Difference between revisions of "Suzuki group"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48916 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | < | + | A [[Simple finite group|simple finite group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s0915101.png" />, a member of the infinite series of simple groups, discovered by M. Suzuki. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s0915102.png" /> be a natural number, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s0915103.png" /> be the finite field with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s0915104.png" /> elements, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s0915105.png" /> be an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s0915106.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s0915107.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s0915108.png" />. The Suzuki group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s0915109.png" /> is then generated by the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151010.png" /> consisting of all diagonal matrices of order 4 with diagonal elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151011.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151013.png" />), the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151014.png" /> consisting of all triangular matrices of the form | |
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151015.png" /></td> </tr></table> | |
− | |||
− | + | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151016.png" />, and the matrix | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151017.png" /></td> </tr></table> | |
− | |||
− | + | The subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151018.png" /> is a Sylow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151019.png" />-subgroup of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151020.png" />; it is a [[Suzuki-2-group|Suzuki <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151021.png" />-group]]. The subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151022.png" /> coincides with the normalizer of the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151023.png" />. The permutation representation of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151024.png" /> on the cosets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151025.png" /> is doubly transitive; its degree is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151026.png" />. The order of the Suzuki group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151027.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151028.png" />, and is not divisible by 3. On the other hand, any non-Abelian finite simple group whose order is not divisible by 3 is isomorphic to a Suzuki group. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151029.png" /> is a maximal subgroup of the symplectic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151030.png" /> and is the centralizer in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151031.png" /> of an automorphism of order 2 of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151032.png" />. In other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151033.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151034.png" /> — the twisted analogue of a [[Chevalley group|Chevalley group]] of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151035.png" /> over the field with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151036.png" /> elements. | |
− | |||
− | + | ====References==== | |
− | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Suzuki, "On a class of doubly transitive groups" ''Ann. of Math.'' , '''75''' : 1 (1962) pp. 105–145</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.W. Carter, "Simple groups of Lie type" , Wiley (Interscience) (1972)</TD></TR></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | There is in fact precisely one automorphism | + | There is in fact precisely one automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151037.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151038.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151039.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151040.png" />. It is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151041.png" />. |
− | of | ||
− | such that | ||
− | for all | ||
− | It is | ||
− | There is a twisted polarity whose absolute points are the | + | There is a twisted polarity whose absolute points are the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151042.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151043.png" />-dimensional subspaces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151044.png" /> that are fixed by a conjugate of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091510/s09151045.png" />. The set of absolute points thus obtained is an [[Ovoid(2)|ovoid]]. See [[#References|[a1]]]–[[#References|[a2]]]. |
− | |||
− | dimensional subspaces of | ||
− | that are fixed by a conjugate of | ||
− | The set of absolute points thus obtained is an [[Ovoid(2)|ovoid]]. See [[#References|[a1]]]–[[#References|[a2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Tits, "Ovoïdes et groupes de Suzuki" ''Arch. Math.'' , '''13''' (1962) pp. 187–198</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Tits, "Une propriété charactéristique des ovoïdes associés aux groupes de Suzuki" ''Arch. Math.'' , '''17''' (1966) pp. 136–153</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Huppert, "Finite groups" , '''3''' , Springer (1982) pp. Chapt. IX.3</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Tits, "Ovoïdes et groupes de Suzuki" ''Arch. Math.'' , '''13''' (1962) pp. 187–198</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Tits, "Une propriété charactéristique des ovoïdes associés aux groupes de Suzuki" ''Arch. Math.'' , '''17''' (1966) pp. 136–153</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Huppert, "Finite groups" , '''3''' , Springer (1982) pp. Chapt. IX.3</TD></TR></table> |
Revision as of 14:53, 7 June 2020
A simple finite group , a member of the infinite series of simple groups, discovered by M. Suzuki.
Let be a natural number, let be the finite field with elements, and let be an automorphism of such that for any . The Suzuki group is then generated by the subgroup consisting of all diagonal matrices of order 4 with diagonal elements (, ), the subgroup consisting of all triangular matrices of the form
, and the matrix
The subgroup is a Sylow -subgroup of the group ; it is a Suzuki -group. The subgroup coincides with the normalizer of the subgroup . The permutation representation of the group on the cosets of is doubly transitive; its degree is equal to . The order of the Suzuki group is equal to , and is not divisible by 3. On the other hand, any non-Abelian finite simple group whose order is not divisible by 3 is isomorphic to a Suzuki group. The group is a maximal subgroup of the symplectic group and is the centralizer in of an automorphism of order 2 of the group . In other words, is isomorphic to — the twisted analogue of a Chevalley group of type over the field with elements.
References
[1] | M. Suzuki, "On a class of doubly transitive groups" Ann. of Math. , 75 : 1 (1962) pp. 105–145 |
[2] | R.W. Carter, "Simple groups of Lie type" , Wiley (Interscience) (1972) |
Comments
There is in fact precisely one automorphism of such that for all . It is .
There is a twisted polarity whose absolute points are the -dimensional subspaces of that are fixed by a conjugate of . The set of absolute points thus obtained is an ovoid. See [a1]–[a2].
References
[a1] | J. Tits, "Ovoïdes et groupes de Suzuki" Arch. Math. , 13 (1962) pp. 187–198 |
[a2] | J. Tits, "Une propriété charactéristique des ovoïdes associés aux groupes de Suzuki" Arch. Math. , 17 (1966) pp. 136–153 |
[a3] | B. Huppert, "Finite groups" , 3 , Springer (1982) pp. Chapt. IX.3 |
Suzuki group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Suzuki_group&oldid=48916