Difference between revisions of "Path"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48142 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | < | + | A [[Continuous mapping|continuous mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718101.png" /> of the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718102.png" /> into a [[Topological space|topological space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718103.png" />. The points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718105.png" /> are called the initial and the final points of the path <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718106.png" />. Given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718107.png" />, the path defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718108.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718109.png" />, is called the path inverse to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181010.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181011.png" />. Given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181013.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181014.png" />, the path defined by the formula |
− | p0718101.png | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181015.png" /></td> </tr></table> | |
− | |||
− | + | is called the composite of the paths <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181017.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181018.png" />. In a [[Path-connected space|path-connected space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181019.png" /> with distinguished point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181020.png" />, the set of all paths with initial point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181021.png" /> forms the [[Path space|path space]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181022.png" />. | |
− | of the | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | the path | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Generally one is interested not so much in the individual paths in a space as in the homotopy classes thereof; if one factors by the equivalence relation of homotopy relative to | + | Generally one is interested not so much in the individual paths in a space as in the homotopy classes thereof; if one factors by the equivalence relation of homotopy relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181023.png" />, the composition defined above becomes associative, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181024.png" /> becomes a genuine inverse to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181025.png" />. See [[Fundamental groupoid|Fundamental groupoid]]. |
− | the composition defined above becomes associative, and | ||
− | becomes a genuine inverse to | ||
− | See [[Fundamental groupoid|Fundamental groupoid]]. | ||
− | More precisely, one may define a path as being any continuous mapping | + | More precisely, one may define a path as being any continuous mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181026.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181027.png" /> is called the length of the path <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181028.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181030.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181031.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181033.png" />, are composed to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181034.png" />, taking <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181035.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181037.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181038.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181039.png" /> has length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181040.png" />) to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181041.png" />. This composition is associative (not only homotopy associative). |
− | where | ||
− | is called the length of the path | ||
− | Then | ||
− | and | ||
− | with | ||
− | of length | ||
− | and | ||
− | are composed to | ||
− | taking | ||
− | to | ||
− | and | ||
− | in | ||
− | where | ||
− | has length | ||
− | to | ||
− | This composition is associative (not only homotopy associative). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Hilton, S. Wylie, "Homology theory. An introduction to algebraic topology" , Cambridge Univ. Press (1965)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Hilton, S. Wylie, "Homology theory. An introduction to algebraic topology" , Cambridge Univ. Press (1965)</TD></TR></table> |
Revision as of 14:52, 7 June 2020
A continuous mapping of the interval into a topological space . The points and are called the initial and the final points of the path . Given , the path defined by the formula , , is called the path inverse to and is denoted by . Given and with , the path defined by the formula
is called the composite of the paths and and is denoted by . In a path-connected space with distinguished point , the set of all paths with initial point forms the path space of .
Comments
Generally one is interested not so much in the individual paths in a space as in the homotopy classes thereof; if one factors by the equivalence relation of homotopy relative to , the composition defined above becomes associative, and becomes a genuine inverse to . See Fundamental groupoid.
More precisely, one may define a path as being any continuous mapping , where is called the length of the path . Then and , with of length and , are composed to , taking to and in (where has length ) to . This composition is associative (not only homotopy associative).
References
[a1] | P.J. Hilton, S. Wylie, "Homology theory. An introduction to algebraic topology" , Cambridge Univ. Press (1965) |
Path. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Path&oldid=48142