Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/61"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 61 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007091.png ; $f ( A ) = ( 2 \pi ) ^ { - k } \int _ { R ^ { k } } ^ { i \xi A } \hat { f } ( \xi ) d \xi$ ; confidence 0.458
+
1. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007091.png ; $f ( \mathcal{A} ) = ( 2 \pi ) ^ { - k } \int _ { \mathbf{R} ^ { k } } e^ { i \xi \mathcal{A} } \hat { f } ( \xi ) d \xi$ ; confidence 0.458
  
2. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003033.png ; $\lambda _ { 3 } = \left( \begin{array} { c c c } { 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 4 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 5 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 6 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 1 } \\ { 0 } & { 1 } & { 0 } \end{array} \right)$ ; confidence 0.458
+
2. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003033.png ; $\lambda _ { 3 } = \left( \begin{array} { c c c } { 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 4 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 5 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 6 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 1 } \\ { 0 } & { 1 } & { 0 } \end{array} \right),$ ; confidence 0.458
  
 
3. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054056.png ; $K _ { 2 } F$ ; confidence 0.458
 
3. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054056.png ; $K _ { 2 } F$ ; confidence 0.458
  
4. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003024.png ; $0110100$ ; confidence 0.458
+
4. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003024.png ; $0.0110100\dots$ ; confidence 0.458
  
5. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049045.png ; $j \in N \backslash \{ j _ { k } : k \in N \}$ ; confidence 0.458
+
5. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049045.png ; $j \in \mathbf{N} \backslash \{ j _ { n_k } : k \in \mathbf{N} \}$ ; confidence 0.458
  
 
6. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a01300054.png ; $a \in E$ ; confidence 0.458
 
6. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a01300054.png ; $a \in E$ ; confidence 0.458
Line 14: Line 14:
 
7. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100123.png ; $x \in \operatorname { sp } u$ ; confidence 0.458
 
7. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100123.png ; $x \in \operatorname { sp } u$ ; confidence 0.458
  
8. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201901.png ; $F ( \tau ) = \frac { \pi } { 2 } \int _ { 0 } ^ { \infty } P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) f ( x ) d x$ ; confidence 0.458
+
8. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201901.png ; $F ( \tau ) = \frac { \pi } { 2 } \int _ { 0 } ^ { \infty } P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) f ( x ) d x,$ ; confidence 0.458
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013010.png ; $t = ( t _ { n } )$ ; confidence 0.458
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024029.png ; $1$ ; confidence 0.458
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024029.png ; $\mathbf{E}$ ; confidence 0.458
  
11. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006020.png ; $h ^ { i } ( K _ { X } \otimes L ) = 0 , \quad i > 0$ ; confidence 0.458
+
11. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006020.png ; $h ^ { i } ( K _ { X } \bigotimes L ) = 0 , \quad i > 0.$ ; confidence 0.458
  
12. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021096.png ; $( \frac { \partial } { \partial \lambda } ) [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ] = z ^ { \lambda } 2 + \ldots$ ; confidence 0.458
+
12. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021096.png ; $( \frac { \partial } { \partial \lambda } ) [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ] = z ^ { \lambda_2 } + \ldots ,$ ; confidence 0.458
  
13. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027032.png ; $y _ { 1 } , \dots , y _ { m } + 1$ ; confidence 0.458
+
13. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027032.png ; $y _ { 1 } , \dots , y _ { m + 1}$ ; confidence 0.458
  
14. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015034.png ; $J _ { n } / 2 ( r ) = 0$ ; confidence 0.458
+
14. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015034.png ; $J _ { n / 2} ( r ) = 0$ ; confidence 0.458
  
15. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j1300204.png ; $P ( i \in \Gamma _ { p } ) = p _ { i }$ ; confidence 0.458
+
15. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j1300204.png ; $\mathsf{P} ( i \in \Gamma _ { \mathbf{p} } ) = p _ { i }$ ; confidence 0.458
  
 
16. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005026.png ; $h \in M$ ; confidence 0.458
 
16. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005026.png ; $h \in M$ ; confidence 0.458
  
17. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w1301401.png ; $( F _ { win } f ) ( \omega , t ) = \int f ( s ) g ( s - t ) e ^ { - i \omega s } d s$ ; confidence 0.457
+
17. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w1301401.png ; $( F _ { \text{win} } f ) ( \omega , t ) = \int f ( s ) g ( s - t ) e ^ { - i \omega s } d s,$ ; confidence 0.457
  
18. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016040.png ; $f = \sum _ { l } a _ { l } x$ ; confidence 0.457
+
18. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016040.png ; $f = \sum _ { j } a _ { j} x_j$ ; confidence 0.457
  
 
19. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007037.png ; $\operatorname { deg } \Delta$ ; confidence 0.457
 
19. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007037.png ; $\operatorname { deg } \Delta$ ; confidence 0.457
  
20. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007049.png ; $U \in SGL _ { n } ( Z A )$ ; confidence 0.457
+
20. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007049.png ; $U \in \text{SGL} _ { n } ( \mathbf{Z} A )$ ; confidence 0.457
  
 
21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015062.png ; $( n _ { 1 } , \dots , n _ { k } )$ ; confidence 0.457
 
21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015062.png ; $( n _ { 1 } , \dots , n _ { k } )$ ; confidence 0.457
  
22. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230151.png ; $k ( A ) = k \geq p$ ; confidence 0.457
+
22. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230151.png ; $\text{rank} ( A ) = k \geq p$ ; confidence 0.457
  
 
23. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a013000144.png ; $L ^ { p }$ ; confidence 0.457
 
23. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a013000144.png ; $L ^ { p }$ ; confidence 0.457
Line 48: Line 48:
 
24. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005087.png ; $\sigma i$ ; confidence 0.457
 
24. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005087.png ; $\sigma i$ ; confidence 0.457
  
25. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009099.png ; $\operatorname { char } ( X ) = \prod _ { i = 1 } ^ { s } f _ { i } ( T ) ^ { l _ { i } } \prod _ { j = 1 } ^ { t } \pi ^ { m _ { j } }$ ; confidence 0.457
+
25. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009099.png ; $\operatorname { char } ( X ) = \prod _ { i = 1 } ^ { s } f _ { i } ( T ) ^ { l _ { i } } \prod _ { j = 1 } ^ { t } \pi ^ { m _ { j } },$ ; confidence 0.457
  
26. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220156.png ; $Q ^ { \times }$ ; confidence 0.456
+
26. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220156.png ; $\mathbf{Q} ^ { \times }$ ; confidence 0.456
  
27. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211021.png ; $\theta = ( \theta _ { 1 } , \dots , \theta _ { m } ) \in \Theta \subset R ^ { m }$ ; confidence 0.456
+
27. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211021.png ; $\theta = ( \theta _ { 1 } , \dots , \theta _ { m } ) \in \Theta \subset \mathbf{R} ^ { m }$ ; confidence 0.456
  
28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025052.png ; $E _ { n } + 1 ( \operatorname { cos } \theta ) =$ ; confidence 0.456
+
28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025052.png ; $E _ { n + 1} ( \operatorname { cos } \theta ) =$ ; confidence 0.456
  
29. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111020.png ; $im _ { \rightarrow } H ^ { p } ( U _ { \lambda } ; G ) = H ^ { p } ( x ; G )$ ; confidence 0.456
+
29. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111020.png ; $\operatorname{lim} _ { \rightarrow } H ^ { p } ( U _ { \lambda } ; G ) = H ^ { p } ( x ; G )$ ; confidence 0.456
  
30. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005047.png ; $- \frac { 1 } { 2 } \sum _ { i , j = 1 } ^ { n } \frac { \partial ^ { 2 } \mu _ { 0 } } { \partial k _ { i } \partial \dot { k } _ { j } } ( k _ { c } , R _ { c } ) \frac { \partial ^ { 2 } A } { \partial \xi _ { i } \partial \xi _ { j } } + 1 A | A | ^ { 2 }$ ; confidence 0.456
+
30. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005047.png ; $- \frac { 1 } { 2 } \sum _ { i , j = 1 } ^ { n } \frac { \partial ^ { 2 } \mu _ { 0 } } { \partial k _ { i } \partial \dot { k } _ { j } } ( k _ { c } , R _ { c } ) \frac { \partial ^ { 2 } A } { \partial \xi _ { i } \partial \xi _ { j } } + l A | A | ^ { 2 }$ ; confidence 0.456
  
31. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950194.png ; $I$ ; confidence 0.456
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950194.png ; $L_1$ ; confidence 0.456
  
32. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004044.png ; $\lambda = h _ { \lambda _ { 1 } } \ldots h _ { \lambda _ { l } }$ ; confidence 0.456
+
32. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004044.png ; $h_\lambda = h _ { \lambda _ { 1 } } \ldots h _ { \lambda _ { l } }$ ; confidence 0.456
  
33. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759027.png ; $\phi _ { v } : \operatorname { WC } ( A , k ) \rightarrow WC ( A , k _ { v } )$ ; confidence 0.456
+
33. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759027.png ; $\phi _ { v } : \operatorname { WC } ( A , k ) \rightarrow WC ( A , k _ { v } ),$ ; confidence 0.456
  
34. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059039.png ; $( - z ) P _ { N } ( - z ) / Q _ { N } ( - z )$ ; confidence 0.456
+
34. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059039.png ; $( - z ) P _ { n } ( - z ) / Q _ { n } ( - z )$ ; confidence 0.456
  
35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053024.png ; $( f _ { n } ) _ { n = 1 } ^ { \infty } 1$ ; confidence 0.456
+
35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053024.png ; $( f _ { n } ) _ { n = 1 } ^ { \infty } $ ; confidence 0.456
  
36. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013013.png ; $D ^ { r }$ ; confidence 0.456
+
36. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013013.png ; $D ^ { \mathbf{r} }$ ; confidence 0.456
  
37. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010130.png ; $\{ z \in C ^ { n } : 1 + \{ z , \zeta \} \neq 0 \}$ ; confidence 0.456
+
37. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010130.png ; $\{ z \in \mathbf{C} ^ { n } : 1 + \langle z , \zeta \rangle \neq 0 \}$ ; confidence 0.456
  
 
38. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016012.png ; $U ^ { i }$ ; confidence 0.456
 
38. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016012.png ; $U ^ { i }$ ; confidence 0.456
  
39. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120280/b1202803.png ; $f ( z ) = \frac { | \alpha | } { \alpha } \frac { z - \alpha } { 1 - \overline { \alpha } z } , \quad | \alpha | < 1$ ; confidence 0.456
+
39. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120280/b1202803.png ; $f ( z ) = \frac { | a | } { a } \frac { z - a } { 1 - \overline { a } z } , \quad | a | < 1,$ ; confidence 0.456
  
40. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008030.png ; $E [ W _ { p } ] _ { NP } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { P } \lambda _ { k } b _ { k } ^ { ( 2 ) }$ ; confidence 0.456
+
40. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008030.png ; $\mathsf{E} [ W _ { p } ] _ { \text{NP} } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { P } \lambda _ { k } b _ { k } ^ { ( 2 ) },$ ; confidence 0.456
  
41. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032050.png ; $U ( L )$ ; confidence 0.455
+
41. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032050.png ; $\mathcal{U} ( L )$ ; confidence 0.455
  
 
42. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006030.png ; $S ( k ) = f ( - k ) / f ( k ) = e ^ { 2 i \delta ( k ) }$ ; confidence 0.455
 
42. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006030.png ; $S ( k ) = f ( - k ) / f ( k ) = e ^ { 2 i \delta ( k ) }$ ; confidence 0.455
  
43. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014014.png ; $M _ { \lambda } = ( Q _ { ( \lambda _ { i } , \lambda _ { j } ) } )$ ; confidence 0.455
+
43. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014014.png ; $M _ { \lambda } = ( Q _ { \langle \lambda _ { i } , \lambda _ { j } \rangle } )$ ; confidence 0.455
  
44. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006010.png ; $\operatorname { gcd } ( N _ { 2 x } , D _ { 2 x } ) = 1$ ; confidence 0.455
+
44. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006010.png ; $\operatorname { gcd } ( N _ { 2n } , D _ { 2n } ) = 1$ ; confidence 0.455
  
 
45. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090100.png ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \in \Lambda ( n , r )$ ; confidence 0.455
 
45. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090100.png ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \in \Lambda ( n , r )$ ; confidence 0.455
  
46. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300145.png ; $n \geq 1$ ; confidence 0.455
+
46. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300145.png ; $n \gg 1$ ; confidence 0.455
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004026.png ; $\Gamma ^ { \prime } \operatorname { tg } \varphi$ ; confidence 0.455
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004026.png ; $\Gamma ^ { \prime } \vdash_{\mathcal{D}} \varphi$ ; confidence 0.455
  
48. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026039.png ; $t \rightarrow \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s } ) 1 d s = S ^ { - 1 } ( \int _ { 0 } ^ { t } ( D _ { s } ^ { * } + D _ { s } ) \Omega d s )$ ; confidence 0.455
+
48. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026039.png ; $t \rightarrow \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s } ) 1 d s = \mathcal{S} ^ { - 1 } \left( \int _ { 0 } ^ { t } ( D _ { s } ^ { * } + D _ { s } ) \Omega d s \right),$ ; confidence 0.455
  
 
49. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020055.png ; $| w _ { 1 } | \geq \ldots \geq | w _ { n } |$ ; confidence 0.455
 
49. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020055.png ; $| w _ { 1 } | \geq \ldots \geq | w _ { n } |$ ; confidence 0.455
  
50. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090167.png ; $\zeta ^ { \gamma } = \zeta ^ { d }$ ; confidence 0.455
+
50. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090167.png ; $\zeta ^ { \gamma } = \zeta ^ { u }$ ; confidence 0.455
  
51. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180260.png ; $\nabla : \otimes ^ { r } E \rightarrow \otimes ^ { + 1 } E$ ; confidence 0.455
+
51. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180260.png ; $\nabla : \otimes ^ { r } \mathcal{E} \rightarrow \otimes ^ { r+ 1 } \mathcal{E}$ ; confidence 0.455
  
52. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004050.png ; $9 X$ ; confidence 0.455
+
52. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004050.png ; $q_X$ ; confidence 0.455
  
53. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700060.png ; $\lambda x _ { 1 } \ldots x _ { n } \cdot M$ ; confidence 0.455
+
53. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700060.png ; $\lambda x _ { 1 } \ldots x _ { n } . M$ ; confidence 0.455
  
54. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005042.png ; $R _ { p }$ ; confidence 0.455
+
54. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005042.png ; $R _ { \text{p} }$ ; confidence 0.455
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050110.png ; $M$ ; confidence 0.455
+
55. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050110.png ; $\overline{M}$ ; confidence 0.455
  
56. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003069.png ; $T _ { F }$ ; confidence 0.455
+
56. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003069.png ; $T _ { E }$ ; confidence 0.455
  
 
57. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032090.png ; $k \operatorname { log } a _ { m } \leq i \operatorname { log } a _ { n } \leq ( k + 1 ) \operatorname { log } a _ { m }$ ; confidence 0.455
 
57. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032090.png ; $k \operatorname { log } a _ { m } \leq i \operatorname { log } a _ { n } \leq ( k + 1 ) \operatorname { log } a _ { m }$ ; confidence 0.455
  
58. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022025.png ; $G _ { e } = SL _ { 2 } ( Z )$ ; confidence 0.455
+
58. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022025.png ; $G _ { e } = \operatorname{SL} _ { 2 } ( \mathbf{Z} )$ ; confidence 0.455
  
 
59. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012098.png ; $Q _ { s } ( R )$ ; confidence 0.455
 
59. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012098.png ; $Q _ { s } ( R )$ ; confidence 0.455
  
60. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663099.png ; $v _ { i } = \alpha _ { i } ^ { k }$ ; confidence 0.455
+
60. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663099.png ; $v _ { i } = a _ { i } ^ { k }$ ; confidence 0.455
  
61. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021072.png ; $r = \operatorname { dim } n$ ; confidence 0.455
+
61. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021072.png ; $r = \operatorname { dim } \mathfrak{n}^-$ ; confidence 0.455
  
62. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005099.png ; $h \in QS ( T , C ) : = \cup _ { M \geq 1 } M$ ; confidence 0.455
+
62. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005099.png ; $h \in \operatorname{QS} (\mathbf{ T} , \mathbf{C} ) : = \cup _ { M \geq 1 } M$ ; confidence 0.455
  
63. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040167.png ; $\| v \|$ ; confidence 0.455
+
63. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040167.png ; $\| \nu \|$ ; confidence 0.455
  
64. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n12004016.png ; $A _ { U } ( s | _ { U } ) = A _ { N } ( s ) | _ { U }$ ; confidence 0.455
+
64. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n12004016.png ; $A _ { U } ( s | _ { U } ) = A _ { M } ( s ) | _ { U }$ ; confidence 0.455
  
65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270105.png ; $\operatorname { lim } _ { t \rightarrow \infty } \operatorname { Eh } ( Z ( t ) ) = \frac { \int _ { 0 } ^ { \infty } b ( u ) d u } { \int _ { 0 } ^ { \infty } P ( T _ { 1 } > u ) d u } =$ ; confidence 0.454
+
65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270105.png ; $\operatorname { lim } _ { t \rightarrow \infty } \mathsf{E}\operatorname { h } ( Z ( t ) ) = \frac { \int _ { 0 } ^ { \infty } b ( u ) d u } { \int _ { 0 } ^ { \infty } \mathsf{P} ( T _ { 1 } > u ) d u } =$ ; confidence 0.454
  
 
66. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068012.png ; $b _ { i }$ ; confidence 0.454
 
66. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a11068012.png ; $b _ { i }$ ; confidence 0.454
  
67. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170307.png ; $K ^ { 2 \times 1 }$ ; confidence 0.454
+
67. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170307.png ; $K ^ { 2 \times }I$ ; confidence 0.454
  
68. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065030.png ; $\phi _ { N } ( z ) = \frac { \Phi _ { N } ( z ) } { \| \Phi _ { N } \| _ { \mu } }$ ; confidence 0.454
+
68. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065030.png ; $\phi _ { n } ( z ) = \frac { \Phi _ { n } ( z ) } { \| \Phi _ { n } \| _ { \mu } },$ ; confidence 0.454
  
69. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027560/c02756035.png ; $2 i$ ; confidence 0.454
+
69. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027560/c02756035.png ; $\mathbf{Z}_l$ ; confidence 0.454
  
70. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005049.png ; $( A - z l ) x = K J \varphi _ { - }$ ; confidence 0.454
+
70. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005049.png ; $( \mathcal{A} - z I ) x = K J \varphi _ { - }$ ; confidence 0.454
  
71. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s1203206.png ; $x \in V _ { 0 }$ ; confidence 0.454
+
71. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s1203206.png ; $x \in V _ { \bar{0} }$ ; confidence 0.454
  
 
72. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017078.png ; $\int p \overline { q } d \mu = \langle M ( n ) \hat { p } , \hat { q } \rangle$ ; confidence 0.454
 
72. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017078.png ; $\int p \overline { q } d \mu = \langle M ( n ) \hat { p } , \hat { q } \rangle$ ; confidence 0.454
  
73. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010080.png ; $\rho ( x ) = N \int _ { R ^ { n ( N - 1 ) } } | \Phi ( x , x _ { 2 } , \ldots , x _ { N } ) | ^ { 2 } d x _ { 2 } \ldots d x _ { N }$ ; confidence 0.454
+
73. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010080.png ; $\rho ( x ) = N \int _ { \mathbf{R} ^ { n ( N - 1 ) } } | \Phi ( x , x _ { 2 } , \ldots , x _ { N } ) | ^ { 2 } d x _ { 2 } \ldots d x _ { N }.$ ; confidence 0.454
  
74. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008045.png ; $\int _ { B _ { j } } d \Omega _ { n } = V _ { i n } \sim ( \vec { V _ { n } } ) _ { i }$ ; confidence 0.454
+
74. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008045.png ; $\int _ { B _ { i } } d \Omega _ { n } = V _ { i n } \sim ( \overset{\rightharpoonup}{ V _ { n } } ) _ { i }$ ; confidence 0.454
  
75. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009091.png ; $\varphi$ ; confidence 0.454
+
75. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009091.png ; $\operatorname{Ker} \varphi$ ; confidence 0.454
  
 
76. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002079.png ; $L _ { s } ( E ^ { * } , E )$ ; confidence 0.454
 
76. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002079.png ; $L _ { s } ( E ^ { * } , E )$ ; confidence 0.454
  
77. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011060.png ; $\varphi , \psi \in L ^ { 2 } ( R ^ { x } )$ ; confidence 0.454
+
77. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011060.png ; $\varphi , \psi \in L ^ { 2 } ( \mathbf{R} ^ { n} )$ ; confidence 0.454
  
 
78. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220165.png ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) - \operatorname { ord } _ { s = m + 1 } L ( h ^ { i } ( X ) , s ) =$ ; confidence 0.454
 
78. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220165.png ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) - \operatorname { ord } _ { s = m + 1 } L ( h ^ { i } ( X ) , s ) =$ ; confidence 0.454
  
79. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080135.png ; $s _ { x } = 0$ ; confidence 0.453
+
79. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080135.png ; $s _ { n } = 0$ ; confidence 0.453
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011530/a01153012.png ; $P ( x _ { 1 } , \ldots , x _ { x } )$ ; confidence 0.453
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011530/a01153012.png ; $P ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.453
  
 
81. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067090.png ; $S ( \theta ) \in V _ { q } ^ { p }$ ; confidence 0.453
 
81. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067090.png ; $S ( \theta ) \in V _ { q } ^ { p }$ ; confidence 0.453
  
82. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302805.png ; $+ \frac { n ! } { ( n + 1 ) \ldots 2 n } a _ { n } ] = S$ ; confidence 0.453
+
82. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302805.png ; $\dots +\left. \frac { n ! } { ( n + 1 ) \ldots 2 n } a _ { n } \right] = S$ ; confidence 0.453
  
83. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009031.png ; $P ^ { H } : T ^ { * } M \rightarrow T M$ ; confidence 0.453
+
83. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009031.png ; $P ^ { \sharp } : T ^ { * } M \rightarrow T M$ ; confidence 0.453
  
84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180362.png ; $( W ( g ) \otimes \ldots \otimes W ( g ) ) =$ ; confidence 0.453
+
84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180362.png ; $\text{ contr } ( W ( g ) \bigotimes \ldots \bigotimes W ( g ) ) =$ ; confidence 0.453
  
85. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180128.png ; $\varepsilon _ { * }$ ; confidence 0.453
+
85. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180128.png ; $\mathcal{E} _ { * }$ ; confidence 0.453
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023045.png ; $CF ( \zeta - z , w ) = \frac { ( n - 1 ) ! \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } }$ ; confidence 0.453
+
86. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023045.png ; $\operatorname{CF} ( \zeta - z , w ) = \frac { ( n - 1 ) ! \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } },$ ; confidence 0.453
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040553.png ; $G$ ; confidence 0.453
+
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040553.png ; $\mathcal{G}$ ; confidence 0.453
  
88. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180224.png ; $S ^ { 2 } E \otimes S ^ { 2 } E \rightarrow A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.452
+
88. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180224.png ; $\mathsf{S} ^ { 2 } \mathcal{E} \otimes \mathsf{S} ^ { 2 } \mathcal{E} \rightarrow \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E}$ ; confidence 0.452
  
 
89. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620207.png ; $| q ( x ) | \leq \operatorname { const } / x ^ { \beta }$ ; confidence 0.452
 
89. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620207.png ; $| q ( x ) | \leq \operatorname { const } / x ^ { \beta }$ ; confidence 0.452
  
90. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120180.png ; $K _ { S } ( \overline { \sigma } ) \cap K _ { tot }$ ; confidence 0.452
+
90. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120180.png ; $K _ { s } ( \overline { \sigma } ) \cap K _ { \operatorname{tot}S }$ ; confidence 0.452
  
91. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023040.png ; $D ( f , \omega ) = f \cdot D ( \omega )$ ; confidence 0.452
+
91. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023040.png ; $D ( f . \omega ) = f . D ( \omega )$ ; confidence 0.452
  
92. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520356.png ; $[ \phi ( x _ { 1 } , \ldots , x _ { n } ) = g ( \mu z ( f ( x _ { 1 } , \ldots , x _ { n } , z ) = 0 ) ) ]$ ; confidence 0.452
+
92. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520356.png ; $[ \phi ( x _ { 1 } , \ldots , x _ { n } ) = g ( \mu z ( f ( x _ { 1 } , \ldots , x _ { n } , z ) = 0 ) ) ].$ ; confidence 0.452
  
93. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090186.png ; $\operatorname { Ind } _ { \overline { H } } ^ { G }$ ; confidence 0.452
+
93. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090186.png ; $\operatorname { Ind } _ { { H } } ^ { G }$ ; confidence 0.452
  
94. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017079.png ; $= \dot { k }$ ; confidence 0.452
+
94. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017079.png ; $= { k }$ ; confidence 0.452
  
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040212.png ; $^ { * } S _ { IP }$ ; confidence 0.452
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040212.png ; $\text{Alg Mod}^ { *S } \text{ IPC }$ ; confidence 0.452
  
96. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026057.png ; $V _ { j } ^ { n } \leq \operatorname { max } ( \operatorname { max } _ { 0 \leq j \leq J } V _ { j } ^ { 0 } , \operatorname { max } _ { 0 \leq m \leq n } V _ { 0 } ^ { m } , \operatorname { max } _ { 0 \leq m \leq n } V _ { j } ^ { m } )$ ; confidence 0.452
+
96. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026057.png ; $V _ { j } ^ { n } \leq \operatorname { max } \left( \operatorname { max } _ { 0 \leq j \leq J } V _ { j } ^ { 0 } , \operatorname { max } _ { 0 \leq m \leq n } V _ { 0 } ^ { m } , \operatorname { max } _ { 0 \leq m \leq n } V _ { j } ^ { m } \right),$ ; confidence 0.452
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012900/a01290018.png ; $9 x$ ; confidence 0.452
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012900/a01290018.png ; $q_n$ ; confidence 0.452
  
98. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008042.png ; $k > i$ ; confidence 0.452
+
98. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008042.png ; $k \geq l $ ; confidence 0.452
  
99. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016019.png ; $f _ { \Omega } ( k )$ ; confidence 0.451
+
99. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016019.png ; $f _ { \mathfrak{A} } ( k )$ ; confidence 0.451
  
100. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005065.png ; $g : P ^ { 1 } \rightarrow X$ ; confidence 0.451
+
100. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005065.png ; $g : \mathbf{P} ^ { 1 } \rightarrow X$ ; confidence 0.451
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026059.png ; $\{ n : a _ { x } = 0 \} \in D$ ; confidence 0.451
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026059.png ; $\{ n : a _ { n } = 0 \} \in D$ ; confidence 0.451
  
 
102. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028045.png ; $n \not \equiv \pm 1$ ; confidence 0.451
 
102. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028045.png ; $n \not \equiv \pm 1$ ; confidence 0.451
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017014.png ; $p ( \alpha , t ) = \left\{ \begin{array} { l l } { p _ { 0 } ( \alpha - t ) \frac { \Pi ( \alpha ) } { \Pi ( \alpha - t ) } } & { \text { if } \alpha \geq t } \\ { b ( t - \alpha ) \Pi ( \alpha ) } & { \text { if } \alpha < t } \end{array} \right.$ ; confidence 0.451
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017014.png ; $p ( a , t ) = \left\{ \begin{array} { l l } { p _ { 0 } ( a - t ) \frac { \Pi ( a ) } { \Pi ( a - t ) } } & { \text { if } a \geq t, } \\ { b ( t - a ) \Pi ( a ) } & { \text { if } a < t, } \end{array} \right.$ ; confidence 0.451
  
104. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180390.png ; $( \vec { M } , g )$ ; confidence 0.451
+
104. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180390.png ; $( \widetilde { M } , \widetilde{g} )$ ; confidence 0.451
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016027.png ; $21$ ; confidence 0.451
+
105. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016027.png ; $u$ ; confidence 0.451
  
 
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031025.png ; $X _ { 1 } , X _ { 2 } , \dots$ ; confidence 0.451
 
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031025.png ; $X _ { 1 } , X _ { 2 } , \dots$ ; confidence 0.451
  
107. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120112.png ; $V ( K _ { p } )$ ; confidence 0.451
+
107. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120112.png ; $V ( K _ { \text{p} } )$ ; confidence 0.451
  
 
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180107.png ; $\dot { i } < n$ ; confidence 0.451
 
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180107.png ; $\dot { i } < n$ ; confidence 0.451
  
109. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030011.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } = I$ ; confidence 0.451
+
109. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030011.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } = I.$ ; confidence 0.451
  
110. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020143.png ; $A \phi$ ; confidence 0.451
+
110. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020143.png ; $\mathcal{A} \phi$ ; confidence 0.451
  
 
111. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012012.png ; $D ( \phi ) = 1 _ { Y } - \nabla f$ ; confidence 0.451
 
111. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012012.png ; $D ( \phi ) = 1 _ { Y } - \nabla f$ ; confidence 0.451
  
112. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015120/b01512011.png ; $V ^ { N }$ ; confidence 0.451
+
112. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015120/b01512011.png ; $V ^ { n }$ ; confidence 0.451
  
113. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006044.png ; $| \lambda - \alpha _ { i } , i | \cdot | x _ { i } | \leq \sum _ { j = 1 \atop j \neq i } ^ { n } | \alpha _ { i } , j | \cdot | x _ { j } | \leq r _ { i } ( A ) \cdot | x _ { i } |$ ; confidence 0.451
+
113. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006044.png ; $| \lambda - a _ { i , i} | . | x _ { i } | \leq \sum _ { \substack{j = 1 \\ j \neq i }} ^ { n } | a _ { i , j} | . | x _ { j } | \leq r _ { i } ( A ) . | x _ { i } |,$ ; confidence 0.451
  
114. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110178.png ; $a ^ { w } = O p ( b )$ ; confidence 0.451
+
114. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110178.png ; $a ^ { w } = \operatorname{Op} ( b )$ ; confidence 0.451
  
 
115. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015021.png ; $( x _ { 1 } , \dots , x _ { n } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.450
 
115. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015021.png ; $( x _ { 1 } , \dots , x _ { n } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.450
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060151.png ; $P _ { F } ^ { \# } ( n )$ ; confidence 0.450
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060151.png ; $\mathcal{P} _ { \text{F} } ^ { \# } ( n )$ ; confidence 0.450
  
117. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004010.png ; $SL ( 2 , Q )$ ; confidence 0.450
+
117. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004010.png ; $\operatorname{SL} ( 2 , \mathbf{Q} )$ ; confidence 0.450
  
118. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007046.png ; $H \in N$ ; confidence 0.450
+
118. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007046.png ; $H \in \mathbf{N}$ ; confidence 0.450
  
119. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120148.png ; $\overline { \sigma } \in G ( K ) ^ { \epsilon }$ ; confidence 0.450
+
119. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120148.png ; $\overline { \sigma } \in G ( K ) ^ { e }$ ; confidence 0.450
  
120. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900158.png ; $\zeta \in Z _ { N }$ ; confidence 0.450
+
120. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900158.png ; $\zeta \in Z _ { p }$ ; confidence 0.450
  
121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012017.png ; $R ( t ) = \tau ^ { - 1 _ { t , v } } \circ R ( t ) \circ \tau _ { t , v }$ ; confidence 0.450
+
121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012017.png ; $\mathcal{R} ( t ) = \tau ^ { - 1 _ { t , v } } \circ R ( t ) \circ \tau _ { t , v }$ ; confidence 0.450
  
122. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002069.png ; $y = \mathfrak { y }$ ; confidence 0.450
+
122. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002069.png ; $y = \tilde { y }$ ; confidence 0.450
  
123. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013030.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { r } ( \lambda ) )$ ; confidence 0.450
+
123. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013030.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { r ( \lambda ) })$ ; confidence 0.450
  
124. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150155.png ; $( x _ { i } , \ldots , x _ { N } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.450
+
124. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150155.png ; $( x _ { i } , \ldots , x _ { n } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.450
  
125. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004022.png ; $\operatorname { Re } \int _ { C } ( \omega _ { 1 } , \dots , \omega _ { n } ) = ( 0 , \dots , 0 )$ ; confidence 0.450
+
125. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004022.png ; $\operatorname { Re } \int _ { C } ( \omega _ { 1 } , \dots , \omega _ { n } ) = ( 0 , \dots , 0 ).$ ; confidence 0.450
  
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016059.png ; $x _ { i } + x _ { i k }$ ; confidence 0.450
+
126. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016059.png ; $x _ { i } + x _ { k }$ ; confidence 0.450
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120290/a12029013.png ; $X \nmid Y$ ; confidence 0.450
+
127. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120290/a12029013.png ; $X / Y$ ; confidence 0.450
  
128. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q1200201.png ; $G = \operatorname { Fun } _ { q } ( G ( k , n ) )$ ; confidence 0.450
+
128. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q1200201.png ; $\mathcal{G} = \operatorname { Fun } _ { q } ( G ( k , n ) )$ ; confidence 0.450
  
129. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006070.png ; $E ^ { TF } ( N ) > \sum _ { j = 1 } ^ { K } E _ { atom } ^ { TF } ( N _ { j } , Z _ { j } )$ ; confidence 0.450
+
129. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006070.png ; $E ^ { \operatorname{TF} } ( N ) > \sum _ { j = 1 } ^ { K } E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } ),$ ; confidence 0.450
  
130. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202304.png ; $X _ { i } = \Gamma X$ ; confidence 0.450
+
130. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202304.png ; $X := \Gamma X$ ; confidence 0.450
  
 
131. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f1202405.png ; $s + T$ ; confidence 0.450
 
131. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f1202405.png ; $s + T$ ; confidence 0.450
  
132. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010060.png ; $\alpha \otimes \hat { f } : = \int _ { - \infty } ^ { \infty } \alpha ( x , \alpha , p - q ) \hat { f } ( q ) d q$ ; confidence 0.450
+
132. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010060.png ; $a \otimes \hat { f } : = \int _ { - \infty } ^ { \infty } a ( x , \alpha , p - q ) \hat { f } ( q ) d q$ ; confidence 0.450
  
 
133. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650376.png ; $f _ { 1 } , \ldots , f _ { m }$ ; confidence 0.449
 
133. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650376.png ; $f _ { 1 } , \ldots , f _ { m }$ ; confidence 0.449
  
134. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030074.png ; $\{ e ^ { i \eta , y } \phi _ { m } ( y ; \eta ) \}$ ; confidence 0.449
+
134. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030074.png ; $\{ e ^ { i \eta . y } \phi _ { m } ( y ; \eta ) \}$ ; confidence 0.449
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040055.png ; $1$ ; confidence 0.449
+
135. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040055.png ; $\mathbf{T}$ ; confidence 0.449
  
136. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060187.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$ ; confidence 0.449
+
136. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060187.png ; $\left( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma \right) u = 0.$ ; confidence 0.449
  
 
137. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160124.png ; $\mu _ { i }$ ; confidence 0.449
 
137. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160124.png ; $\mu _ { i }$ ; confidence 0.449
  
138. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020212.png ; $\{ l , \}$ ; confidence 0.449
+
138. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020212.png ; $\{ I_j \}$ ; confidence 0.449
  
 
139. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080132.png ; $J _ { i j } > 0$ ; confidence 0.449
 
139. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080132.png ; $J _ { i j } > 0$ ; confidence 0.449
Line 280: Line 280:
 
140. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007043.png ; $x \mapsto e ^ { i t } e ^ { i p q / 2 } e ^ { i q x } f ( x + p )$ ; confidence 0.449
 
140. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007043.png ; $x \mapsto e ^ { i t } e ^ { i p q / 2 } e ^ { i q x } f ( x + p )$ ; confidence 0.449
  
141. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002045.png ; $ad _ { q } \in L$ ; confidence 0.449
+
141. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002045.png ; $\operatorname{ad} _ { q } \in L$ ; confidence 0.449
  
142. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019025.png ; $\varphi : \Gamma ^ { \gamma + 1 } \rightarrow C$ ; confidence 0.449
+
142. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019025.png ; $\varphi : \Gamma ^ { q + 1 } \rightarrow \mathbf{C}$ ; confidence 0.449
  
143. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200409.png ; $A \cap B = * 0$ ; confidence 0.449
+
143. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200409.png ; $A \cap B =_{*} \emptyset$ ; confidence 0.449
  
 
144. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002063.png ; $( A ^ { * } X ) _ { t } = \int _ { 0 } ^ { t } A H _ { s } . d B _ { s }$ ; confidence 0.449
 
144. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002063.png ; $( A ^ { * } X ) _ { t } = \int _ { 0 } ^ { t } A H _ { s } . d B _ { s }$ ; confidence 0.449
  
145. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200807.png ; $j ( x ) = \alpha _ { j , i } ( x )$ ; confidence 0.448
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200807.png ; $a_{i,j} ( x ) = a _ { j , i } ( x )$ ; confidence 0.448
  
146. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024045.png ; $\left( \begin{array} { r r } { 0 } & { 0 } \\ { - \varepsilon K ( c , d ) } & { 0 } \end{array} \right)$ ; confidence 0.448
+
146. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024045.png ; $\left( \begin{array} { r r } { 0 } & { 0 } \\ { - \varepsilon K ( c , d ) } & { 0 } \end{array} \right).$ ; confidence 0.448
  
147. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024024.png ; $\delta ( z ) = \operatorname { diag } ( z ^ { k _ { 1 } } , \ldots , z ^ { k _ { R } } )$ ; confidence 0.448
+
147. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024024.png ; $\delta ( z ) = \operatorname { diag } ( z ^ { k _ { 1 } } , \ldots , z ^ { k _ { n } } )$ ; confidence 0.448
  
148. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060100.png ; $= Z ^ { 2 } \rho _ { \text { atom } } ^ { TF } ( Z ^ { 1 / 3 } x ; N = \lambda , Z = 1 )$ ; confidence 0.448
+
148. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060100.png ; $= Z ^ { 2 } \rho _ { \text { atom } } ^ { \operatorname{TF} } ( Z ^ { 1 / 3 } x ; N = \lambda , Z = 1 ).$ ; confidence 0.448
  
 
149. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053063.png ; $q = p , p ^ { 2 } , p ^ { 3 } , . .$ ; confidence 0.448
 
149. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053063.png ; $q = p , p ^ { 2 } , p ^ { 3 } , . .$ ; confidence 0.448
Line 300: Line 300:
 
150. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022200/c02220010.png ; $x _ { 1 } < \ldots < x _ { n }$ ; confidence 0.448
 
150. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022200/c02220010.png ; $x _ { 1 } < \ldots < x _ { n }$ ; confidence 0.448
  
151. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031019.png ; $e _ { x } ( F _ { d } )$ ; confidence 0.448
+
151. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031019.png ; $e _ { n } ( F _ { d } )$ ; confidence 0.448
  
 
152. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180452.png ; $P \in N$ ; confidence 0.448
 
152. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180452.png ; $P \in N$ ; confidence 0.448
  
153. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006091.png ; $| \lambda - \alpha _ { i } , i | = r _ { i } ( A ) \text { for each } 1 \leq i \leq n$ ; confidence 0.448
+
153. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006091.png ; $| \lambda - a _ { i , i} | = r _ { i } ( A ) \text { for each } 1 \leq i \leq n.$ ; confidence 0.448
  
 
154. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110350/c11035012.png ; $\mu _ { x }$ ; confidence 0.448
 
154. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110350/c11035012.png ; $\mu _ { x }$ ; confidence 0.448
  
155. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001032.png ; $C _ { + } : = \{ k : \operatorname { Im } k \geq 0 \}$ ; confidence 0.448
+
155. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001032.png ; $\mathbf{C} _ { + } : = \{ k : \operatorname { Im } k \geq 0 \}$ ; confidence 0.448
  
 
156. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900128.png ; $P \in A$ ; confidence 0.448
 
156. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900128.png ; $P \in A$ ; confidence 0.448
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020040.png ; $t _ { 1 } , \ldots , t _ { x }$ ; confidence 0.448
+
157. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020040.png ; $t _ { 1 } , \ldots , t _ { n }$ ; confidence 0.448
  
158. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004010.png ; $z \in C \backslash Z _ { 0 } , \quad Z _ { 0 } ^ { - } : = \{ 0 , - 1 , - 2 , \ldots \}$ ; confidence 0.448
+
158. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004010.png ; $z \in \mathbf{C} \backslash \mathbf{Z} _ { 0 }^- , \quad \mathbf{Z} _ { 0 } ^ { - } : = \{ 0 , - 1 , - 2 , \ldots \},$ ; confidence 0.448
  
159. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007051.png ; $m ( P ) \geq \infty$ ; confidence 0.448
+
159. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007051.png ; $m ( P ) \geq c_0$ ; confidence 0.448
  
160. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005069.png ; $= \sum _ { n \in Z } \sum _ { k \geq 0 } \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ( - 1 ) ^ { k } x _ { 1 } ^ { n - k } x _ { 2 } ^ { k } x _ { 0 } ^ { - n - 1 }$ ; confidence 0.448
+
160. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005069.png ; $= \sum _ { n \in \mathbf{Z} } \sum _ { k \geq 0 } \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ( - 1 ) ^ { k } x _ { 1 } ^ { n - k } x _ { 2 } ^ { k } x _ { 0 } ^ { - n - 1 },$ ; confidence 0.448
  
 
161. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053033.png ; $| U |$ ; confidence 0.448
 
161. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053033.png ; $| U |$ ; confidence 0.448
  
162. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024041.png ; $X \subset S ^ { x }$ ; confidence 0.447
+
162. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024041.png ; $X \subset S ^ { n}$ ; confidence 0.447
  
163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031068.png ; $f \in L ^ { p } ( T ^ { N } )$ ; confidence 0.447
+
163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031068.png ; $f \in L ^ { p } ( \mathcal{T} ^ { n } )$ ; confidence 0.447
  
164. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110145.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \rightarrow \frac { \int _ { - \infty } ^ { \infty } \alpha ^ { s ( x + \beta ) } e ^ { - \alpha ^ { s } } d N ( s ) } { \Gamma ( x + 1 ) \int _ { - \infty } ^ { \infty } \alpha ^ { s } ^ { \beta } e ^ { - \alpha ^ { s } } d N ( s ) }$ ; confidence 0.447
+
164. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110145.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \rightarrow \frac { \int _ { - \infty } ^ { \infty } \alpha ^ { s ( x + \beta ) } e ^ { - \alpha ^ { s } } d N ( s ) } { \Gamma ( x + 1 ) \int _ { - \infty } ^ { \infty } \alpha ^ { s \beta } e ^ { - \alpha ^ { s } } d N ( s ) },$ ; confidence 0.447
  
165. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140107.png ; $nd T _ { \phi - \lambda } = - \text { wind } ( \phi - \lambda )$ ; confidence 0.447
+
165. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140107.png ; $\operatorname{ind} T _ { \phi - \lambda } = - \text { wind } ( \phi - \lambda )$ ; confidence 0.447
  
 
166. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008069.png ; $Z = \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 }$ ; confidence 0.447
 
166. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008069.png ; $Z = \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 }$ ; confidence 0.447
Line 336: Line 336:
 
168. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002044.png ; $\operatorname { Fun } _ { q } ( M )$ ; confidence 0.447
 
168. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002044.png ; $\operatorname { Fun } _ { q } ( M )$ ; confidence 0.447
  
169. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059026.png ; $m = 0 , \pm 1 , \pm 2 , .$ ; confidence 0.447
+
169. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059026.png ; $m = 0 , \pm 1 , \pm 2 , \dots$ ; confidence 0.447
  
170. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$ ; confidence 0.447
+
170. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d } \alpha _ { l }$ ; confidence 0.447
  
171. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447
+
171. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png ; $\operatorname{p} = ( p _ { 1 } , \dots , p _ { n + 2} )$ ; confidence 0.447
  
172. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015028.png ; $12$ ; confidence 0.447
+
172. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015028.png ; $r_2$ ; confidence 0.447
  
 
173. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020043.png ; $( W , J ^ { \prime } )$ ; confidence 0.447
 
173. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020043.png ; $( W , J ^ { \prime } )$ ; confidence 0.447
  
174. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008041.png ; $\psi ( P ) = \operatorname { exp } ( \sum t _ { n } \Omega _ { n } ) \phi ( \sum t _ { n } \vec { V } _ { n } , P )$ ; confidence 0.447
+
174. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008041.png ; $\psi ( P ) = \operatorname { exp } \left( \sum t _ { n } \Omega _ { n } \right) \phi \left( \sum t _ { n } \overset{\rightharpoonup}{ V } _ { n } , P \right) ,$ ; confidence 0.447
  
 
175. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017018.png ; $\hat { A } = A \oplus B$ ; confidence 0.447
 
175. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017018.png ; $\hat { A } = A \oplus B$ ; confidence 0.447
Line 352: Line 352:
 
176. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c0258304.png ; $\| T \| \leq 1$ ; confidence 0.447
 
176. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c0258304.png ; $\| T \| \leq 1$ ; confidence 0.447
  
177. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006063.png ; $0 ( X , D ) \otimes$ ; confidence 0.447
+
177. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006063.png ; $R_0 ( X , D ) \otimes \mathbf{Q}$ ; confidence 0.447
  
178. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029021.png ; $\alpha \leq x _ { 1 } < \ldots < x _ { m } \leq b$ ; confidence 0.447
+
178. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029021.png ; $a \leq x _ { 1 } < \ldots < x _ { m } \leq b$ ; confidence 0.447
  
179. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060137.png ; $k [ 1 - S ( k ) + \frac { Q } { i k } ] \in L ^ { 2 } ( R )$ ; confidence 0.447
+
179. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060137.png ; $k \left[ 1 - S ( k ) + \frac { Q } { i k } \right] \in L ^ { 2 } ( \mathbf{R} ),$ ; confidence 0.447
  
 
180. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011020.png ; $\{ b _ { j } ^ { n } : j = 0 , \dots , n \}$ ; confidence 0.447
 
180. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b13011020.png ; $\{ b _ { j } ^ { n } : j = 0 , \dots , n \}$ ; confidence 0.447
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015041.png ; $g \in G , X , Y \in \mathfrak { g }$ ; confidence 0.446
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015041.png ; $g \in G , X , Y \in \mathfrak { g }.$ ; confidence 0.446
  
182. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006010.png ; $0 \leq \alpha _ { 1 } < \ldots < \alpha _ { k } \leq n - 1$ ; confidence 0.446
+
182. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006010.png ; $0 \leq a _ { 1 } < \ldots < a _ { k } \leq n - 1$ ; confidence 0.446
  
183. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008090.png ; $Z \rightarrow \lambda _ { + } ^ { N } _ { + }$ ; confidence 0.446
+
183. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008090.png ; $Z \rightarrow \lambda _ { + } ^ { N } $ ; confidence 0.446
  
184. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g04339012.png ; $f ( x _ { 0 } , h )$ ; confidence 0.446
+
184. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g04339012.png ; $\delta f ( x _ { 0 } , h )$ ; confidence 0.446
  
185. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301408.png ; $d _ { i }$ ; confidence 0.446
+
185. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301408.png ; $d _ { i j}$ ; confidence 0.446
  
186. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041021.png ; $\langle L p , q \rangle _ { s } = \langle p , L q \rangle _ { s }$ ; confidence 0.446
+
186. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041021.png ; $\langle \mathcal{L} p , q \rangle _ { s } = \langle p , \mathcal{L} q \rangle _ { s }$ ; confidence 0.446
  
187. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015048.png ; $d a$ ; confidence 0.446
+
187. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015048.png ; $d \alpha$ ; confidence 0.446
  
188. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005045.png ; $\Theta = \left( \begin{array} { c c c } { A } & { } & { K } & { J } \\ { \mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - } } & { \square } & { \mathfrak { E } } \end{array} \right)$ ; confidence 0.446
+
188. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005045.png ; $\Theta = \left( \begin{array} { c c c } { \mathcal{A} } & { } & { K } & { J } \\ { \mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - } } & & { \square } & { \mathfrak { E } } \end{array} \right)$ ; confidence 0.446
  
 
189. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013038.png ; $S ^ { \prime \prime } = S ^ { ( 2 ) }$ ; confidence 0.446
 
189. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013038.png ; $S ^ { \prime \prime } = S ^ { ( 2 ) }$ ; confidence 0.446
Line 380: Line 380:
 
190. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100161.png ; $\| u - u v \| _ { A _ { p } ( G ) } < \epsilon$ ; confidence 0.446
 
190. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100161.png ; $\| u - u v \| _ { A _ { p } ( G ) } < \epsilon$ ; confidence 0.446
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240539.png ; $T _ { 1 }$ ; confidence 0.446
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240539.png ; $\mathbf{T} _ { 1 }$ ; confidence 0.446
  
192. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062000/m06200014.png ; $X _ { n } = f ( Z _ { n } , \dots , Z _ { n } + m )$ ; confidence 0.446
+
192. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062000/m06200014.png ; $X _ { n } = f ( Z _ { n } , \dots , Z _ { n + m} )$ ; confidence 0.446
  
193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012035.png ; $d > 2$ ; confidence 0.446
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012035.png ; $d \geq 2$ ; confidence 0.446
  
194. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111018.png ; $\cup \lambda X \lambda$ ; confidence 0.446
+
194. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111018.png ; $\cup_ \lambda X_ \lambda$ ; confidence 0.446
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a012200126.png ; $\hat { f }$ ; confidence 0.446
+
195. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a012200126.png ; $\widetilde { f }$ ; confidence 0.446
  
196. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018039.png ; $\phi ( n ) = \sum _ { d | n } d \mu ( \frac { n } { d } )$ ; confidence 0.446
+
196. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018039.png ; $\phi ( n ) = \sum _ { d | n } d \mu \left( \frac { n } { d } \right) .$ ; confidence 0.446
  
 
197. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017047.png ; $a _ { 0 } + a _ { 1 } t + \ldots + a _ { n } t ^ { n }$ ; confidence 0.445
 
197. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017047.png ; $a _ { 0 } + a _ { 1 } t + \ldots + a _ { n } t ^ { n }$ ; confidence 0.445
  
198. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840339.png ; $K = H ^ { n }$ ; confidence 0.445
+
198. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840339.png ; $\mathcal{K} = \mathcal{H} ^ { n }$ ; confidence 0.445
  
 
199. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013046.png ; $S \subset T ^ { \prime }$ ; confidence 0.445
 
199. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013046.png ; $S \subset T ^ { \prime }$ ; confidence 0.445
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160162.png ; $l _ { j t } \leq x _ { j t } \leq u _ { j t }$ ; confidence 0.445
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160162.png ; $l _ { j t } \leq x _ { j t } \leq u _ { j t };$ ; confidence 0.445
  
 
201. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j1200207.png ; $\| f \| _ { H ^ { p } } ^ { p } : = \frac { 1 } { 2 \pi } \operatorname { sup } _ { r < 1 } \int _ { - \pi } ^ { \pi } | f ( r e ^ { i \vartheta } ) | ^ { p } d \vartheta$ ; confidence 0.445
 
201. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j1200207.png ; $\| f \| _ { H ^ { p } } ^ { p } : = \frac { 1 } { 2 \pi } \operatorname { sup } _ { r < 1 } \int _ { - \pi } ^ { \pi } | f ( r e ^ { i \vartheta } ) | ^ { p } d \vartheta$ ; confidence 0.445
  
202. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070112.png ; $k \{ a , b , c , d \}$ ; confidence 0.445
+
202. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070112.png ; $k \langle a , b , c , d \rangle $ ; confidence 0.445
  
203. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005076.png ; $V = \oplus _ { n \in Z } V _ { ( n ) }$ ; confidence 0.445
+
203. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005076.png ; $V = \oplus _ { n \in \mathbf{Z} } V _ { ( n ) }$ ; confidence 0.445
  
204. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180501.png ; $g \in S ^ { 2 } \varepsilon$ ; confidence 0.445
+
204. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180501.png ; $\tilde{g} \in \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.445
  
205. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090346.png ; $U _ { K } = K \otimes z U _ { Z }$ ; confidence 0.445
+
205. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090346.png ; $\mathcal{U} _ { K } = K \otimes _\mathbf{Z} \mathcal{U} _ { \mathbf{Z} }$ ; confidence 0.445
  
206. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060144.png ; $C _ { - } : = \{ k : \operatorname { Im } k < 0 \}$ ; confidence 0.445
+
206. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060144.png ; $\mathbf{C} _ { - } : = \{ k : \operatorname { Im } k < 0 \}$ ; confidence 0.445
  
207. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011088.png ; $U \# , \Omega = U \cap \{ \operatorname { Im } z _ { k } \neq 0 : k \neq j \}$ ; confidence 0.445
+
207. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011088.png ; $U \# _j \Omega = U \bigcap \{ \operatorname { Im } z _ { k } \neq 0 : k \neq j \}.$ ; confidence 0.445
  
208. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004096.png ; $P _ { 4 _ { 1 } } ( v , z ) - 1 = ( v ^ { - 1 } - v ) ^ { 2 } - z ^ { 2 } = - v ^ { - 2 } ( P _ { 3 } ( v , z ) - 1 ) = - v ^ { 2 } ( P _ { 3 } ( v , z ) - 1 )$ ; confidence 0.445
+
208. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004096.png ; $P _ { 4 _ { 1 } } ( v , z ) - 1 = ( v ^ { - 1 } - v ) ^ { 2 } - z ^ { 2 } = - v ^ { - 2 } ( P _ { 3_1 } ( v , z ) - 1 ) = - v ^ { 2 } ( P _ { \overline{3}_1 } ( v , z ) - 1 )$ ; confidence 0.445
  
 
209. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016070.png ; $2 ^ { O ( s ( n ) ) }$ ; confidence 0.445
 
209. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016070.png ; $2 ^ { O ( s ( n ) ) }$ ; confidence 0.445
  
210. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019022.png ; $- \Delta _ { D i f }$ ; confidence 0.445
+
210. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019022.png ; $- \Delta _ { \operatorname{Dir} }$ ; confidence 0.445
  
211. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210145.png ; $\{ P _ { \alpha _ { R } , } , \theta \}$ ; confidence 0.445
+
211. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210145.png ; $\{ P _ { \alpha _ { n } } , \theta \}$ ; confidence 0.445
  
212. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002050.png ; $y = ( y _ { 1 } , \dots , y _ { m } ) ^ { T }$ ; confidence 0.445
+
212. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002050.png ; $\mathbf{y} = ( y _ { 1 } , \dots , y _ { m } ) ^ { T }$ ; confidence 0.445
  
213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016035.png ; $x _ { j } ^ { \prime } \neq 0$ ; confidence 0.445
+
213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016035.png ; $x _ { j } ^ { \prime } \not\equiv 0$ ; confidence 0.445
  
 
214. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013010.png ; $f ( X ) = a _ { n } X ^ { n } + a _ { n - 1 } X ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.445
 
214. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013010.png ; $f ( X ) = a _ { n } X ^ { n } + a _ { n - 1 } X ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.445
Line 430: Line 430:
 
215. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006048.png ; $v _ { p } ( n )$ ; confidence 0.445
 
215. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006048.png ; $v _ { p } ( n )$ ; confidence 0.445
  
216. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026076.png ; $u _ { k } ^ { 0 }$ ; confidence 0.444
+
216. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026076.png ; $u _ { h } ^ { 0 }$ ; confidence 0.444
  
217. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004019.png ; $G \in L$ ; confidence 0.444
+
217. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004019.png ; $G \in \mathcal{L}$ ; confidence 0.444
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b1301105.png ; $b _ { j } ^ { n } ( x ) : = \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { j } ( 1 - x ) ^ { n - j } , j = 0 , \ldots , n$ ; confidence 0.444
+
218. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130110/b1301105.png ; $b _ { j } ^ { n } ( x ) : = \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { j } ( 1 - x ) ^ { n - j } , j = 0 , \ldots , n.$ ; confidence 0.444
  
219. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005017.png ; $lu _ { + } - \dot { k } ^ { 2 } u _ { + } = 0 , x \in R$ ; confidence 0.444
+
219. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005017.png ; $\text{l}u _ { + } - { k } ^ { 2 } u _ { + } = 0 , x \in \mathbf{R},$ ; confidence 0.444
  
 
220. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002055.png ; $a \preceq b _ { 1 } \ldots b _ { n }$ ; confidence 0.444
 
220. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002055.png ; $a \preceq b _ { 1 } \ldots b _ { n }$ ; confidence 0.444
Line 444: Line 444:
 
222. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001041.png ; $f = x ^ { n } + a _ { n - 1 } x ^ { n - 1 } + \ldots + a _ { 1 } x + a _ { 0 }$ ; confidence 0.444
 
222. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001041.png ; $f = x ^ { n } + a _ { n - 1 } x ^ { n - 1 } + \ldots + a _ { 1 } x + a _ { 0 }$ ; confidence 0.444
  
223. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006016.png ; $\sigma _ { 1 } \Phi A _ { 2 } - \sigma _ { 2 } \Phi A _ { 1 } = \tilde { \gamma } \Phi$ ; confidence 0.444
+
223. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006016.png ; $\sigma _ { 1 } \Phi A _ { 2 } - \sigma _ { 2 } \Phi A _ { 1 } = \widetilde { \gamma } \Phi,$ ; confidence 0.444
  
224. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190129.png ; $g ( a , b ) \subseteq 7$ ; confidence 0.444
+
224. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190129.png ; $g ( a , b ) \subseteq T$ ; confidence 0.444
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174025.png ; $d > 3$ ; confidence 0.444
+
225. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174025.png ; $d \geq 3$ ; confidence 0.444
  
226. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501013.png ; $\xi ^ { x }$ ; confidence 0.444
+
226. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501013.png ; $\xi ^ { * }$ ; confidence 0.444
  
227. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020060.png ; $( T - t _ { j } I ) ^ { r _ { j } } P _ { j } = 0 \quad ( j = 1 , \ldots , n )$ ; confidence 0.444
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020060.png ; $( T - t _ { j } I ) ^ { r _ { j } } P _ { j } = 0 \quad ( j = 1 , \ldots , n );$ ; confidence 0.444
  
228. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008080.png ; $\alpha = ( \alpha 0 , \dots , \alpha _ { m } )$ ; confidence 0.444
+
228. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008080.png ; $\alpha = ( \alpha_ 0 , \dots , \alpha _ { m } )$ ; confidence 0.444
  
 
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201508.png ; $x \mapsto \operatorname { gxg } ^ { - 1 }$ ; confidence 0.444
 
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201508.png ; $x \mapsto \operatorname { gxg } ^ { - 1 }$ ; confidence 0.444
  
230. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014037.png ; $R$ ; confidence 0.443
+
230. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014037.png ; $R_l$ ; confidence 0.443
  
231. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014017.png ; $D _ { N } ( x , a )$ ; confidence 0.443
+
231. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014017.png ; $D _ { n } ( x , a )$ ; confidence 0.443
  
232. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220180.png ; $R \subset H _ { M } ^ { 3 } ( X , Q ( 2 ) )$ ; confidence 0.443
+
232. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220180.png ; $R \subset H _ { \mathcal{M} } ^ { 3 } ( X , \mathbf{Q} ( 2 ) )$ ; confidence 0.443
  
 
233. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007027.png ; $E _ { [ m , s ] }$ ; confidence 0.443
 
233. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007027.png ; $E _ { [ m , s ] }$ ; confidence 0.443
  
234. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021012.png ; $h _ { K } ( u ) : = \operatorname { max } \{ \langle x , u \rangle : x \in K \}$ ; confidence 0.443
+
234. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021012.png ; $h _ { K } ( u ) : = \operatorname { max } \{ \langle x , u \rangle : x \in K \},$ ; confidence 0.443
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040195.png ; $d ^ { * } S _ { D }$ ; confidence 0.443
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040195.png ; $\operatorname{Mod} ^ { * S}   { \mathcal{D} }$ ; confidence 0.443
  
236. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009020.png ; $\rho _ { X } \circ \pi _ { Y } ( \alpha ) = \rho _ { X } ( \alpha )$ ; confidence 0.443
+
236. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009020.png ; $\rho _ { X } \circ \pi _ { Y } ( a ) = \rho _ { X } ( a )$ ; confidence 0.443
  
237. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009016.png ; $\mu \in H ( C ^ { n } ) ^ { \prime }$ ; confidence 0.443
+
237. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009016.png ; $\mu \in \mathcal{H} ( \mathbf{C} ^ { n } ) ^ { \prime }$ ; confidence 0.443
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240229.png ; $\zeta _ { q } + 1 , \dots , \zeta _ { r }$ ; confidence 0.443
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240229.png ; $\zeta _ { q + 1} , \dots , \zeta _ { r }$ ; confidence 0.443
  
239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020023.png ; $\alpha _ { i } \in R$ ; confidence 0.443
+
239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020023.png ; $a _ { i j } \in \mathbf{R}$ ; confidence 0.443
  
240. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006075.png ; $V _ { m } ^ { k } ( \Omega )$ ; confidence 0.443
+
240. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006075.png ; $W_ { m } ^ { k } ( \Omega )$ ; confidence 0.443
  
241. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008072.png ; $1 ( B )$ ; confidence 0.443
+
241. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008072.png ; $\operatorname{Hol} ( \mathbf{B} )$ ; confidence 0.443
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011790/a0117905.png ; $M$ ; confidence 0.443
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011790/a0117905.png ; $M_i$ ; confidence 0.443
  
 
243. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008089.png ; $E _ { z _ { 0 } } ( x , R ) =$ ; confidence 0.443
 
243. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008089.png ; $E _ { z _ { 0 } } ( x , R ) =$ ; confidence 0.443
  
244. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080171.png ; $F B ( \sigma _ { B } , G )$ ; confidence 0.443
+
244. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080171.png ; $F B ( \sigma _ { g } , G )$ ; confidence 0.443
  
245. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180472.png ; $\hat { N } = N _ { 0 } \times ( - 1 , + 1 )$ ; confidence 0.443
+
245. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180472.png ; $\widetilde { N } = N _ { 0 } \times ( - 1 , + 1 )$ ; confidence 0.443
  
 
246. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019041.png ; $\phi _ { 0 } , \phi _ { 1 } , \ldots$ ; confidence 0.443
 
246. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019041.png ; $\phi _ { 0 } , \phi _ { 1 } , \ldots$ ; confidence 0.443
  
247. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028045.png ; $r g _ { 1 } \simeq g$ ; confidence 0.443
+
247. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028045.png ; $r g _ { 1 } \simeq g_2$ ; confidence 0.443
  
248. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005066.png ; $K s ( w , z ) = [ 1 - S ( z ) \overline { S ( w ) } ] / ( 1 - z \overline { w } )$ ; confidence 0.443
+
248. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005066.png ; $K_ S ( w , z ) = [ 1 - S ( z ) \overline { S ( w ) } ] / ( 1 - z \overline { w } )$ ; confidence 0.443
  
249. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l1301005.png ; $\hat { f } ( \alpha , p ) = \int _ { \operatorname { lop } } f ( x ) d s : = R f$ ; confidence 0.443
+
249. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l1301005.png ; $\hat { f } ( \alpha , p ) = \int _ { \operatorname { l}_{\alpha p} } f ( x ) d s : = R f$ ; confidence 0.443
  
250. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021026.png ; $D _ { k } = U ( a ) \otimes _ { C } \wedge ^ { k } ( a )$ ; confidence 0.442
+
250. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021026.png ; $D _ { k } = U ( \mathfrak{a} ) \otimes _ { \mathbf{C} } \wedge ^ { k } ( \mathfrak{a} )$ ; confidence 0.442
  
251. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230149.png ; $z ^ { i }$ ; confidence 0.442
+
251. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230149.png ; $Z^k$ ; confidence 0.442
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018018.png ; $\alpha _ { 1 } ( S _ { n } - S ) + \alpha _ { 2 } ( S _ { n + 1 } - S ) = 0$ ; confidence 0.442
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018018.png ; $a _ { 1 } ( S _ { n } - S ) + a _ { 2 } ( S _ { n + 1 } - S ) = 0$ ; confidence 0.442
  
253. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001075.png ; $\{ ( z ^ { 2 } - 2 z \operatorname { cosh } w + 1 )$ ; confidence 0.442
+
253. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001075.png ; $z \operatorname{sinh} w/  ( z ^ { 2 } - 2 z \operatorname { cosh } w + 1 )$ ; confidence 0.442
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146099.png ; $k = C$ ; confidence 0.442
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146099.png ; $k = \mathbf{C}$ ; confidence 0.442
  
 
255. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e1100801.png ; $X _ { 1 } , \dots , X _ { n } , \dots$ ; confidence 0.442
 
255. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e1100801.png ; $X _ { 1 } , \dots , X _ { n } , \dots$ ; confidence 0.442
  
256. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007046.png ; $\| B ( x , y ) \| _ { + } \leq c \sum _ { j = 1 } ^ { \infty } \| \lambda ; \varphi ; ( x ) \| _ { + } =$ ; confidence 0.442
+
256. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007046.png ; $\| B ( x , y ) \| _ { + } \leq c \sum _ { j = 1 } ^ { \infty } \| \lambda _j \varphi_j ( x ) \| _ { + } =$ ; confidence 0.442
  
257. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l1200705.png ; $L = \left( \begin{array} { c c c c c } { m _ { 1 } } & { m _ { 2 } } & { \ldots } & { \ldots } & { m _ { k } } \\ { p _ { 1 } } & { 0 } & { \ldots } & { \ldots } & { 0 } \\ { 0 } & { p _ { 2 } } & { 0 } & { \ldots } & { 0 } \\ { \vdots } & { \square } & { \ddots } & { \square } & { \vdots } \\ { 0 } & { \ldots } & { 0 } & { p _ { k - 1 } } & { 0 } \end{array} \right)$ ; confidence 0.442
+
257. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l1200705.png ; $L = \left( \begin{array} { c c c c c } { m _ { 1 } } & { m _ { 2 } } & { \ldots } & { \ldots } & { m _ { k } } \\ { p _ { 1 } } & { 0 } & { \ldots } & { \ldots } & { 0 } \\ { 0 } & { p _ { 2 } } & { 0 } & { \ldots } & { 0 } \\ { \vdots } & { \square } & { \ddots } & { \square } & { \vdots } \\ { 0 } & { \ldots } & { 0 } & { p _ { k - 1 } } & { 0 } \end{array} \right),$ ; confidence 0.442
  
 
258. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200219.png ; $P _ { m , K }$ ; confidence 0.442
 
258. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200219.png ; $P _ { m , K }$ ; confidence 0.442
  
259. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008089.png ; $\infty =$ ; confidence 0.442
+
259. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008089.png ; $\infty _-$ ; confidence 0.442
  
260. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r1301606.png ; $I _ { S }$ ; confidence 0.442
+
260. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r1301606.png ; $\mathcal{I} _ { S }$ ; confidence 0.442
  
261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009018.png ; $E = ( E _ { X } , E _ { y } , E _ { z } )$ ; confidence 0.442
+
261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009018.png ; $E = ( E _ { x } , E _ { y } , E _ { z } )$ ; confidence 0.442
  
262. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001041.png ; $G _ { i n n } < G$ ; confidence 0.442
+
262. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001041.png ; $G _ { \operatorname{inn} } \triangleleft G$ ; confidence 0.442
  
263. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001043.png ; $\langle D | f \rangle = ( - 1 ) ^ { | f | } - _ { z } | f | - \operatorname { com } ( D _ { f , 1 } ) - \operatorname { com } ( D _ { f , 2 } ) + \operatorname { com } ( D )$ ; confidence 0.442
+
263. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001043.png ; $\langle D | f \rangle = ( - 1 ) ^ { | f | } - z ^{ | f | - \operatorname { com } ( D _ { f , 1 } ) - \operatorname { com } ( D _ { f , 2 } ) + \operatorname { com } ( D )}$ ; confidence 0.442
  
264. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100131.png ; $( \vec { G } , \vec { c } )$ ; confidence 0.442
+
264. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100131.png ; $( \tilde { G } , \tilde { c } )$ ; confidence 0.442
  
 
265. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013048.png ; $( K _ { ( 1 ) } , \dots , K _ { ( n ) } )$ ; confidence 0.442
 
265. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013048.png ; $( K _ { ( 1 ) } , \dots , K _ { ( n ) } )$ ; confidence 0.442
  
266. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320136.png ; $R = \sum a _ { i } \otimes b _ { 2 }$ ; confidence 0.441
+
266. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320136.png ; $R = \sum a _ { i } \otimes b _ { i }$ ; confidence 0.441
  
267. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y1200406.png ; $= \int _ { \Omega } \int _ { R ^ { d } } \varphi ( x , \lambda ) d \nu _ { x } ( \lambda ) d x$ ; confidence 0.441
+
267. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y1200406.png ; $= \int _ { \Omega } \int _ { \mathbf{R} ^ { d } } \varphi ( x , \lambda ) d \nu _ { x } ( \lambda ) d x,$ ; confidence 0.441
  
268. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019049.png ; $\phi _ { N } ( z ) = \kappa _ { X } f _ { X } ( z ) +$ ; confidence 0.441
+
268. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019049.png ; $\phi _ { n } ( z ) = \kappa _ { n } f _ { n } ( z ) +\dots $ ; confidence 0.441
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040351.png ; $x \leftrightarrow T$ ; confidence 0.441
+
269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040351.png ; $x \leftrightarrow \top $ ; confidence 0.441
  
270. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e1300109.png ; $f ^ { \rho } = \alpha _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m }$ ; confidence 0.441
+
270. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e1300109.png ; $f ^ { \rho } = a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m }.$ ; confidence 0.441
  
271. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201002.png ; $\square ^ { 11 } \Gamma$ ; confidence 0.441
+
271. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w1201002.png ; $\square ^ { '' } \Gamma$ ; confidence 0.441
  
272. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001082.png ; $H \times C ^ { 2 }$ ; confidence 0.441
+
272. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001082.png ; $H \times C ^ { o }$ ; confidence 0.441
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029066.png ; $Y$ ; confidence 0.441
+
273. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029066.png ; $Y_f$ ; confidence 0.441
  
274. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301405.png ; $1 > n$ ; confidence 0.441
+
274. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301405.png ; $l \geq n$ ; confidence 0.441
  
275. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o1300108.png ; $u = e ^ { i k \alpha x } + v , \operatorname { lim } _ { r \rightarrow \infty } \int _ { | s | = r } | \frac { \partial v } { \partial | x | } - i k v | ^ { 2 } d s = 0$ ; confidence 0.441
+
275. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o1300108.png ; $u = e ^ { i k \alpha x } + v , \operatorname { lim } _ { r \rightarrow \infty } \int _ { | s | = r } \left| \frac { \partial v } { \partial | x | } - i k v \right| ^ { 2 } d s = 0.$ ; confidence 0.441
  
276. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002090.png ; $S _ { p }$ ; confidence 0.441
+
276. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002090.png ; $\mathcal{S} _ { p }$ ; confidence 0.441
  
 
277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040746.png ; $P \cup R$ ; confidence 0.441
 
277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040746.png ; $P \cup R$ ; confidence 0.441
Line 556: Line 556:
 
278. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584070.png ; $\int _ { - \infty } ^ { \infty } | f | | r | d x < \infty$ ; confidence 0.441
 
278. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584070.png ; $\int _ { - \infty } ^ { \infty } | f | | r | d x < \infty$ ; confidence 0.441
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004095.png ; $d > 1$ ; confidence 0.441
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004095.png ; $d \geq 1$ ; confidence 0.441
  
280. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020134.png ; $g ( \overline { u } _ { 1 } ) = v ^ { * } = \overline { q } = v _ { N }$ ; confidence 0.440
+
280. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020134.png ; $g ( \overline { u } _ { 1 } ) = v ^ { * } = \overline { q } = v _ { \text{M} }$ ; confidence 0.440
  
281. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230102.png ; $A = 2$ ; confidence 0.440
+
281. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230102.png ; $A = Z$ ; confidence 0.440
  
282. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022066.png ; $Q _ { N } ( T _ { g } ( z ) ) - q ^ { - x }$ ; confidence 0.440
+
282. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022066.png ; $Q _ { n } ( T _ { g } ( z ) ) - q ^ { - n }$ ; confidence 0.440
  
283. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840357.png ; $G = ( D _ { B } ^ { 4 } )$ ; confidence 0.440
+
283. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840357.png ; $G = ( \square _ { B } ^ { A^* } )$ ; confidence 0.440
  
284. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150105.png ; $6$ ; confidence 0.440
+
284. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150105.png ; $\overline{b}$ ; confidence 0.440
  
285. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018061.png ; $I _ { X }$ ; confidence 0.440
+
285. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018061.png ; $I _ { x }$ ; confidence 0.440
  
286. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011099.png ; $\lambda = \frac { ( 1 - \alpha ) ( k + d n _ { k } ) } { ( k + m _ { k } ) }$ ; confidence 0.440
+
286. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011099.png ; $\lambda = \frac { ( 1 - \alpha ) ( k + d n _ { k } ) } { ( k + cn _ { k } ) }$ ; confidence 0.440
  
287. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003014.png ; $\xi _ { 1 } , \dots , \xi _ { n } + 1$ ; confidence 0.440
+
287. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003014.png ; $\xi _ { 1 } , \dots , \xi _ { n + 1}$ ; confidence 0.440
  
288. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015070.png ; $C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.440
+
288. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015070.png ; $C ^ { * _ E} ( S ) \otimes _ { \delta } \mathcal{C} _ { 0 } ( S )$ ; confidence 0.440
  
289. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l1201008.png ; $\sum _ { j \geq 1 } | e _ { j } | ^ { \gamma } \leq L _ { \gamma , n } \int _ { R ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x$ ; confidence 0.440
+
289. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l1201008.png ; $\sum _ { j \geq 1 } | e _ { j } | ^ { \gamma } \leq L _ { \gamma , n } \int _ { \mathbf{R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x$ ; confidence 0.440
  
290. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006046.png ; $D = \sum _ { k = 1 } ^ { \gamma } a _ { k } D _ { k }$ ; confidence 0.440
+
290. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006046.png ; $D = \sum _ { k = 1 } ^ { r } a _ { k } D _ { k }$ ; confidence 0.440
  
 
291. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018072.png ; $( S _ { n + m + 1 } )$ ; confidence 0.440
 
291. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018072.png ; $( S _ { n + m + 1 } )$ ; confidence 0.440
  
292. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027054.png ; $K$ ; confidence 0.440
+
292. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027054.png ; $K_*$ ; confidence 0.440
  
293. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024023.png ; $k : = \{ K ( a , b ) \} _ { span }$ ; confidence 0.440
+
293. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024023.png ; $\mathbf{k} : = \{ K ( a , b ) \} _ { \text{span} }$ ; confidence 0.440
  
294. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014090/a014090261.png ; $x \in R ^ { x }$ ; confidence 0.440
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014090/a014090261.png ; $x \in \mathbf{R} ^ { n }$ ; confidence 0.440
  
295. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005039.png ; $L _ { k } ( a )$ ; confidence 0.440
+
295. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005039.png ; $L _ { k } ( \mathbf{a} )$ ; confidence 0.440
  
296. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430148.png ; $B \times H \nsim B ^ { * }$ ; confidence 0.440
+
296. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430148.png ; $B \rtimes H \ltimes B ^ { * }$ ; confidence 0.440
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030032.png ; $e ^ { x } \alpha + 1$ ; confidence 0.439
+
297. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030032.png ; $e ^ { n _ \alpha + 1}$ ; confidence 0.439
  
298. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018040.png ; $p ^ { A }$ ; confidence 0.439
+
298. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018040.png ; $P ^ { \mathcal{A} }$ ; confidence 0.439
  
299. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520496.png ; $Q \in N ^ { m }$ ; confidence 0.439
+
299. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520496.png ; $Q \in \mathbf{N} ^ { m }$ ; confidence 0.439
  
 
300. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005030.png ; $- \sum _ { k = 1 } ^ { s } e _ { k } D _ { k }$ ; confidence 0.439
 
300. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005030.png ; $- \sum _ { k = 1 } ^ { s } e _ { k } D _ { k }$ ; confidence 0.439

Latest revision as of 22:16, 19 May 2020

List

1. w12007091.png ; $f ( \mathcal{A} ) = ( 2 \pi ) ^ { - k } \int _ { \mathbf{R} ^ { k } } e^ { i \xi \mathcal{A} } \hat { f } ( \xi ) d \xi$ ; confidence 0.458

2. o13003033.png ; $\lambda _ { 3 } = \left( \begin{array} { c c c } { 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 4 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 5 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 6 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 1 } \\ { 0 } & { 1 } & { 0 } \end{array} \right),$ ; confidence 0.458

3. s13054056.png ; $K _ { 2 } F$ ; confidence 0.458

4. m13003024.png ; $0.0110100\dots$ ; confidence 0.458

5. b12049045.png ; $j \in \mathbf{N} \backslash \{ j _ { n_k } : k \in \mathbf{N} \}$ ; confidence 0.458

6. a01300054.png ; $a \in E$ ; confidence 0.458

7. f130100123.png ; $x \in \operatorname { sp } u$ ; confidence 0.458

8. m1201901.png ; $F ( \tau ) = \frac { \pi } { 2 } \int _ { 0 } ^ { \infty } P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) f ( x ) d x,$ ; confidence 0.458

9. a13013010.png ; $t = ( t _ { n } )$ ; confidence 0.458

10. a13024029.png ; $\mathbf{E}$ ; confidence 0.458

11. k12006020.png ; $h ^ { i } ( K _ { X } \bigotimes L ) = 0 , \quad i > 0.$ ; confidence 0.458

12. f12021096.png ; $( \frac { \partial } { \partial \lambda } ) [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ] = z ^ { \lambda_2 } + \ldots ,$ ; confidence 0.458

13. e12027032.png ; $y _ { 1 } , \dots , y _ { m + 1}$ ; confidence 0.458

14. p12015034.png ; $J _ { n / 2} ( r ) = 0$ ; confidence 0.458

15. j1300204.png ; $\mathsf{P} ( i \in \Gamma _ { \mathbf{p} } ) = p _ { i }$ ; confidence 0.458

16. q13005026.png ; $h \in M$ ; confidence 0.458

17. w1301401.png ; $( F _ { \text{win} } f ) ( \omega , t ) = \int f ( s ) g ( s - t ) e ^ { - i \omega s } d s,$ ; confidence 0.457

18. b12016040.png ; $f = \sum _ { j } a _ { j} x_j$ ; confidence 0.457

19. h13007037.png ; $\operatorname { deg } \Delta$ ; confidence 0.457

20. z13007049.png ; $U \in \text{SGL} _ { n } ( \mathbf{Z} A )$ ; confidence 0.457

21. a12015062.png ; $( n _ { 1 } , \dots , n _ { k } )$ ; confidence 0.457

22. s120230151.png ; $\text{rank} ( A ) = k \geq p$ ; confidence 0.457

23. a013000144.png ; $L ^ { p }$ ; confidence 0.457

24. l06005087.png ; $\sigma i$ ; confidence 0.457

25. i13009099.png ; $\operatorname { char } ( X ) = \prod _ { i = 1 } ^ { s } f _ { i } ( T ) ^ { l _ { i } } \prod _ { j = 1 } ^ { t } \pi ^ { m _ { j } },$ ; confidence 0.457

26. b110220156.png ; $\mathbf{Q} ^ { \times }$ ; confidence 0.456

27. c02211021.png ; $\theta = ( \theta _ { 1 } , \dots , \theta _ { m } ) \in \Theta \subset \mathbf{R} ^ { m }$ ; confidence 0.456

28. s12025052.png ; $E _ { n + 1} ( \operatorname { cos } \theta ) =$ ; confidence 0.456

29. c02111020.png ; $\operatorname{lim} _ { \rightarrow } H ^ { p } ( U _ { \lambda } ; G ) = H ^ { p } ( x ; G )$ ; confidence 0.456

30. g12005047.png ; $- \frac { 1 } { 2 } \sum _ { i , j = 1 } ^ { n } \frac { \partial ^ { 2 } \mu _ { 0 } } { \partial k _ { i } \partial \dot { k } _ { j } } ( k _ { c } , R _ { c } ) \frac { \partial ^ { 2 } A } { \partial \xi _ { i } \partial \xi _ { j } } + l A | A | ^ { 2 }$ ; confidence 0.456

31. a012950194.png ; $L_1$ ; confidence 0.456

32. s12004044.png ; $h_\lambda = h _ { \lambda _ { 1 } } \ldots h _ { \lambda _ { l } }$ ; confidence 0.456

33. w09759027.png ; $\phi _ { v } : \operatorname { WC } ( A , k ) \rightarrow WC ( A , k _ { v } ),$ ; confidence 0.456

34. s13059039.png ; $( - z ) P _ { n } ( - z ) / Q _ { n } ( - z )$ ; confidence 0.456

35. b12053024.png ; $( f _ { n } ) _ { n = 1 } ^ { \infty } $ ; confidence 0.456

36. h13013013.png ; $D ^ { \mathbf{r} }$ ; confidence 0.456

37. c120010130.png ; $\{ z \in \mathbf{C} ^ { n } : 1 + \langle z , \zeta \rangle \neq 0 \}$ ; confidence 0.456

38. s12016012.png ; $U ^ { i }$ ; confidence 0.456

39. b1202803.png ; $f ( z ) = \frac { | a | } { a } \frac { z - a } { 1 - \overline { a } z } , \quad | a | < 1,$ ; confidence 0.456

40. q12008030.png ; $\mathsf{E} [ W _ { p } ] _ { \text{NP} } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { P } \lambda _ { k } b _ { k } ^ { ( 2 ) },$ ; confidence 0.456

41. s12032050.png ; $\mathcal{U} ( L )$ ; confidence 0.455

42. i13006030.png ; $S ( k ) = f ( - k ) / f ( k ) = e ^ { 2 i \delta ( k ) }$ ; confidence 0.455

43. s13014014.png ; $M _ { \lambda } = ( Q _ { \langle \lambda _ { i } , \lambda _ { j } \rangle } )$ ; confidence 0.455

44. v12006010.png ; $\operatorname { gcd } ( N _ { 2n } , D _ { 2n } ) = 1$ ; confidence 0.455

45. w120090100.png ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \in \Lambda ( n , r )$ ; confidence 0.455

46. b130300145.png ; $n \gg 1$ ; confidence 0.455

47. a13004026.png ; $\Gamma ^ { \prime } \vdash_{\mathcal{D}} \varphi$ ; confidence 0.455

48. s12026039.png ; $t \rightarrow \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s } ) 1 d s = \mathcal{S} ^ { - 1 } \left( \int _ { 0 } ^ { t } ( D _ { s } ^ { * } + D _ { s } ) \Omega d s \right),$ ; confidence 0.455

49. t12020055.png ; $| w _ { 1 } | \geq \ldots \geq | w _ { n } |$ ; confidence 0.455

50. i130090167.png ; $\zeta ^ { \gamma } = \zeta ^ { u }$ ; confidence 0.455

51. c120180260.png ; $\nabla : \otimes ^ { r } \mathcal{E} \rightarrow \otimes ^ { r+ 1 } \mathcal{E}$ ; confidence 0.455

52. b12004050.png ; $q_X$ ; confidence 0.455

53. l05700060.png ; $\lambda x _ { 1 } \ldots x _ { n } . M$ ; confidence 0.455

54. z13005042.png ; $R _ { \text{p} }$ ; confidence 0.455

55. a120050110.png ; $\overline{M}$ ; confidence 0.455

56. l12003069.png ; $T _ { E }$ ; confidence 0.455

57. b12032090.png ; $k \operatorname { log } a _ { m } \leq i \operatorname { log } a _ { n } \leq ( k + 1 ) \operatorname { log } a _ { m }$ ; confidence 0.455

58. m13022025.png ; $G _ { e } = \operatorname{SL} _ { 2 } ( \mathbf{Z} )$ ; confidence 0.455

59. m12012098.png ; $Q _ { s } ( R )$ ; confidence 0.455

60. n06663099.png ; $v _ { i } = a _ { i } ^ { k }$ ; confidence 0.455

61. b12021072.png ; $r = \operatorname { dim } \mathfrak{n}^-$ ; confidence 0.455

62. q13005099.png ; $h \in \operatorname{QS} (\mathbf{ T} , \mathbf{C} ) : = \cup _ { M \geq 1 } M$ ; confidence 0.455

63. g130040167.png ; $\| \nu \|$ ; confidence 0.455

64. n12004016.png ; $A _ { U } ( s | _ { U } ) = A _ { M } ( s ) | _ { U }$ ; confidence 0.455

65. b120270105.png ; $\operatorname { lim } _ { t \rightarrow \infty } \mathsf{E}\operatorname { h } ( Z ( t ) ) = \frac { \int _ { 0 } ^ { \infty } b ( u ) d u } { \int _ { 0 } ^ { \infty } \mathsf{P} ( T _ { 1 } > u ) d u } =$ ; confidence 0.454

66. a11068012.png ; $b _ { i }$ ; confidence 0.454

67. l120170307.png ; $K ^ { 2 \times }I$ ; confidence 0.454

68. s13065030.png ; $\phi _ { n } ( z ) = \frac { \Phi _ { n } ( z ) } { \| \Phi _ { n } \| _ { \mu } },$ ; confidence 0.454

69. c02756035.png ; $\mathbf{Z}_l$ ; confidence 0.454

70. o13005049.png ; $( \mathcal{A} - z I ) x = K J \varphi _ { - }$ ; confidence 0.454

71. s1203206.png ; $x \in V _ { \bar{0} }$ ; confidence 0.454

72. c12017078.png ; $\int p \overline { q } d \mu = \langle M ( n ) \hat { p } , \hat { q } \rangle$ ; confidence 0.454

73. l12010080.png ; $\rho ( x ) = N \int _ { \mathbf{R} ^ { n ( N - 1 ) } } | \Phi ( x , x _ { 2 } , \ldots , x _ { N } ) | ^ { 2 } d x _ { 2 } \ldots d x _ { N }.$ ; confidence 0.454

74. w13008045.png ; $\int _ { B _ { i } } d \Omega _ { n } = V _ { i n } \sim ( \overset{\rightharpoonup}{ V _ { n } } ) _ { i }$ ; confidence 0.454

75. i13009091.png ; $\operatorname{Ker} \varphi$ ; confidence 0.454

76. n12002079.png ; $L _ { s } ( E ^ { * } , E )$ ; confidence 0.454

77. w12011060.png ; $\varphi , \psi \in L ^ { 2 } ( \mathbf{R} ^ { n} )$ ; confidence 0.454

78. b110220165.png ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) - \operatorname { ord } _ { s = m + 1 } L ( h ^ { i } ( X ) , s ) =$ ; confidence 0.454

79. w130080135.png ; $s _ { n } = 0$ ; confidence 0.453

80. a01153012.png ; $P ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.453

81. s09067090.png ; $S ( \theta ) \in V _ { q } ^ { p }$ ; confidence 0.453

82. d0302805.png ; $\dots +\left. \frac { n ! } { ( n + 1 ) \ldots 2 n } a _ { n } \right] = S$ ; confidence 0.453

83. l12009031.png ; $P ^ { \sharp } : T ^ { * } M \rightarrow T M$ ; confidence 0.453

84. c120180362.png ; $\text{ contr } ( W ( g ) \bigotimes \ldots \bigotimes W ( g ) ) =$ ; confidence 0.453

85. c120180128.png ; $\mathcal{E} _ { * }$ ; confidence 0.453

86. a12023045.png ; $\operatorname{CF} ( \zeta - z , w ) = \frac { ( n - 1 ) ! \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } },$ ; confidence 0.453

87. a130040553.png ; $\mathcal{G}$ ; confidence 0.453

88. c120180224.png ; $\mathsf{S} ^ { 2 } \mathcal{E} \otimes \mathsf{S} ^ { 2 } \mathcal{E} \rightarrow \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E}$ ; confidence 0.452

89. s130620207.png ; $| q ( x ) | \leq \operatorname { const } / x ^ { \beta }$ ; confidence 0.452

90. l120120180.png ; $K _ { s } ( \overline { \sigma } ) \cap K _ { \operatorname{tot}S }$ ; confidence 0.452

91. f12023040.png ; $D ( f . \omega ) = f . D ( \omega )$ ; confidence 0.452

92. n067520356.png ; $[ \phi ( x _ { 1 } , \ldots , x _ { n } ) = g ( \mu z ( f ( x _ { 1 } , \ldots , x _ { n } , z ) = 0 ) ) ].$ ; confidence 0.452

93. w120090186.png ; $\operatorname { Ind } _ { { H } } ^ { G }$ ; confidence 0.452

94. s12017079.png ; $= { k }$ ; confidence 0.452

95. a130040212.png ; $\text{Alg Mod}^ { *S } \text{ IPC }$ ; confidence 0.452

96. c12026057.png ; $V _ { j } ^ { n } \leq \operatorname { max } \left( \operatorname { max } _ { 0 \leq j \leq J } V _ { j } ^ { 0 } , \operatorname { max } _ { 0 \leq m \leq n } V _ { 0 } ^ { m } , \operatorname { max } _ { 0 \leq m \leq n } V _ { j } ^ { m } \right),$ ; confidence 0.452

97. a01290018.png ; $q_n$ ; confidence 0.452

98. z13008042.png ; $k \geq l $ ; confidence 0.452

99. f11016019.png ; $f _ { \mathfrak{A} } ( k )$ ; confidence 0.451

100. k12005065.png ; $g : \mathbf{P} ^ { 1 } \rightarrow X$ ; confidence 0.451

101. a12026059.png ; $\{ n : a _ { n } = 0 \} \in D$ ; confidence 0.451

102. b13028045.png ; $n \not \equiv \pm 1$ ; confidence 0.451

103. a12017014.png ; $p ( a , t ) = \left\{ \begin{array} { l l } { p _ { 0 } ( a - t ) \frac { \Pi ( a ) } { \Pi ( a - t ) } } & { \text { if } a \geq t, } \\ { b ( t - a ) \Pi ( a ) } & { \text { if } a < t, } \end{array} \right.$ ; confidence 0.451

104. c120180390.png ; $( \widetilde { M } , \widetilde{g} )$ ; confidence 0.451

105. a12016027.png ; $u$ ; confidence 0.451

106. a13031025.png ; $X _ { 1 } , X _ { 2 } , \dots$ ; confidence 0.451

107. l120120112.png ; $V ( K _ { \text{p} } )$ ; confidence 0.451

108. a130180107.png ; $\dot { i } < n$ ; confidence 0.451

109. c12030011.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } = I.$ ; confidence 0.451

110. h120020143.png ; $\mathcal{A} \phi$ ; confidence 0.451

111. h12012012.png ; $D ( \phi ) = 1 _ { Y } - \nabla f$ ; confidence 0.451

112. b01512011.png ; $V ^ { n }$ ; confidence 0.451

113. g13006044.png ; $| \lambda - a _ { i , i} | . | x _ { i } | \leq \sum _ { \substack{j = 1 \\ j \neq i }} ^ { n } | a _ { i , j} | . | x _ { j } | \leq r _ { i } ( A ) . | x _ { i } |,$ ; confidence 0.451

114. w120110178.png ; $a ^ { w } = \operatorname{Op} ( b )$ ; confidence 0.451

115. b12015021.png ; $( x _ { 1 } , \dots , x _ { n } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.450

116. a130060151.png ; $\mathcal{P} _ { \text{F} } ^ { \# } ( n )$ ; confidence 0.450

117. s13004010.png ; $\operatorname{SL} ( 2 , \mathbf{Q} )$ ; confidence 0.450

118. e13007046.png ; $H \in \mathbf{N}$ ; confidence 0.450

119. l120120148.png ; $\overline { \sigma } \in G ( K ) ^ { e }$ ; confidence 0.450

120. v096900158.png ; $\zeta \in Z _ { p }$ ; confidence 0.450

121. b12012017.png ; $\mathcal{R} ( t ) = \tau ^ { - 1 _ { t , v } } \circ R ( t ) \circ \tau _ { t , v }$ ; confidence 0.450

122. k13002069.png ; $y = \tilde { y }$ ; confidence 0.450

123. p13013030.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { r ( \lambda ) })$ ; confidence 0.450

124. b120150155.png ; $( x _ { i } , \ldots , x _ { n } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.450

125. w13004022.png ; $\operatorname { Re } \int _ { C } ( \omega _ { 1 } , \dots , \omega _ { n } ) = ( 0 , \dots , 0 ).$ ; confidence 0.450

126. b12016059.png ; $x _ { i } + x _ { k }$ ; confidence 0.450

127. a12029013.png ; $X / Y$ ; confidence 0.450

128. q1200201.png ; $\mathcal{G} = \operatorname { Fun } _ { q } ( G ( k , n ) )$ ; confidence 0.450

129. t12006070.png ; $E ^ { \operatorname{TF} } ( N ) > \sum _ { j = 1 } ^ { K } E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } ),$ ; confidence 0.450

130. s1202304.png ; $X := \Gamma X$ ; confidence 0.450

131. f1202405.png ; $s + T$ ; confidence 0.450

132. l13010060.png ; $a \otimes \hat { f } : = \int _ { - \infty } ^ { \infty } a ( x , \alpha , p - q ) \hat { f } ( q ) d q$ ; confidence 0.450

133. a011650376.png ; $f _ { 1 } , \ldots , f _ { m }$ ; confidence 0.449

134. b12030074.png ; $\{ e ^ { i \eta . y } \phi _ { m } ( y ; \eta ) \}$ ; confidence 0.449

135. a11040055.png ; $\mathbf{T}$ ; confidence 0.449

136. o130060187.png ; $\left( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma \right) u = 0.$ ; confidence 0.449

137. a120160124.png ; $\mu _ { i }$ ; confidence 0.449

138. j120020212.png ; $\{ I_j \}$ ; confidence 0.449

139. i120080132.png ; $J _ { i j } > 0$ ; confidence 0.449

140. w12007043.png ; $x \mapsto e ^ { i t } e ^ { i p q / 2 } e ^ { i q x } f ( x + p )$ ; confidence 0.449

141. x12002045.png ; $\operatorname{ad} _ { q } \in L$ ; confidence 0.449

142. c12019025.png ; $\varphi : \Gamma ^ { q + 1 } \rightarrow \mathbf{C}$ ; confidence 0.449

143. h1200409.png ; $A \cap B =_{*} \emptyset$ ; confidence 0.449

144. j12002063.png ; $( A ^ { * } X ) _ { t } = \int _ { 0 } ^ { t } A H _ { s } . d B _ { s }$ ; confidence 0.449

145. a1200807.png ; $a_{i,j} ( x ) = a _ { j , i } ( x )$ ; confidence 0.448

146. f13024045.png ; $\left( \begin{array} { r r } { 0 } & { 0 } \\ { - \varepsilon K ( c , d ) } & { 0 } \end{array} \right).$ ; confidence 0.448

147. b12024024.png ; $\delta ( z ) = \operatorname { diag } ( z ^ { k _ { 1 } } , \ldots , z ^ { k _ { n } } )$ ; confidence 0.448

148. t120060100.png ; $= Z ^ { 2 } \rho _ { \text { atom } } ^ { \operatorname{TF} } ( Z ^ { 1 / 3 } x ; N = \lambda , Z = 1 ).$ ; confidence 0.448

149. s13053063.png ; $q = p , p ^ { 2 } , p ^ { 3 } , . .$ ; confidence 0.448

150. c02220010.png ; $x _ { 1 } < \ldots < x _ { n }$ ; confidence 0.448

151. c12031019.png ; $e _ { n } ( F _ { d } )$ ; confidence 0.448

152. c120180452.png ; $P \in N$ ; confidence 0.448

153. g13006091.png ; $| \lambda - a _ { i , i} | = r _ { i } ( A ) \text { for each } 1 \leq i \leq n.$ ; confidence 0.448

154. c11035012.png ; $\mu _ { x }$ ; confidence 0.448

155. o13001032.png ; $\mathbf{C} _ { + } : = \{ k : \operatorname { Im } k \geq 0 \}$ ; confidence 0.448

156. v096900128.png ; $P \in A$ ; confidence 0.448

157. a12020040.png ; $t _ { 1 } , \ldots , t _ { n }$ ; confidence 0.448

158. c13004010.png ; $z \in \mathbf{C} \backslash \mathbf{Z} _ { 0 }^- , \quad \mathbf{Z} _ { 0 } ^ { - } : = \{ 0 , - 1 , - 2 , \ldots \},$ ; confidence 0.448

159. m12007051.png ; $m ( P ) \geq c_0$ ; confidence 0.448

160. v13005069.png ; $= \sum _ { n \in \mathbf{Z} } \sum _ { k \geq 0 } \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ( - 1 ) ^ { k } x _ { 1 } ^ { n - k } x _ { 2 } ^ { k } x _ { 0 } ^ { - n - 1 },$ ; confidence 0.448

161. s13053033.png ; $| U |$ ; confidence 0.448

162. s12024041.png ; $X \subset S ^ { n}$ ; confidence 0.447

163. b12031068.png ; $f \in L ^ { p } ( \mathcal{T} ^ { n } )$ ; confidence 0.447

164. z130110145.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \rightarrow \frac { \int _ { - \infty } ^ { \infty } \alpha ^ { s ( x + \beta ) } e ^ { - \alpha ^ { s } } d N ( s ) } { \Gamma ( x + 1 ) \int _ { - \infty } ^ { \infty } \alpha ^ { s \beta } e ^ { - \alpha ^ { s } } d N ( s ) },$ ; confidence 0.447

165. t120140107.png ; $\operatorname{ind} T _ { \phi - \lambda } = - \text { wind } ( \phi - \lambda )$ ; confidence 0.447

166. i12008069.png ; $Z = \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 }$ ; confidence 0.447

167. b12034015.png ; $z ^ { \alpha } = z _ { 1 } ^ { \alpha _ { 1 } } \ldots z _ { n } ^ { \alpha _ { n } }$ ; confidence 0.447

168. q12002044.png ; $\operatorname { Fun } _ { q } ( M )$ ; confidence 0.447

169. s13059026.png ; $m = 0 , \pm 1 , \pm 2 , \dots$ ; confidence 0.447

170. c12031028.png ; $| \alpha | = \sum _ { l = 1 } ^ { d } \alpha _ { l }$ ; confidence 0.447

171. t120010136.png ; $\operatorname{p} = ( p _ { 1 } , \dots , p _ { n + 2} )$ ; confidence 0.447

172. p12015028.png ; $r_2$ ; confidence 0.447

173. c12020043.png ; $( W , J ^ { \prime } )$ ; confidence 0.447

174. w13008041.png ; $\psi ( P ) = \operatorname { exp } \left( \sum t _ { n } \Omega _ { n } \right) \phi \left( \sum t _ { n } \overset{\rightharpoonup}{ V } _ { n } , P \right) ,$ ; confidence 0.447

175. p12017018.png ; $\hat { A } = A \oplus B$ ; confidence 0.447

176. c0258304.png ; $\| T \| \leq 1$ ; confidence 0.447

177. h13006063.png ; $R_0 ( X , D ) \otimes \mathbf{Q}$ ; confidence 0.447

178. d03029021.png ; $a \leq x _ { 1 } < \ldots < x _ { m } \leq b$ ; confidence 0.447

179. i130060137.png ; $k \left[ 1 - S ( k ) + \frac { Q } { i k } \right] \in L ^ { 2 } ( \mathbf{R} ),$ ; confidence 0.447

180. b13011020.png ; $\{ b _ { j } ^ { n } : j = 0 , \dots , n \}$ ; confidence 0.447

181. a12015041.png ; $g \in G , X , Y \in \mathfrak { g }.$ ; confidence 0.446

182. k13006010.png ; $0 \leq a _ { 1 } < \ldots < a _ { k } \leq n - 1$ ; confidence 0.446

183. i12008090.png ; $Z \rightarrow \lambda _ { + } ^ { N } $ ; confidence 0.446

184. g04339012.png ; $\delta f ( x _ { 0 } , h )$ ; confidence 0.446

185. t1301408.png ; $d _ { i j}$ ; confidence 0.446

186. s13041021.png ; $\langle \mathcal{L} p , q \rangle _ { s } = \langle p , \mathcal{L} q \rangle _ { s }$ ; confidence 0.446

187. l12015048.png ; $d \alpha$ ; confidence 0.446

188. o13005045.png ; $\Theta = \left( \begin{array} { c c c } { \mathcal{A} } & { } & { K } & { J } \\ { \mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - } } & & { \square } & { \mathfrak { E } } \end{array} \right)$ ; confidence 0.446

189. p12013038.png ; $S ^ { \prime \prime } = S ^ { ( 2 ) }$ ; confidence 0.446

190. f130100161.png ; $\| u - u v \| _ { A _ { p } ( G ) } < \epsilon$ ; confidence 0.446

191. a130240539.png ; $\mathbf{T} _ { 1 }$ ; confidence 0.446

192. m06200014.png ; $X _ { n } = f ( Z _ { n } , \dots , Z _ { n + m} )$ ; confidence 0.446

193. a13012035.png ; $d \geq 2$ ; confidence 0.446

194. c02111018.png ; $\cup_ \lambda X_ \lambda$ ; confidence 0.446

195. a012200126.png ; $\widetilde { f }$ ; confidence 0.446

196. m13018039.png ; $\phi ( n ) = \sum _ { d | n } d \mu \left( \frac { n } { d } \right) .$ ; confidence 0.446

197. c12017047.png ; $a _ { 0 } + a _ { 1 } t + \ldots + a _ { n } t ^ { n }$ ; confidence 0.445

198. k055840339.png ; $\mathcal{K} = \mathcal{H} ^ { n }$ ; confidence 0.445

199. p12013046.png ; $S \subset T ^ { \prime }$ ; confidence 0.445

200. a120160162.png ; $l _ { j t } \leq x _ { j t } \leq u _ { j t };$ ; confidence 0.445

201. j1200207.png ; $\| f \| _ { H ^ { p } } ^ { p } : = \frac { 1 } { 2 \pi } \operatorname { sup } _ { r < 1 } \int _ { - \pi } ^ { \pi } | f ( r e ^ { i \vartheta } ) | ^ { p } d \vartheta$ ; confidence 0.445

202. q120070112.png ; $k \langle a , b , c , d \rangle $ ; confidence 0.445

203. v13005076.png ; $V = \oplus _ { n \in \mathbf{Z} } V _ { ( n ) }$ ; confidence 0.445

204. c120180501.png ; $\tilde{g} \in \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.445

205. w120090346.png ; $\mathcal{U} _ { K } = K \otimes _\mathbf{Z} \mathcal{U} _ { \mathbf{Z} }$ ; confidence 0.445

206. i130060144.png ; $\mathbf{C} _ { - } : = \{ k : \operatorname { Im } k < 0 \}$ ; confidence 0.445

207. f12011088.png ; $U \# _j \Omega = U \bigcap \{ \operatorname { Im } z _ { k } \neq 0 : k \neq j \}.$ ; confidence 0.445

208. j13004096.png ; $P _ { 4 _ { 1 } } ( v , z ) - 1 = ( v ^ { - 1 } - v ) ^ { 2 } - z ^ { 2 } = - v ^ { - 2 } ( P _ { 3_1 } ( v , z ) - 1 ) = - v ^ { 2 } ( P _ { \overline{3}_1 } ( v , z ) - 1 )$ ; confidence 0.445

209. c13016070.png ; $2 ^ { O ( s ( n ) ) }$ ; confidence 0.445

210. d12019022.png ; $- \Delta _ { \operatorname{Dir} }$ ; confidence 0.445

211. c120210145.png ; $\{ P _ { \alpha _ { n } } , \theta \}$ ; confidence 0.445

212. i13002050.png ; $\mathbf{y} = ( y _ { 1 } , \dots , y _ { m } ) ^ { T }$ ; confidence 0.445

213. b12016035.png ; $x _ { j } ^ { \prime } \not\equiv 0$ ; confidence 0.445

214. l12013010.png ; $f ( X ) = a _ { n } X ^ { n } + a _ { n - 1 } X ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.445

215. v12006048.png ; $v _ { p } ( n )$ ; confidence 0.445

216. c12026076.png ; $u _ { h } ^ { 0 }$ ; confidence 0.444

217. l11004019.png ; $G \in \mathcal{L}$ ; confidence 0.444

218. b1301105.png ; $b _ { j } ^ { n } ( x ) : = \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { j } ( 1 - x ) ^ { n - j } , j = 0 , \ldots , n.$ ; confidence 0.444

219. i13005017.png ; $\text{l}u _ { + } - { k } ^ { 2 } u _ { + } = 0 , x \in \mathbf{R},$ ; confidence 0.444

220. l11002055.png ; $a \preceq b _ { 1 } \ldots b _ { n }$ ; confidence 0.444

221. h12011014.png ; $k = 0,1,2 , \dots$ ; confidence 0.444

222. g13001041.png ; $f = x ^ { n } + a _ { n - 1 } x ^ { n - 1 } + \ldots + a _ { 1 } x + a _ { 0 }$ ; confidence 0.444

223. o13006016.png ; $\sigma _ { 1 } \Phi A _ { 2 } - \sigma _ { 2 } \Phi A _ { 1 } = \widetilde { \gamma } \Phi,$ ; confidence 0.444

224. e120190129.png ; $g ( a , b ) \subseteq T$ ; confidence 0.444

225. a01174025.png ; $d \geq 3$ ; confidence 0.444

226. b01501013.png ; $\xi ^ { * }$ ; confidence 0.444

227. a12020060.png ; $( T - t _ { j } I ) ^ { r _ { j } } P _ { j } = 0 \quad ( j = 1 , \ldots , n );$ ; confidence 0.444

228. k12008080.png ; $\alpha = ( \alpha_ 0 , \dots , \alpha _ { m } )$ ; confidence 0.444

229. a1201508.png ; $x \mapsto \operatorname { gxg } ^ { - 1 }$ ; confidence 0.444

230. c13014037.png ; $R_l$ ; confidence 0.443

231. d12014017.png ; $D _ { n } ( x , a )$ ; confidence 0.443

232. b110220180.png ; $R \subset H _ { \mathcal{M} } ^ { 3 } ( X , \mathbf{Q} ( 2 ) )$ ; confidence 0.443

233. m13007027.png ; $E _ { [ m , s ] }$ ; confidence 0.443

234. m12021012.png ; $h _ { K } ( u ) : = \operatorname { max } \{ \langle x , u \rangle : x \in K \},$ ; confidence 0.443

235. a130040195.png ; $\operatorname{Mod} ^ { * S} { \mathcal{D} }$ ; confidence 0.443

236. t13009020.png ; $\rho _ { X } \circ \pi _ { Y } ( a ) = \rho _ { X } ( a )$ ; confidence 0.443

237. f12009016.png ; $\mu \in \mathcal{H} ( \mathbf{C} ^ { n } ) ^ { \prime }$ ; confidence 0.443

238. a130240229.png ; $\zeta _ { q + 1} , \dots , \zeta _ { r }$ ; confidence 0.443

239. b13020023.png ; $a _ { i j } \in \mathbf{R}$ ; confidence 0.443

240. o12006075.png ; $W_ { m } ^ { k } ( \Omega )$ ; confidence 0.443

241. d13008072.png ; $\operatorname{Hol} ( \mathbf{B} )$ ; confidence 0.443

242. a0117905.png ; $M_i$ ; confidence 0.443

243. d13008089.png ; $E _ { z _ { 0 } } ( x , R ) =$ ; confidence 0.443

244. w130080171.png ; $F B ( \sigma _ { g } , G )$ ; confidence 0.443

245. c120180472.png ; $\widetilde { N } = N _ { 0 } \times ( - 1 , + 1 )$ ; confidence 0.443

246. m13019041.png ; $\phi _ { 0 } , \phi _ { 1 } , \ldots$ ; confidence 0.443

247. s12028045.png ; $r g _ { 1 } \simeq g_2$ ; confidence 0.443

248. s12005066.png ; $K_ S ( w , z ) = [ 1 - S ( z ) \overline { S ( w ) } ] / ( 1 - z \overline { w } )$ ; confidence 0.443

249. l1301005.png ; $\hat { f } ( \alpha , p ) = \int _ { \operatorname { l}_{\alpha p} } f ( x ) d s : = R f$ ; confidence 0.443

250. b12021026.png ; $D _ { k } = U ( \mathfrak{a} ) \otimes _ { \mathbf{C} } \wedge ^ { k } ( \mathfrak{a} )$ ; confidence 0.442

251. e120230149.png ; $Z^k$ ; confidence 0.442

252. a12018018.png ; $a _ { 1 } ( S _ { n } - S ) + a _ { 2 } ( S _ { n + 1 } - S ) = 0$ ; confidence 0.442

253. z13001075.png ; $z \operatorname{sinh} w/ ( z ^ { 2 } - 2 z \operatorname { cosh } w + 1 )$ ; confidence 0.442

254. a01146099.png ; $k = \mathbf{C}$ ; confidence 0.442

255. e1100801.png ; $X _ { 1 } , \dots , X _ { n } , \dots$ ; confidence 0.442

256. r13007046.png ; $\| B ( x , y ) \| _ { + } \leq c \sum _ { j = 1 } ^ { \infty } \| \lambda _j \varphi_j ( x ) \| _ { + } =$ ; confidence 0.442

257. l1200705.png ; $L = \left( \begin{array} { c c c c c } { m _ { 1 } } & { m _ { 2 } } & { \ldots } & { \ldots } & { m _ { k } } \\ { p _ { 1 } } & { 0 } & { \ldots } & { \ldots } & { 0 } \\ { 0 } & { p _ { 2 } } & { 0 } & { \ldots } & { 0 } \\ { \vdots } & { \square } & { \ddots } & { \square } & { \vdots } \\ { 0 } & { \ldots } & { 0 } & { p _ { k - 1 } } & { 0 } \end{array} \right),$ ; confidence 0.442

258. t120200219.png ; $P _ { m , K }$ ; confidence 0.442

259. w13008089.png ; $\infty _-$ ; confidence 0.442

260. r1301606.png ; $\mathcal{I} _ { S }$ ; confidence 0.442

261. e12009018.png ; $E = ( E _ { x } , E _ { y } , E _ { z } )$ ; confidence 0.442

262. x12001041.png ; $G _ { \operatorname{inn} } \triangleleft G$ ; confidence 0.442

263. j13001043.png ; $\langle D | f \rangle = ( - 1 ) ^ { | f | } - z ^{ | f | - \operatorname { com } ( D _ { f , 1 } ) - \operatorname { com } ( D _ { f , 2 } ) + \operatorname { com } ( D )}$ ; confidence 0.442

264. m120100131.png ; $( \tilde { G } , \tilde { c } )$ ; confidence 0.442

265. m12013048.png ; $( K _ { ( 1 ) } , \dots , K _ { ( n ) } )$ ; confidence 0.442

266. s120320136.png ; $R = \sum a _ { i } \otimes b _ { i }$ ; confidence 0.441

267. y1200406.png ; $= \int _ { \Omega } \int _ { \mathbf{R} ^ { d } } \varphi ( x , \lambda ) d \nu _ { x } ( \lambda ) d x,$ ; confidence 0.441

268. m13019049.png ; $\phi _ { n } ( z ) = \kappa _ { n } f _ { n } ( z ) +\dots $ ; confidence 0.441

269. a130040351.png ; $x \leftrightarrow \top $ ; confidence 0.441

270. e1300109.png ; $f ^ { \rho } = a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m }.$ ; confidence 0.441

271. w1201002.png ; $\square ^ { '' } \Gamma$ ; confidence 0.441

272. q12001082.png ; $H \times C ^ { o }$ ; confidence 0.441

273. a13029066.png ; $Y_f$ ; confidence 0.441

274. s1301405.png ; $l \geq n$ ; confidence 0.441

275. o1300108.png ; $u = e ^ { i k \alpha x } + v , \operatorname { lim } _ { r \rightarrow \infty } \int _ { | s | = r } \left| \frac { \partial v } { \partial | x | } - i k v \right| ^ { 2 } d s = 0.$ ; confidence 0.441

276. h12002090.png ; $\mathcal{S} _ { p }$ ; confidence 0.441

277. a130040746.png ; $P \cup R$ ; confidence 0.441

278. k05584070.png ; $\int _ { - \infty } ^ { \infty } | f | | r | d x < \infty$ ; confidence 0.441

279. a11004095.png ; $d \geq 1$ ; confidence 0.441

280. d120020134.png ; $g ( \overline { u } _ { 1 } ) = v ^ { * } = \overline { q } = v _ { \text{M} }$ ; confidence 0.440

281. d120230102.png ; $A = Z$ ; confidence 0.440

282. m13022066.png ; $Q _ { n } ( T _ { g } ( z ) ) - q ^ { - n }$ ; confidence 0.440

283. k055840357.png ; $G = ( \square _ { B } ^ { A^* } )$ ; confidence 0.440

284. f110150105.png ; $\overline{b}$ ; confidence 0.440

285. d13018061.png ; $I _ { x }$ ; confidence 0.440

286. z13011099.png ; $\lambda = \frac { ( 1 - \alpha ) ( k + d n _ { k } ) } { ( k + cn _ { k } ) }$ ; confidence 0.440

287. g12003014.png ; $\xi _ { 1 } , \dots , \xi _ { n + 1}$ ; confidence 0.440

288. t13015070.png ; $C ^ { * _ E} ( S ) \otimes _ { \delta } \mathcal{C} _ { 0 } ( S )$ ; confidence 0.440

289. l1201008.png ; $\sum _ { j \geq 1 } | e _ { j } | ^ { \gamma } \leq L _ { \gamma , n } \int _ { \mathbf{R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x$ ; confidence 0.440

290. k12006046.png ; $D = \sum _ { k = 1 } ^ { r } a _ { k } D _ { k }$ ; confidence 0.440

291. a12018072.png ; $( S _ { n + m + 1 } )$ ; confidence 0.440

292. b13027054.png ; $K_*$ ; confidence 0.440

293. f13024023.png ; $\mathbf{k} : = \{ K ( a , b ) \} _ { \text{span} }$ ; confidence 0.440

294. a014090261.png ; $x \in \mathbf{R} ^ { n }$ ; confidence 0.440

295. l13005039.png ; $L _ { k } ( \mathbf{a} )$ ; confidence 0.440

296. b120430148.png ; $B \rtimes H \ltimes B ^ { * }$ ; confidence 0.440

297. a11030032.png ; $e ^ { n _ \alpha + 1}$ ; confidence 0.439

298. b12018040.png ; $P ^ { \mathcal{A} }$ ; confidence 0.439

299. n067520496.png ; $Q \in \mathbf{N} ^ { m }$ ; confidence 0.439

300. k12005030.png ; $- \sum _ { k = 1 } ^ { s } e _ { k } D _ { k }$ ; confidence 0.439

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/61. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/61&oldid=44549