } ) = \int _ { a } ^ { b } L ( x , y ( x ) + t z ( x ) , y ^ { \prime } ( x ) + t z ^ { \prime } ( x ) ) d x$ ; confidence 0.261

47. m12003030.png ; $\Delta _ { x }$ ; confidence 0.261

48. c120180276.png ; $\nabla ( \Theta \bigotimes \Phi ) = \nabla \Theta \bigotimes \Phi + \tau _ { p + 1 } ( \Theta \bigotimes \nabla \Phi ) \in$ ; confidence 0.260

49. l120120204.png ; $K _ { \text{tot }S }$ ; confidence 0.260

50. a1301301.png ; $\left\{ \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q _t = - \frac { 1 } { 2 } q _{x x} + q ^ { 2 } r, } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r _t = \frac { 1 } { 2 } r _{xx} - q r ^ { 2 }. } \end{array} \right.$ ; confidence 0.260

51. b1201201.png ; $M = M ^ { n }$ ; confidence 0.260

52. m12012058.png ; $e R C$ ; confidence 0.260

53. s13011026.png ; $\partial _ { n } \ldots \partial _ { 1 } \mathfrak { S } _ { w _ { n + 1 } } = \mathfrak { S } _ { w _ { n } }$ ; confidence 0.260

54. z13010064.png ; $\exists x ( \emptyset \in x \bigwedge \forall y ( y \in x \rightarrow y \bigcup \{ y \} \in x ) ).$ ; confidence 0.260

55. h13009037.png ; $g _ { 0 } , \ldots , g _ { n }$ ; confidence 0.260

56. a130180188.png ; $\mathsf{RCA}$ ; confidence 0.260

57. a01139032.png ; $\nu _ { i }$ ; confidence 0.260

58. b13022090.png ; $q_{l}$ ; confidence 0.260

59. s120340130.png ; $\mathcal{M} ( \tilde { x } _ { - } , \tilde { x } _ { + } )$ ; confidence 0.259

60. s120230141.png ; $( S _ { 1 } , \dots , S _ { r } ) \sim L _ { r } ^ { ( 1 ) } ( f , n _ { 1 } / 2 , \dots , n _ { r } / 2 )$ ; confidence 0.259

61. l05702032.png ; $A _ { l ^ n}$ ; confidence 0.259

62. a12022037.png ; $r _ { \text{ess} } ( T )$ ; confidence 0.259

63. a1201308.png ; $-$ ; confidence 0.259

64. v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( \widehat{t ^ { * }} \square ^ { - 1 } \beta _ { 3 } ),$ ; confidence 0.259

65. w12009096.png ; $\ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} },$ ; confidence 0.259

66. b110220222.png ; $\mathcal{MM} _ { \text{Q} }$ ; confidence 0.259

67. s13045060.png ; $\rho _ { S } = 12 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } u v d C _ { X , Y } ( u , v ) - 3 =$ ; confidence 0.259

68. a11030015.png ; $( T V _{\leq n} , d ) \rightarrow C_{ *} \Omega X _ { n + 1}$ ; confidence 0.259

69. a12023083.png ; $d _ { q } ( \Omega ) = \operatorname { max } _ { \overline{\Omega} } | z ^ { q } |$ ; confidence 0.259

70. b12043067.png ; $\Psi ( x \bigotimes x ) = q ^ { 2 } x \bigotimes x,$ ; confidence 0.259

71. p13013028.png ; $\tilde { A } _ { 7 }$ ; confidence 0.259

72. p12012020.png ; $C_{abcd}$ ; confidence 0.258

73. w13009099.png ; $I _ { n } ( g ) = \int _ { [ 0,1 ] ^ { n } } g ( t _ { 1 } , \ldots , t _ { n } ) d B ( t _ { 1 } ) \ldots d B ( t _ { n } ),$ ; confidence 0.258

74. d0319508.png ; $g_{2}$ ; confidence 0.258

75. h13002078.png ; $( \alpha _ { 1 } , \alpha _ { 2 } \cup \gamma ^ { d } , \dots , \alpha _ { q } )$ ; confidence 0.258

76. f13009095.png ; $H _ { n } ^ { ( k ) } ( \mathbf{x} ) = F _ { n } ^ { ( k ) } ( x )$ ; confidence 0.258

77. f13005027.png ; $x _ { 0 } \notin \{ p _ { 1 } , \dots , p _ { m } \}$ ; confidence 0.258

78. a12012079.png ; $x _ { t } \geq A y _ { t + 1}$ ; confidence 0.258

79. g12004095.png ; $\operatorname{WF} _ { s } u \cap \Gamma = \emptyset$ ; confidence 0.258

80. i130030141.png ; $\operatorname{ind}_{\alpha} ( D _ { + } ) = \int _ { M } \hat { A } ( M ) \operatorname{Ch} ( E ) - \frac { \eta ( D _ { 0 } ) + h } { 2 }.$ ; confidence 0.258

81. f11016095.png ; $L ( n )$ ; confidence 0.258

82. l11004013.png ; $w _ { i } ( x _ { 1 } , \ldots , x _ { n } ) = e \text { for every } \ w_ { i } \in X,$ ; confidence 0.257

83. t130130113.png ; $\operatorname{Hom}_{K ^ { b } ( P _ { \Lambda } )} ( T , T [ i ] ) = 0$ ; confidence 0.257

84. c120180217.png ; $h \otimes k \in \mathsf{S} ^ { 2 } \mathcal{E} \otimes \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.257

85. e12007071.png ; $p_{M}$ ; confidence 0.257

86. p12015027.png ; $r_1$ ; confidence 0.257

87. c13023010.png ; $L _ { - } \sim _ { c } L _ { - } ^ { \prime }$ ; confidence 0.257

88. g130040109.png ; $S ( \phi ) = \int \langle \xi ( x ) , \phi ( x ) \rangle \theta ( x ) d \mathcal{H} ^ { m } | _ { R ( x ) },$ ; confidence 0.257

89. d12016018.png ; $g _ { n } = \mathcal{M} _ { t }\, f _ { 2 n - 1}$ ; confidence 0.257

90. a130040189.png ; $\mathfrak{A}^{*S*S}$ ; confidence 0.257

91. e12014036.png ; $f v _ { 1 } , \dots , v _ { \rho ( f )}$ ; confidence 0.257

92. s0833607.png ; $P _ { n } ( z ) = \frac { 1 } { 2 \pi i } \int _ { C } \frac { ( t ^ { 2 } - 1 ) ^ { n } } { 2 ^ { n } ( t - z ) ^ { n + 1 } } d t,$ ; confidence 0.256

93. s12017065.png ; $\succsim_{i}$ ; confidence 0.256

94. a01148046.png ; $a_{0}$ ; confidence 0.256

95. a130040400.png ; $\operatorname{Mod} ^ { * S} \mathcal{D} = \mathbf{P} _ { \text{SD} } \operatorname{Mod} ^ { *\text{L}} \mathcal{D} $ ; confidence 0.256

96. d13006026.png ; $\operatorname{Bel}_{E _ { 1 }}$ ; confidence 0.256

97. d12029092.png ; $q_{ m}$ ; confidence 0.256

98. l13001011.png ; $\hat { f } ( k ) = ( 2 \pi ) ^ { - n } \int _ { \text{T} ^ { n } } f ( x ) e ^ { - i k x } d x$ ; confidence 0.256

99. p13013027.png ; $\tilde{A} _ { 6 }$ ; confidence 0.256

100. a01329044.png ; $\sum _ { n }$ ; confidence 0.256

101. c12030044.png ; $\mathcal{O} _ { N }$ ; confidence 0.255

102. b12029049.png ; $x \in V \subset U \subset X$ ; confidence 0.255

103. s12017055.png ; $x \succsim_{i} z$ ; confidence 0.255

104. b1302806.png ; $\mathcal{U}_{*}$ ; confidence 0.255

105. t130140174.png ; $q_{C}$ ; confidence 0.255

106. a130040531.png ; $\varphi _ { 0 } , \ldots , \varphi _ { n - 1} , \varphi _ { n }$ ; confidence 0.255

107. a13029020.png ; $\operatorname{HF} _ { * } ^ { \text{symp} } ( M , L _ { 0 } , L _ { 1 } )$ ; confidence 0.255

108. c026010520.png ; $\xi _ { k }$ ; confidence 0.255

109. g044270146.png ; $K _ { s }$ ; confidence 0.255

110. e12012098.png ; $( w _ { i } ^ { ( t + 1 ) } , \ldots , w _ { n } ^ { ( t + 1 ) } )$ ; confidence 0.255

111. z13002023.png ; $\underline { f } _ { + \text{ap } } = + \infty$ ; confidence 0.254

112. a1200803.png ; $\sum _ { i ,\, j = 1 } ^ { m } a _ { i ,\, j } ( x ) n _ { i } ( x ) \partial u / \partial x _ { j } = 0$ ; confidence 0.254

113. d031850339.png ; $( u _ { 1 } , \ldots , u _ { m } )$ ; confidence 0.254

114. f120110197.png ; $\tilde{Q}$ ; confidence 0.254

115. l13010033.png ; $f _ { s \text{l}t } ( x ) : = - \frac { 1 } { 4 \pi } \int _ { S ^ { 1 } } \hat { f } _ { p p } ( \alpha , \alpha \cdot x ) d \alpha,$ ; confidence 0.254

116. a130040241.png ; $\Gamma \vdash _ { \mathcal{D} } \varphi \text { iff } K ( \Gamma ) \approx L ( \Gamma ) \vDash _ { \text{K} } K ( \varphi ) \approx L ( \varphi ),$ ; confidence 0.254

117. k12013031.png ; $ i = 2$ ; confidence 0.254

118. c12016013.png ; $j = i :\, a _ { i i } = \sum _ { k = 1 } ^ { i } r _ { k i } ^ { 2 },$ ; confidence 0.254

119. s09008044.png ; $\tilde { W }$ ; confidence 0.254

120. l1300803.png ; $\operatorname{exp} ( h )$ ; confidence 0.253

121. f1202104.png ; $a ^ { [ n ] } ( z ) = \sum _ { i = 0 } ^ { \infty } a _ { i } ^ { n } z ^ { i }$ ; confidence 0.253

122. d03168030.png ; $y _ { n }$ ; confidence 0.253

123. b12032051.png ; $\mathbf{l}^{p}$ ; confidence 0.253

124. r13007064.png ; $\sum _ { i ,\, j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 ,\, \forall t \in \mathbf{C} ^ { n } ,\, \forall x _ { i } \in E,$ ; confidence 0.253

125. c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253

126. c1202005.png ; $\alpha \wedge ( d \alpha ) ^ { n - 1 } \neq 0$ ; confidence 0.253

127. d03087012.png ; $e _ { \alpha }$ ; confidence 0.253

128. b11066035.png ; $\| H f \| _ { * } \leq G \| f \| _ { \infty }.$ ; confidence 0.253

129. a120260108.png ; $\hat { y } _ { i } \in \hat { A } [ [ X _ { 1 } , \dots , X _ { s _ { i } } ] ]$ ; confidence 0.253

130. b01660012.png ; $\mathbf{v}$ ; confidence 0.253

131. t120140166.png ; $H ^ { 2 } ( \mathbf{C} ^ { n } )$ ; confidence 0.253

132. d120020133.png ; $\hat{c}_{k}^{1} \leq 0$ ; confidence 0.252

133. a1302801.png ; $a = a_0$ ; confidence 0.252

134. n067520175.png ; $J = \left\| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { J ( e _ { i } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right\|.$ ; confidence 0.252

135. c02074095.png ; $p ^ { * }$ ; confidence 0.252

136. c12018061.png ; $P \in M$ ; confidence 0.252

137. b12052039.png ; $y = F ( x _ { + } ) - F ( x _ { c } )$ ; confidence 0.252

138. f1301704.png ; $A _ { 2 } ( G ) = \left\{ \overline { k } * \breve{ l } : k , l \in \mathcal{L} _ { C } ^ { 2 } ( G ) \right\}$ ; confidence 0.252

139. b13017039.png ; $\psi _ { t }$ ; confidence 0.252

140. t12020012.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { | \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } | } { M _ { d } ( k ) },$ ; confidence 0.252

141. o130060105.png ; $\mathfrak { E } ( \lambda ) = \operatorname { ker } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma ),$ ; confidence 0.252

142. b12021037.png ; $\hat{X}_i$ ; confidence 0.252

143. g04348025.png ; $S ^ { r - 1}$ ; confidence 0.252

144. p12017040.png ; $\hat { X } = X \oplus 0 \in \operatorname { ker } \delta _ { \hat{A} , B }$ ; confidence 0.252

145. v1300503.png ; $V ^ { \natural } = \oplus _ { n \geq - 1} V _ { n } ^ { \natural }$ ; confidence 0.251

146. s12005013.png ; $\gamma _ { n } = S _ { n } ( 0 )$ ; confidence 0.251

147. d13013035.png ; $\Psi _ { + } = e ^ { i e \chi / \hbar } \Psi _ { - } = e ^ { 2 i e g \phi / \hbar } \Psi _ { - },$ ; confidence 0.251

148. s1305006.png ; $\left( \begin{array} { l } { n } \\ { 0 } \end{array} \right) < \ldots < \left( \begin{array} { c } { n } \\ { \lfloor n / 2 \rfloor } \end{array} \right) = \left( \begin{array} { c } { n } \\ { \lceil n / 2 \rceil } \end{array} \right) > \ldots > \left( \begin{array} { l } { n } \\ { n } \end{array} \right),$ ; confidence 0.251

149. h13003046.png ; $qd$ ; confidence 0.251

150. a130240242.png ; $\text{SS} _ { \mathcal{H} } = \sum _ { i = 1 } ^ { q } z _ { i } ^ { 2 }$ ; confidence 0.251

151. b12037092.png ; $\sum _ { 1 } ^ { 1 }$ ; confidence 0.251

152. c12021036.png ; $P _ { m } ( A _ { m } ) \rightarrow 0$ ; confidence 0.251

153. k13001022.png ; $| s D |$ ; confidence 0.251

154. c13010044.png ; $(S) \int _ { A } f d m = \operatorname { sup } _ { \alpha \in [ 0 , + \infty ] } [ \alpha \bigwedge m ( A \bigcap F _ { \alpha } ) ],$ ; confidence 0.251

155. b110220104.png ; $H _ { \text{DR} } ^ { i } ( X_{ / \mathbf{R}} )$ ; confidence 0.251

156. s12034024.png ; $\operatorname{SH} ^ { * } ( M , \omega , \phi ) = \operatorname{SH} ^ { * } ( N , \tilde { \omega } , L _ { + } , L - )$ ; confidence 0.251

157. b12012012.png ; $v ^ { \perp }$ ; confidence 0.251

158. q120070134.png ; $\Delta t ^ { i } \square_{ j} = t ^ { i } \square _ { a } \bigotimes t ^ { a } \square_{ j} ,\, \epsilon t ^ { i } \square _j = \delta ^ { i } \square_ j$ ; confidence 0.251

159. a011800102.png ; $\text{NC}$ ; confidence 0.251

160. c026600118.png ; $x \in X _ { 0 }$ ; confidence 0.251

161. f12009023.png ; $\mathcal{H} ( \mathbf{C} ^ { n } )$ ; confidence 0.251

162. l11002056.png ; $a , b _ { 1 } , \dots , b _ { n }$ ; confidence 0.251

163. c021620383.png ; $\operatorname{ch}$ ; confidence 0.251

164. a01186049.png ; $\mathfrak{G}$ ; confidence 0.251

165. k05507051.png ; $\gamma _ { \omega }$ ; confidence 0.251

166. m12015065.png ; $\frac { 1 } { \beta _ { p } ( a , b ) } | U | ^ { a - ( p + 1 ) / 2 } | I _ { p } - U | ^ { b - ( p + 1 ) / 2 },$ ; confidence 0.250

167. t12021072.png ; $h _ { M } ( x )$ ; confidence 0.250

168. c11045030.png ; $A / N$ ; confidence 0.250

169. d03202028.png ; $l = n$ ; confidence 0.250

170. f120150182.png ; $\nu ( A ) = \operatorname { sup } _ { M } \text { inf } \{ \| A x \| : x \in M , \| x \| = 1 \}$ ; confidence 0.250

171. s13053068.png ; $\text{St} = \sum _ { P } \pm 1 _ { P } ^ { G },$ ; confidence 0.250

172. e1300107.png ; $f ^ { \rho } \in I : = ( f _ { 1 } , \dots , f _ { m} )$ ; confidence 0.250

173. d12018021.png ; $\partial \mathbf{D}$ ; confidence 0.250

174. b12037038.png ; $g_{k}$ ; confidence 0.250

175. n13003062.png ; $\hat { u } = ( L - \operatorname { Re } ( \lambda ) I ) ^ { - 1 } f$ ; confidence 0.250

176. a01212027.png ; $G_i$ ; confidence 0.250

177. n06752075.png ; $e _ { j } ^ { n _ { i j } }$ ; confidence 0.250

178. f1202307.png ; $[ K _ { 1 } , [ K _ { 2 } , K _ { 3 } ] ] = [ [ K _ { 1 } , K _ { 2 } ] , K _ { 3 } ] + ( - 1 ) ^ { k _ { 1 } k _ { 2 } } [ K _ { 2 } , [ K _ { 1 }, K _ { 3 }] ].$ ; confidence 0.250

179. a11030045.png ; $C _{*} \Omega g \circ \theta_{ X}$ ; confidence 0.250

180. a130040612.png ; $\mathfrak{M}$ ; confidence 0.250

181. e1300509.png ; $\sum _ { n \in Z } \frac { [ \lambda + \alpha ; n ] [ \mu - n + 1 ; n ] } { [ \mu - n + \beta ; n ] [ \lambda + 1 ; n ] } x ^ { \lambda + n } y ^ { \mu - n },$ ; confidence 0.249

182. a011650267.png ; $x _ { 1 } , \dots , x _ { k }$ ; confidence 0.249

183. e120020122.png ; $Y ^ { 1 }$ ; confidence 0.249

184. b01557039.png ; $\partial U$ ; confidence 0.249

185. t13004036.png ; $\mathbf{D} Q _ { n } ( x ) : = x ^ { n }$ ; confidence 0.249

186. b12024019.png ; $k _ { 1 } , \dots , k _ { n }$ ; confidence 0.249

187. a11030016.png ; $X _ { n + 1}$ ; confidence 0.249

188. p12017058.png ; $\delta _ { A , B } ( X ) \in \mathcal{N} _ { \epsilon } ^ { \prime } \Rightarrow \delta _ { A ^ { * } , B ^ { * } } ( X ) \in \mathcal{N}_ { \epsilon }$ ; confidence 0.249

189. g120040183.png ; $\mathcal{T} ^ { n } = \mathbf{R} ^ { n } / ( 2 \pi \mathbf{Z} ) ^ { n }$ ; confidence 0.249

190. g13001023.png ; $\{ \alpha , \alpha ^ { q } , \ldots , \alpha ^ { q ^ { n - 1 } } \}$ ; confidence 0.249

191. b12004055.png ; $q _ { X } = \operatorname { lim } _ { s \rightarrow 0 + } \frac { \operatorname { log } s } { \operatorname { log } \| D _ { s } \| _ { X } },$ ; confidence 0.248

192. f12010090.png ; $J = \left( \begin{array} { c c } { 0 } & { I _ { n } } \\ { - I _ { n } } & { 0 } \end{array} \right),$ ; confidence 0.248

193. b12042093.png ; $v$ ; confidence 0.248

194. d120020220.png ; $\overline{x} = \sum _ { k \in P ^ { \prime } } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R ^ { \prime } } \overline { \mu } _ { k } \tilde{x} ^ { ( k ) }$ ; confidence 0.248

195. h12012041.png ; $d ^ { \prime } _{X}$ ; confidence 0.248

196. b12002047.png ; $\| \beta _ { n , F } - \beta _ { n } \| = o \left( \frac { 1 } { n ^ { 1 / 2 - \varepsilon } } \right) \ \text{a.s.}\ .$ ; confidence 0.248

197. l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle |^ { 2 } } { \lambda } d \lambda < E _ { 0 }.$ ; confidence 0.248

198. m12007053.png ; $P ( x _ { 1 } ^ { - 1 } , \ldots , x _ { n } ^ { - 1 } ) / P ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.248

199. d032150131.png ; $\tilde { U }$ ; confidence 0.248

200. o130010145.png ; $\rho \leq c _ { 1 } \left( \frac { \operatorname { ln } | \operatorname { ln } \delta | } { | \operatorname { ln } \delta | } \right) ^ { c _ { 2 } },$ ; confidence 0.248

201. b12015079.png ; $= \frac { 1 } { n ! } \sum _ { \pi \text { a permutation } } d ( x _ { \pi ( 1 )} , \ldots , x _ { \pi ( n )} ) ,\; ( x _ { 1 } , \ldots , x _ { n } ) \in \{ 0,1 \} ^ { n },$ ; confidence 0.248

202. n06663053.png ; $r_1 = \ldots r _ { n } = r$ ; confidence 0.247

203. c12007016.png ; $\left. + ( - 1 ) ^ { n + 1 } \operatorname { pr }_{ ( \alpha _ { 2 } , \dots , \alpha _ { n + 1 } ) }\right\}_{ ( \alpha _ { 1 } , \dots , \alpha _ { n + 1 } )}$ ; confidence 0.247

204. c120180386.png ; $\tilde { g }$ ; confidence 0.247

205. d120020103.png ; $\overline { q }$ ; confidence 0.247

206. a1301308.png ; $\operatorname{sl} _ { 2 }$ ; confidence 0.247

207. o13006053.png ; $\tilde { \gamma } ^ { \prime } = \gamma ^ { \prime \prime }$ ; confidence 0.247

208. b13029023.png ; $\text{l} _ { A } ( M / \text{q}M ) = e _ { \text{q} } ^ { 0 } ( M )$ ; confidence 0.247

209. j13004037.png ; $\#$ ; confidence 0.246

210. c120010154.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \frac { f ( \zeta ) s \wedge ( \overline { \partial } s ) ^ { n - 1 } } { \langle \zeta - z , s \rangle ^ { n } } ,\; z \in E.$ ; confidence 0.246

211. w1200204.png ; $\operatorname {l} _ { 1 } ( P , Q ) = \operatorname { inf } \{ \mathsf{E} d ( X , Y ) \}$ ; confidence 0.246

212. q12001093.png ; $\tilde{\pi} ^ { c }$ ; confidence 0.246

213. a130040526.png ; $\operatorname {Co} _ { \text{Alg} \operatorname {FMod} ^ { * \text{L}} \mathcal{ D }} \mathbf{A}$ ; confidence 0.246

214. q12003022.png ; $X\cdot f = ( \langle X , \cdot \rangle \otimes \operatorname {id} _ { A } ) L ( f )$ ; confidence 0.246

215. l1300602.png ; $z _ { i + 1} \equiv a z _ { i } + r ( \operatorname { mod } m ) ,\, 0 \leq z _ { i } < m,$ ; confidence 0.246

216. f12023012.png ; $+ ( - 1 ) ^ { k } \left( d \varphi \bigwedge i _ { X } \psi \bigotimes Y + i _{Y} \varphi \bigwedge d \psi \bigotimes X \right),$ ; confidence 0.246

217. j12002024.png ; $\varphi _ { I } = \int _ { I } \varphi d \vartheta / | I |$ ; confidence 0.246

218. d120280126.png ; $g \in H ^ { n ,\, n - 1 } ( \mathbf{C} ^ { n } \backslash D )$ ; confidence 0.246

219. s12024012.png ; $\operatorname {Cl} _ { i = 1 } ^ { \infty } ( X _ { i } , x _ { i_0 } ) = ( X , x _ { 0 } )$ ; confidence 0.246

220. a12018058.png ; $( S _ { n + 1} )$ ; confidence 0.246

221. b12042014.png ; $\Psi : \otimes \rightarrow \otimes ^ { \text{ op} }$ ; confidence 0.245

222. t13009019.png ; $\pi _X \circ \pi_ Y ( a ) = \pi_ X ( a )$ ; confidence 0.245

223. k05508019.png ; $w _ { 0 } \in \mathbf{C} ^ { n }$ ; confidence 0.245

224. t130140116.png ; $q_{ R}$ ; confidence 0.245

225. f12024064.png ; $t_0 \in \mathbf{R}$ ; confidence 0.245

226. f120110118.png ; $\mathcal{S} ^ { \prime } ( D ^ { n } ) \subset \mathcal{D} ^ { \prime } ( \mathbf{R} ^ { n } )$ ; confidence 0.245

227. s13049042.png ; $\nabla ( \mathcal{A} ) : = \{ q \in N _ { k + 1} : q > p \ \text { for some } p \in \mathcal{A} \}$ ; confidence 0.244

228. t120050116.png ; $x \in \Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f )$ ; confidence 0.244

229. m11011042.png ; $= \left[ ( - 1 ) ^ { p - m - n } \prod _ { j = 1 } ^ { p } \left( x \frac { d } { d x } - a _j + 1 \right) \prod _ { j = 1 } ^ { q } \left( x \frac { d } { d x } - b _ { j } \right) \right].$ ; confidence 0.244

230. l1202005.png ; $A _ { 1 } , \dots , A _ { m } \subset S ^ { n }$ ; confidence 0.244

231. d11022036.png ; $y ^ { ( i ) } ( x _ { j } ) = a_{ij}$ ; confidence 0.244

232. c12031052.png ; $e ^ { \operatorname { ran } } ( Q _ { n } , F _ { d } ) = \operatorname { sup } \{ \mathsf{E} ( | I _ { d } ( f ) - Q _ { n } ( f ) | ) : f \in F _ { d } \},$ ; confidence 0.244

233. l11003074.png ; $\dot{\varphi}$ ; confidence 0.244

234. a120160100.png ; $z_{i j }$ ; confidence 0.244

235. i13009094.png ; $r , s , l _ { i } , t , m_ { j } \in \mathbf{Z}_{ \geq 0}$ ; confidence 0.243

236. r13004073.png ; $\frac { \lambda _ { 2 } ( \Omega ) } { \lambda _ { 1 } ( \Omega ) } \leq \frac { j _ { n / 2,1 } ^ { 2 } } { j _ { n / 2 - 1,1 } ^ { 2 } },$ ; confidence 0.243

237. c02028055.png ; $L ^ { * }$ ; confidence 0.243

238. b12043041.png ; $\varepsilon x = 0 , S x = - x$ ; confidence 0.243

239. b13004018.png ; $\cap _ { n = 0 } ^ { \infty } I _ {n}$ ; confidence 0.243

240. s120320128.png ; $\operatorname { ev } _ { x } ( \varphi ^ { * } ( a ) ) = \operatorname { ev } _ { \varphi _ { 0 } ( x ) } ( a )$ ; confidence 0.243

241. s120340158.png ; $\alpha _ { H } ( \tilde{y} ) - \alpha _ { H } ( \tilde { x } )$ ; confidence 0.243

242. b13009033.png ; $\widehat{\square}$ ; confidence 0.243

243. s13059053.png ; $\frac { d \psi ( t ) } { d t } = \frac { q ^ { 1 / 2 } } { 2 \kappa \sqrt { \pi } } e ^ { - ( \operatorname { ln } t / 2 \kappa ) ^ { 2 } } ,\, q = e ^ { - 2 \kappa ^ { 2 } }.$ ; confidence 0.242

244. t12002010.png ; $\mathsf{P} = \prod _ { x \in \mathbf{Z} } \mu _ { x }$ ; confidence 0.242

245. t13015018.png ; $0 \rightarrow \mathcal{K} ( H ^ { 2 } ( \mathbf{T} ) ) \triangleleft \mathcal{T} ( \mathbf{T} ) \rightarrow \mathcal{C} ( \mathbf{T} ) \rightarrow 0$ ; confidence 0.242

246. m12016067.png ; $\overset{\rightharpoonup} { f n n m e } ( U ^ { \prime } )$ ; confidence 0.242

247. b120310102.png ; $\| S _ { R } ^ { \delta }\, f - f \| _ { 1 } \rightarrow 0$ ; confidence 0.242

248. v11005022.png ; $H ^ { 1 } ( \mathbf{R} ^ { n } )$ ; confidence 0.242

249. f11016033.png ; $( \mathfrak{A} b _ { 1 } \dots b _ { t } )$ ; confidence 0.242

250. b110220192.png ; $F ^ { m } H _ { \text{DR} } ^ { 2 m - 1 } ( X_{ / \mathbf{R}} ) \overset{\sim} {\rightarrow} H _ { \text{B} } ^ { 2 m - 1 } ( X _{ / \mathbf{R}} , \mathbf{R} ( m - 1 ) ),$ ; confidence 0.242

251. b110220174.png ; $\operatorname{CH} ^ { m } ( X ) \rightarrow H _ { \text{B} } ^ { 2 m } ( X _ { \text{C} } , \mathbf{Z} ( m ) )$ ; confidence 0.242

252. l12009069.png ; $TM \times \mathfrak{g}$ ; confidence 0.242

253. l13006074.png ; $z _ { i } \equiv a _ { i } z _ { i - 1 } + \ldots + a _ { i } z _ { i - r } ( \operatorname { mod } p )$ ; confidence 0.242

254. a12027081.png ; $r _ { P } ( a \cdot b ) = r _ { P } ( a ) \cdot r _ { P } ( b ) \cdot ( a , b ) _ { P }.$ ; confidence 0.24

255. c12008099.png ; $T _ { 00 } = I _ { n }$ ; confidence 0.242

256. a12028016.png ; $U _ { z }$ ; confidence 0.242

257. c02292065.png ; $c_{3}$ ; confidence 0.242

258. c0228508.png ; $N_{2}$ ; confidence 0.242

259. m13001033.png ; $v _ { \operatorname {MAP} } = \operatorname { arg } \operatorname { max } _ { v _ { j } \in \mathcal{V} } \prod _ { i } \mathsf{P} ( a _ { i } | v _ { j } ) \cdot \mathsf{P} ( v _ { j } ) .$ ; confidence 0.242

260. i13004023.png ; $\| d \| _ { a _ { p } } = \sum _ { n = 0 } ^ { \infty } 2 ^ { n / p ^ { \prime } } \left\{ \sum _ { k = 2 ^ { n } } ^ { 2 ^ { n + 1 } - 1 } | \Delta d _ { k } | ^ { p } \right\} ^ { 1 / p } < \infty .$ ; confidence 0.241

261. c120080107.png ; $u _ { ij } \in \mathbf{R} ^ { m }$ ; confidence 0.241

262. a130040227.png ; $\Gamma \approx \Delta \models _ { \text{K} } \varphi \approx \psi \text { iff } E ( \Gamma , \Delta ) \vdash _ { \mathcal{D} } E ( \varphi , \psi ),$ ; confidence 0.241

263. t12021078.png ; $t ( M ; x , y ) = \sum _ { S \subseteq E } \left( \prod _ { e \in S } p ( e ) \right) \left( \prod _ { e \notin S } ( 1 - p ( e ) ) \right)\times $ ; confidence 0.241

264. q12008085.png ; $\mathsf{E} [ W ]_{ \text{PS}}$ ; confidence 0.241

265. a13004050.png ; $\mathfrak { A } = \langle \text{A} , F \rangle$ ; confidence 0.241

266. b12051092.png ; $d = d - \alpha y _ { n - 1}$ ; confidence 0.241

267. j130040137.png ; $M ^ { ( k ) }$ ; confidence 0.241

268. t12005090.png ; $\mu _ { i _ { 1 } , \ldots , i _ { s } }$ ; confidence 0.241

269. b11022054.png ; $\operatorname { ch } _ { \mathcal{M} } : K _ { i } ( X ) \rightarrow \oplus H ^ { 2 j - i _ { \mathcal{M} }} ( X , \mathbf{Q} ( j ) ) $ ; confidence 0.241

270. b13021027.png ; $C _ { r } < C _ { s }$ ; confidence 0.240

271. f12024076.png ; $x ( t_0 )$ ; confidence 0.240

272. d120230138.png ; $n r$ ; confidence 0.240

273. r13005047.png ; $C _ { A } ( g ) = \{ a \in A : a ^ { g } = a \} = \{ 1 \}$ ; confidence 0.240

274. c02719017.png ; $\mathbf{Z} ^ { n }$ ; confidence 0.240

275. t12005012.png ; $\Sigma ^ { i } ( f ) = \{ x \in V : \operatorname { dim } \operatorname { Ker } d f _ { x } = i \}.$ ; confidence 0.240

276. a12023063.png ; $b _ { q , s } = \int _{\Omega} z ^{q} \overline{z} ^ { s } d v$ ; confidence 0.240

277. i13001052.png ; $\overline { d } _ { ( 1 ^ { n } ) } \preceq \overline { d } _ { ( 2,1 ^ { n - 2 } ) } \preceq \ldots \preceq \overline { d } _ { ( k , 1 ^ { n - k } ) } \preceq \ldots \preceq \overline { d } _ { ( n ) }.$ ; confidence 0.240

278. a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } \left( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } \right)$ ; confidence 0.240

279. f11016039.png ; $c _ { n + i}$ ; confidence 0.240

280. b11042028.png ; $s \in \mathbf{R}$ ; confidence 0.240

281. i130090154.png ; $\overline{\mathbf{Q}}$ ; confidence 0.240

282. b12046045.png ; $\chi _ { e }$ ; confidence 0.240

283. m13014070.png ; $D = ( \partial / \partial x _ { 1 } , \dots , \partial / \partial x _ { n } )$ ; confidence 0.240

284. e12009014.png ; $S ^ { \sigma } = ( \rho , J / c )$ ; confidence 0.240

285. t13013040.png ; $\Gamma = \operatorname { End } _ { \Lambda } ( T ) ^ { \text{ op} }$ ; confidence 0.240

286. b110220108.png ; $\rightarrow H _ { \mathcal{D} } ^ { i + 1 } ( X_{ / \mathbf{R}} , \mathbf{R} ( i + 1 - m ) ) \rightarrow 0.$ ; confidence 0.240

287. i1300107.png ; $d _ { \chi } ^ { G } ( A ) : = \sum _ { \sigma \in G } \chi ( \sigma ) \prod _ { i = 1 } ^ { n } a _ {i \sigma ( i ) }.$ ; confidence 0.240

288. b120430173.png ; $\Delta f = 1 \bigotimes f + x \bigotimes \partial _ { q , x } \,f + y \bigotimes \partial _ { q , y } \,f +\dots ,$ ; confidence 0.239

289. h13007016.png ; $\mathbf{f} = ( f _ { 1 } , \dots , f _ { l } ) \in R ^ { l }$ ; confidence 0.239

290. h12007021.png ; $a \circ_{h} b$ ; confidence 0.239

291. d12026018.png ; $C_{ [ 0,1 ]}$ ; confidence 0.239

292. o130060112.png ; $l _ { \mathcal{E} } - i \Phi ( \xi _ { 1 } A _ { 1 } + \xi _ { 2 } A _ { 2 } - \xi _ { 1 } \lambda _ { 1 } - \xi _ { 2 } \lambda _ { 2 } ) ^ { - 1 } \Phi ^ { * } ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ),$ ; confidence 0.239

293. s13059032.png ; $Q _ { 2 n } ( z ) = \frac { 1 } { H _ { 2 n } ^ { ( - 2 n ) } } \left| \begin{array} { c c c c } { c _ { - 2 n } } & { \cdots } & { c _ { - 1 } } & { z ^ { - n } } \\ { \vdots } & { \square } & { \vdots } & { \vdots } \\ { c _ { - 1 } } & { \cdots } & { c _ { 2 n - 2 } } & { z ^ { n - 1 } } \\ { c_0 } & { \cdots } & { c _ { 2 n - 1 } } & { z ^ { n } e n d } \end{array} \right|,$ ; confidence 0.239

294. a130240527.png ; $\Theta$ ; confidence 0.239

295. q12007016.png ; $H ^ { \otimes 3 }$ ; confidence 0.239

296. q1200205.png ; $| T _ { i _ { 1 } , \ldots , i _ { k } } ^ { 1 , \ldots , k } | _ { q }$ ; confidence 0.239

297. l120120207.png ; $\alpha _ { 0 } : \cup _ { \text { p } ^ { \prime } \in S ^ { \prime } } G ( K _ { \text { p } ^ { \prime } } ) \rightarrow G$ ; confidence 0.239

298. a13002011.png ; $\nu _ { n } = \sum _ { k = 0 } ^ { n - 1 } \mu _ { k } / n$ ; confidence 0.239

299. d03386039.png ; $I _ { A }$ ; confidence 0.239

300. g12007035.png ; $i ^ { * }$ ; confidence 0.238

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/70. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/70&oldid=44480