Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/39"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 39 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130010/e13001020.png ; $c _ { n } d ^ { n } ( d + h ) q$ ; confidence 0.525
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110470/b11047042.png ; $l + 1$ ; confidence 0.829
  
2. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070118.png ; $\{ \Gamma , k + 2 , v \}$ ; confidence 0.964
+
2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210127.png ; $w _ { 1 } , \dots , w _ { k }$ ; confidence 0.829
  
3. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011057.png ; $H = - \nabla \varphi$ ; confidence 0.992
+
3. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211023.png ; $x _ { 0 } < \ldots < x _ { k }$ ; confidence 0.829
  
4. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004010.png ; $\Omega ( t ) \psi ( 0 )$ ; confidence 0.990
+
4. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010910/a01091014.png ; $C _ { 1 }$ ; confidence 0.829
  
5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015063.png ; $\varepsilon \neq 0$ ; confidence 0.998
+
5. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002010.png ; $\alpha = \Pi ( l ) = 2 \operatorname { arctan } e ^ { - l / R },$ ; confidence 0.829
  
6. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015030.png ; $\eta \rightarrow 0$ ; confidence 0.996
+
6. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025081.png ; $\mathcal{M} _ { 5 } ( \mathbf{R} ^ { n } ) = \{$ ; confidence 0.829
  
7. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190129.png ; $g ( a , b ) \subseteq 7$ ; confidence 0.444
+
7. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070217.png ; $\epsilon = \operatorname { ord } _ { T } ( d x / d \tau )$ ; confidence 0.829
  
8. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019012.png ; $Q ( x ) = \sigma ( x , x )$ ; confidence 0.992
+
8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030086.png ; $\int _ { \mathbf{R} ^ { N } } | g ( y ) | ^ { 2 } d y = \int _ { Y ^ { \prime } } \sum _ { m = 1 } ^ { \infty } | \hat{g} _ { m } ( \eta ) | ^ { 2 } d \eta.$ ; confidence 0.829
  
9. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e1201905.png ; $\sigma ( x , x ) \neq 0$ ; confidence 0.996
+
9. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170197.png ; $\pi_2 ( K )$ ; confidence 0.829
  
10. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021042.png ; $( b _ { m } ) _ { m \geq 0 }$ ; confidence 0.412
+
10. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010076.png ; $\sum _ { j \geq 1 } \int _ { \mathbf{R} ^ { n } } | \nabla f _ { j } ( x ) | ^ { 2 } d x \geq K _ { n } \int _ { \mathbf{R} ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x.$ ; confidence 0.829
  
11. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005017.png ; $u | _ { x } = y = \tau ( x )$ ; confidence 0.431
+
11. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260144.png ; $= \{ ( m , b ) \in M ( A ) \bigoplus B : \pi ( m ) = \tau ( b ) \}.$ ; confidence 0.828
  
12. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230169.png ; $\Omega ( d L \Delta )$ ; confidence 0.996
+
12. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220101.png ; $F _ { \infty } \in \operatorname { Gal } ( \mathbf{C} / \mathbf{R})$ ; confidence 0.828
  
13. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023018.png ; $( x , y , y ^ { \prime } )$ ; confidence 0.997
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012060/a0120607.png ; $m!$ ; confidence 0.828
  
14. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e1202308.png ; $M = \overline { U }$ ; confidence 0.999
+
14. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s1304107.png ; $p ^ { ( i ) }$ ; confidence 0.828
  
15. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023052.png ; $0 = f ^ { \prime } ( 0 ) =$ ; confidence 1.000
+
15. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400118.png ; $p : \mathfrak { b } \rightarrow \mathbf{C}$ ; confidence 0.828
  
16. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c02054093.png ; $\alpha = 1 , \dots , m$ ; confidence 0.412
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a1303203.png ; $\mathsf{E} _ { \theta } ( N ) = \sum _ { n = 1 } ^ { \infty } n \mathsf{P} _ { \theta } ( N = n ) = \sum _ { n = 0 } ^ { \infty } \mathsf{P} _ { \theta } ( N > n ).$ ; confidence 0.828
  
17. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260131.png ; $( v , p ) \in E \times R$ ; confidence 0.984
+
17. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100387.png ; $K _ { 2 }$ ; confidence 0.828
  
18. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007067.png ; $f \in C ^ { k } [ N , N + M ]$ ; confidence 0.936
+
18. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011056.png ; $x ^ { n } > y$ ; confidence 0.828
  
19. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007090.png ; $m _ { i } , n _ { i } \leq P$ ; confidence 0.926
+
19. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014072.png ; $\operatorname { dist } _ { L^\infty } ( u , H ^ { \infty } ) < 1$ ; confidence 0.828
  
20. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e1300708.png ; $g ( X ) , h ( X ) \in Z [ X ]$ ; confidence 0.975
+
20. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063020.png ; $( y _ { 1 } , \dots , y _ { s } )$ ; confidence 0.828
  
21. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007033.png ; $f ( n ) = \alpha n ^ { k }$ ; confidence 0.998
+
21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016055.png ; $\pi _ { k } ( S )$ ; confidence 0.828
  
22. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005013.png ; $( x ( T ) , y ( T ) , z ( T ) )$ ; confidence 0.996
+
22. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023032.png ; $\operatorname { St } _ { G } ( u ) = \{ g \in G : u ^ { g } = u \}$ ; confidence 0.828
  
23. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090102.png ; $r , q 1 , \dots , q _ { k }$ ; confidence 0.595
+
23. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014022.png ; $\sum _ { i = 1 } ^ { r } A _ { i } = J$ ; confidence 0.828
  
24. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f130090108.png ; $H _ { n , r } ^ { ( k ) } ( x )$ ; confidence 0.656
+
24. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090990/s09099047.png ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } a _ { n } z ^ { n }$ ; confidence 0.828
  
25. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009082.png ; $F _ { n , r } ^ { ( k ) } ( x )$ ; confidence 0.954
+
25. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007066.png ; $Z ( \alpha ) = 1 _ { \mathbf{Z} }$ ; confidence 0.828
  
26. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010067.png ; $\lambda ^ { p } ( \mu )$ ; confidence 0.994
+
26. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004021.png ; $e > 0$ ; confidence 0.828
  
27. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301003.png ; $p ^ { \prime } = p / p - 1$ ; confidence 0.998
+
27. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232068.png ; $a , b \leq d , e$ ; confidence 0.828
  
28. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f1302102.png ; $f \in L _ { C } ^ { 1 } ( G )$ ; confidence 0.757
+
28. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005023.png ; $N ^ { r + 1 } = 0$ ; confidence 0.828
  
29. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021014.png ; $C _ { 0 } ( \hat { G } ; C )$ ; confidence 0.969
+
29. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050103.png ; $\operatorname{QS} ( \mathbf{T} , \mathbf{C} )$ ; confidence 0.828
  
30. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080198.png ; $\hat { K } = W ^ { * } ( G )$ ; confidence 0.713
+
30. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026034.png ; $\mathsf{P} \{ \operatorname { sup } _ { t } w ( t ) < z \}$ ; confidence 0.828
  
31. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080138.png ; $\Lambda _ { G } = 2 n - 1$ ; confidence 0.998
+
31. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001055.png ; $p ^ { ( p ^ { m } - 1 ) / 2 }$ ; confidence 0.828
  
32. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110144.png ; $1 / ( 1 - e ^ { 2 \pi i z } )$ ; confidence 0.998
+
32. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w1300503.png ; $W ( \mathfrak{g} )$ ; confidence 0.828
  
33. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016049.png ; $f _ { \mathfrak { B } }$ ; confidence 0.226
+
33. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005071.png ; $j ^ { r } ( f )$ ; confidence 0.827
  
34. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150181.png ; $A + T \in \Phi + ( X , Y )$ ; confidence 0.892
+
34. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002090.png ; $x \circ y : = ( x | 1 ) y + ( y | 1 ) x - ( x | \sigma ( y ) ) 1,$ ; confidence 0.827
  
35. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150212.png ; $\| B \| _ { A } < \delta$ ; confidence 0.997
+
35. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210114.png ; $\Lambda _ { n } ( \theta ) = \operatorname { log } ( d P _ { n , \theta _ { n } } / P _ { n , \theta } )$ ; confidence 0.827
  
36. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150192.png ; $A \in \Phi ( D ( A ) , Y )$ ; confidence 0.997
+
36. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520478.png ; $k + l + m = n$ ; confidence 0.827
  
37. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015040.png ; $\alpha ( B ) < \infty$ ; confidence 0.999
+
37. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301902.png ; $| \zeta ( 1 / 2 + i t ) |$ ; confidence 0.827
  
38. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024015.png ; $K ( a , b ) = \{ a , b \} I d$ ; confidence 0.295
+
38. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012031.png ; $\Phi : O G \rightarrow A \mathcal{C}$ ; confidence 0.827
  
39. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f1201906.png ; $g \in G \backslash H$ ; confidence 0.999
+
39. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032076.png ; $N = A ^ {r |s} $ ; confidence 0.827
  
40. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019034.png ; $x \in G \backslash N$ ; confidence 0.740
+
40. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004014.png ; $V _ { L } ( t )$ ; confidence 0.827
  
41. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f1202106.png ; $\alpha ^ { N } 0 \neq 0$ ; confidence 0.507
+
41. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049042.png ; $\overline{Y} = \sum _ { j } Y _ { j } / n$ ; confidence 0.827
  
42. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210102.png ; $L ( u ( z , \lambda ) ) =$ ; confidence 0.980
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027080.png ; $X _ { n } \subset X _ { n + 1} $ ; confidence 0.827
  
43. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023067.png ; $[ P , P ] ^ { \wedge } = 0$ ; confidence 0.998
+
43. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827
  
44. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024038.png ; $h ( t ) \equiv \infty$ ; confidence 0.975
+
44. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012047.png ; $\frac { - x f ^ { \prime } ( x ) } { f ( x ) } \nearrow \infty , \quad x \rightarrow \infty.$ ; confidence 0.827
  
45. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024064.png ; $\mathfrak { H } \in R$ ; confidence 0.245
+
45. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029058.png ; $\sum _ { n = 1 } ^ { \infty } \varphi ( q _ { n } ) f ( q _ { n } )$ ; confidence 0.827
  
46. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028028.png ; $c ^ { T } x \in \hat { G }$ ; confidence 0.827
+
46. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028028.png ; $\mathbf{c} ^ { \text{T} } \mathbf{x} \in \widetilde { G }$ ; confidence 0.827
  
47. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302805.png ; $A x < b + \varepsilon$ ; confidence 0.696
+
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002016.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } } \frac { \| \alpha _ { n } + \beta _ { n } \| } { \| \alpha _ { n } \| ^ { 1 / 2 } } = 1 \text{ a.s.},$ ; confidence 0.827
  
48. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029027.png ; $\tau \subset L ^ { X }$ ; confidence 0.974
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026037.png ; $Y = ( Y _ { 1 } , \dots , Y _ { s } )$ ; confidence 0.827
  
49. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f1302902.png ; $( L , \leq , \otimes )$ ; confidence 0.832
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013052.png ; $\overline { \theta } _ { n } = \overline { \theta } _ { n - 1 } + \frac { 1 } { n } ( \theta _ { n - 1 } - \overline { \theta } _ { n - 1 } ).$ ; confidence 0.827
  
50. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040186.png ; $\epsilon \in ( 0,1 )$ ; confidence 1.000
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610106.png ; $A \in \mathcal{A}$ ; confidence 0.826
  
51. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006073.png ; $\vec { P _ { i } P _ { j } }$ ; confidence 0.805
+
51. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021050.png ; $A ( G _ { 2 } )$ ; confidence 0.826
  
52. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004068.png ; $( x , \xi ) \in \Gamma$ ; confidence 0.993
+
52. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012041.png ; $6_2$ ; confidence 0.826
  
53. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040179.png ; $\sigma = 1 / ( s - 1 ) > 0$ ; confidence 0.999
+
53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304506.png ; $\{ ( R _ { i } , S _ { i } ) \} _ { i = 1 } ^ { n }$ ; confidence 0.826
  
54. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005015.png ; $\mu _ { 0 } ( k , R ) \in C$ ; confidence 0.976
+
54. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023053.png ; $= \int _ { a } ^ { b } \left[ \frac { \partial L } { \partial y } ( \sigma ^ { 1 } ( x ) ) z ( x ) + \frac { \partial L } { \partial y ^ { \prime } } ( \sigma ^ { 1 } ( x ) ) z ^ { \prime } ( x ) \right] d x =$ ; confidence 0.826
  
55. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601045.png ; $M _ { 0 } \times [ 0,1 ]$ ; confidence 0.988
+
55. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005016.png ; $\frac { J - W _ { \Theta } ( z ) J W _ { \Theta } ( w ) ^ { * } } { z - \overline { w } } = 2 i K ^ { * } ( T - z I ) ^ { - 1 } ( T ^ { * } - \overline { w } I ) ^ { - 1 } K,$ ; confidence 0.826
  
56. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010124.png ; $M _ { 1 } \times S ^ { N }$ ; confidence 0.996
+
56. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003021.png ; $p _ { 0 } = \| P _ { 0 } \psi \| ^ { 2 }$ ; confidence 0.826
  
57. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010153.png ; $T ^ { 4 } \times [ 0,1 ]$ ; confidence 1.000
+
57. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007029.png ; $o ( \# A )$ ; confidence 0.826
  
58. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002055.png ; $\{ w ( a ) \} _ { a \in A }$ ; confidence 0.226
+
58. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001076.png ; $0 \leq s _ { 1 } + \ldots + s _ { n } \leq N$ ; confidence 0.826
  
59. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003072.png ; $B ( q , t ) = ( b _ { i } , j )$ ; confidence 0.605
+
59. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e120140103.png ; $\left( \varphi \rightarrow \varphi \left( \begin{array} { c } { x } \\ { \varepsilon x \varphi } \end{array} \right) \right) = 1$ ; confidence 0.826
  
60. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004023.png ; $\xi < \eta < \lambda$ ; confidence 1.000
+
60. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826
  
61. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004033.png ; $G ( \omega , \omega )$ ; confidence 1.000
+
61. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037087.png ; $n ^ { \Omega ( \sqrt { k } ) }$ ; confidence 0.826
  
62. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006050.png ; $\alpha \in \hat { D }$ ; confidence 0.342
+
62. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006017.png ; $\varphi _ { i } : U _ { i } \subset \mathbf{R} ^ { m } \rightarrow M$ ; confidence 0.826
  
63. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007028.png ; $\alpha , b \in A _ { k }$ ; confidence 0.636
+
63. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001060.png ; $C _ { 1 } \operatorname { ln } ^ { n } N \leq \| S _ { N B } \| \leq C _ { 2 } \operatorname { ln } ^ { n } N.$ ; confidence 0.826
  
64. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011032.png ; $B ( 0,1 ) \subseteq C$ ; confidence 0.646
+
64. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001052.png ; $t \in \mathbf{Z} / p \mathbf{Z}$ ; confidence 0.826
  
65. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120129.png ; $f \hat { \tau } = \tau$ ; confidence 0.861
+
65. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005069.png ; $H + \lambda ( K _ { X } + B )$ ; confidence 0.826
  
66. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013053.png ; $\square _ { \infty }$ ; confidence 0.975
+
66. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110700/b11070040.png ; $C ( \mathbf{T} )$ ; confidence 0.825
  
67. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350388.png ; $f ( x + y ) = f ( x ) + f ( y )$ ; confidence 0.999
+
67. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002021.png ; $b : U \times V \rightarrow \mathbf{R}$ ; confidence 0.825
  
68. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i13004010.png ; $\Delta d k = d k - d k + 1$ ; confidence 0.610
+
68. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520263.png ; $\left\| \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right\| \mapsto \left\| \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right\|.$ ; confidence 0.825
  
69. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006086.png ; $P _ { G } = ( V \cup E , < )$ ; confidence 0.972
+
69. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066033.png ; $L _ { \infty } ( \mathbf{R} )$ ; confidence 0.825
  
70. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005083.png ; $\overline { C } _ { + }$ ; confidence 0.698
+
70. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007089.png ; $K = \mathcal{Z}$ ; confidence 0.825
  
71. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300606.png ; $\delta = \delta ( k )$ ; confidence 0.999
+
71. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002024.png ; $H_{*} ( X , \mathbf{Q} )$ ; confidence 0.825
  
72. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006086.png ; $\delta ( \infty ) = 0$ ; confidence 0.998
+
72. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001043.png ; $\widehat { f } ( \xi ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } } \int _ { D ^ { \prime } } f ( x ) \overline { u ( x , \xi ) } d x : = \mathcal{F} f.$ ; confidence 0.825
  
73. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007044.png ; $v ( \alpha , \theta )$ ; confidence 0.995
+
73. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s130530104.png ; $S ^ { r - 1 } \subset \mathbf{R} ^ { r }$ ; confidence 0.825
  
74. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031010/d031010105.png ; $S ^ { 2 } \times S ^ { 2 }$ ; confidence 0.968
+
74. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005014.png ; $\overline{E} ( \alpha , \beta ) = \partial _ { x } \partial _ { y } - \frac { \beta } { x - y } \partial _ { x } + \frac { \alpha } { x - y } \partial y.$ ; confidence 0.825
  
75. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007078.png ; $- \nabla ^ { 2 } + q ( x )$ ; confidence 0.996
+
75. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009027.png ; $C _ { \epsilon } > 0$ ; confidence 0.825
  
76. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300809.png ; $L _ { 3 } = A _ { 3 } P _ { 3 }$ ; confidence 0.994
+
76. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005035.png ; $R = R _ { c }$ ; confidence 0.825
  
77. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300808.png ; $L _ { 2 } = A _ { 2 } P _ { 2 }$ ; confidence 0.996
+
77. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008041.png ; $\| \varphi \| = \operatorname { inf } \| \xi \| \| \eta \|$ ; confidence 0.825
  
78. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042020/f042020108.png ; $X ^ { \prime \prime }$ ; confidence 0.643
+
78. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007041.png ; $w = \phi _ { 0 }$ ; confidence 0.824
  
79. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i1300807.png ; $L _ { 1 } = A _ { 1 } P _ { 1 }$ ; confidence 0.997
+
79. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007013.png ; $[ E : K ]$ ; confidence 0.824
  
80. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090113.png ; $\lambda _ { p } ( K / k )$ ; confidence 0.987
+
80. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010128.png ; $f = G d \circ e$ ; confidence 0.824
  
81. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090166.png ; $u \in Z _ { p } ^ { \chi }$ ; confidence 0.333
+
81. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140117.png ; $Q = \| q _ { p s , i l} \|$ ; confidence 0.824
  
82. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009023.png ; $\dot { k } _ { \infty }$ ; confidence 0.482
+
82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b1204902.png ; $m : \Sigma \rightarrow X$ ; confidence 0.824
  
83. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002017.png ; $\Delta > \lambda / 2$ ; confidence 0.966
+
83. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011067.png ; $D ^ { n } = \mathbf{R} ^ { n } \cup S _ { \infty } ^ { n - 1 }$ ; confidence 0.824
  
84. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002049.png ; $p = 10 ^ { 5 } n ^ { - 2 / 3 }$ ; confidence 0.999
+
84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001031.png ; $T : \mathbf{P} ^ { m } \backslash X \rightarrow \mathbf{P} ^ { n }$ ; confidence 0.824
  
85. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j1300205.png ; $\dot { i } \in \Gamma$ ; confidence 0.266
+
85. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000135.png ; $\operatorname { lim } _ { k \rightarrow \infty } \frac { S ( T ^ { k } , a f ( \epsilon ) ^ { k } ) } { k } = 2 \mathcal{H} _ { \epsilon } ^ { \prime } ( \xi ),$ ; confidence 0.824
  
86. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020222.png ; $\lambda ( S ) \leq K h$ ; confidence 0.950
+
86. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007050.png ; $\sigma : \mathbf{R} ^ { 2 n } \rightarrow \mathbf{C}$ ; confidence 0.824
  
87. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002097.png ; $\leq E [ X ^ { * } ] \leq$ ; confidence 0.543
+
87. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005064.png ; $\overline { \Sigma } \square ^ { i } ( f )$ ; confidence 0.824
  
88. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020215.png ; $I \backslash \cup I$ ; confidence 0.710
+
88. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m1200302.png ; $F _ { \theta }$ ; confidence 0.824
  
89. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004048.png ; $K _ { 1 } \# K _ { 2 } ^ { - }$ ; confidence 0.724
+
89. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029068.png ; $f^\rightarrow$ ; confidence 0.824
  
90. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k1200404.png ; $\Lambda _ { D } ( a , x )$ ; confidence 0.901
+
90. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232037.png ; $\operatorname { ln } \rho$ ; confidence 0.824
  
91. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004011.png ; $\Lambda _ { L } ( a , x )$ ; confidence 0.963
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012071.png ; $( x ^ { * } , y ^ { * } , p ^ { * } )$ ; confidence 0.824
  
92. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022420/c02242033.png ; $( - \infty , \infty )$ ; confidence 1.000
+
92. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009035.png ; $[ d f , d g ] _ { P } = d \{ f , g \} _ { P }$ ; confidence 0.824
  
93. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840208.png ; $( T _ { i j } ) _ { 1 } ^ { 2 }$ ; confidence 0.921
+
93. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013080.png ; $x , y \in \mathbf{R} ^ { l + 1 }$ ; confidence 0.823
  
94. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840333.png ; $s , t \in [ \alpha , b ]$ ; confidence 0.491
+
94. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010021.png ; $\widetilde{T} ( z ) = \langle T k _ { z } , k _ { z } \rangle.$ ; confidence 0.823
  
95. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840145.png ; $[ T x , T x ] \leq [ x , x ]$ ; confidence 0.915
+
95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027072.png ; $\{ u _ { j } \}$ ; confidence 0.823
  
96. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840278.png ; $c ( A ) \subset \{ 0 \}$ ; confidence 0.995
+
96. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691026.png ; $\overline{h} ( x )$ ; confidence 0.823
  
97. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840177.png ; $E ^ { \prime \prime }$ ; confidence 0.283
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050011.png ; $\mathbf{Q} _ { p }$ ; confidence 0.823
  
98. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013022.png ; $Q _ { 2 } i _ { ( n + 1 ) - 1 }$ ; confidence 0.603
+
98. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013035.png ; $n \rightarrow \infty$ ; confidence 0.823
  
99. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k1201308.png ; $3.2 ^ { i - 1 } ( n + 1 ) - 2$ ; confidence 0.974
+
99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013013.png ; $k _ { z } ( w )$ ; confidence 0.823
  
100. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003033.png ; $E \neq \emptyset$ ; confidence 0.475
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041046.png ; $X ^ { \prime }$ ; confidence 0.823
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012450/a01245028.png ; $S ^ { 1 } \times S ^ { 3 }$ ; confidence 0.926
+
101. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040980/f0409807.png ; $H _ { 2 } ( M ; \mathbf{Z} )$ ; confidence 0.823
  
102. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702043.png ; $\overline { k } _ { S }$ ; confidence 0.137
+
102. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260176.png ; $\mathbf{C M} _ { n } = C _ { 0 } ( ]0,1 ] ) \otimes \mathbf{M} _ { n }$ ; confidence 0.823
  
103. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003049.png ; $Q \in ca ( \Omega , F )$ ; confidence 0.653
+
103. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015017.png ; $( v , k , \lambda , n ) = \left( \frac { q ^ { d + 1 } - 1 } { q - 1 } , \frac { q ^ { d } - 1 } { q - 1 } , \frac { q ^ { d - 1 } - 1 } { q - 1 } , q ^ { d - 1 } \right) ,$ ; confidence 0.823
  
104. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700022.png ; $I \equiv \lambda x x$ ; confidence 0.654
+
104. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007039.png ; $M : = \left\{ \theta : \theta \in \mathbf{C} ^ { 3 } , \theta . \theta = k ^ { 2_0 }  \right\}$ ; confidence 0.823
  
105. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l0570007.png ; $( M N ) \in \Lambda$ ; confidence 0.998
+
105. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018068.png ; $y \leq z$ ; confidence 0.823
  
106. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003081.png ; $T _ { E } M ^ { * } = M ^ { * }$ ; confidence 0.999
+
106. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007018.png ; $\mathbf{p} _ { k }$ ; confidence 0.823
  
107. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004032.png ; $u ( x _ { i } , t ^ { n + 1 } )$ ; confidence 0.681
+
107. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v11006013.png ; $D = \frac { E h ^ { 3 } } { 12 ( 1 - \nu ^ { 2 } ) }$ ; confidence 0.823
  
108. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005014.png ; $f \in L _ { 2 } ( R _ { + } )$ ; confidence 0.866
+
108. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017021.png ; $L^3$ ; confidence 0.823
  
109. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006031.png ; $( \phi , G ( z ) \phi ) =$ ; confidence 0.994
+
109. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120140/l12014015.png ; $p ( T ) x = 0$ ; confidence 0.823
  
110. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007043.png ; $1 \leq i \leq j \leq k$ ; confidence 0.993
+
110. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002031.png ; $\mathcal{C} = \operatorname { Fun } _ { q } ( C )$ ; confidence 0.823
  
111. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007018.png ; $v _ { t } = L ^ { t } v _ { 0 }$ ; confidence 0.950
+
111. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003051.png ; $Y _ { j } = - \sqrt { 3 } \lambda _ { j } ( j = 1,2,3 ) , Y _ { 4 } = \sqrt { 3 } \lambda _ { 8 }$ ; confidence 0.822
  
112. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009075.png ; $A \times \{ \hbar \}$ ; confidence 0.995
+
112. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017016.png ; $\mathcal{G} _ { \alpha } ^ { - 1 } = \mathcal{G} _ { - \alpha }$ ; confidence 0.822
  
113. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009045.png ; $( G , \alpha , \beta )$ ; confidence 0.966
+
113. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020035.png ; $e _ { i } , f _ { i } , h _ { i j }$ ; confidence 0.822
  
114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010039.png ; $\gamma \geq \Gamma$ ; confidence 1.000
+
114. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840351.png ; $Z ^ { * } Z \leq B _ { 0 }$ ; confidence 0.822
  
115. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010021.png ; $\sum | e | ^ { \gamma }$ ; confidence 0.602
+
115. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301306.png ; $T _ { 0 } , T _ { 1 } \in \operatorname { add } T$ ; confidence 0.822
  
116. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010093.png ; $L _ { \gamma } , x _ { 1 }$ ; confidence 0.103
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822
  
117. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100121.png ; $( - \Delta + E ) ^ { - 1 }$ ; confidence 0.999
+
117. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822
  
118. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010028.png ; $V ( x ) = \lambda W ( x )$ ; confidence 0.983
+
118. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015047.png ; $x \preceq y \preceq z \Rightarrow y \in H.$ ; confidence 0.822
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010118.png ; $A \in R ^ { m \times n }$ ; confidence 0.144
+
119. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008065.png ; $f ( p ) = L g : = \int _ { T } g ( t ) \overline { h ( t , p ) } d m ( t ).$ ; confidence 0.822
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001013.png ; $A \in R ^ { n \times n }$ ; confidence 0.707
+
120. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s13037026.png ; $t = ( t _ { 1 } , \dots , t _ { k } )$ ; confidence 0.822
  
121. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005021.png ; $a 0 , \dots , a _ { k - 1 }$ ; confidence 0.405
+
121. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002022.png ; $T = \sum _ { t } t ( t - 1 ) / 2$ ; confidence 0.822
  
122. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006027.png ; $0 , \ldots , 2 ^ { E } - 1$ ; confidence 0.574
+
122. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030106.png ; $\frac { 1 } { n } \sum _ { i = 1 } ^ { n } \rho \left( \frac { r_i } { s } \right) = K,$ ; confidence 0.822
  
123. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003075.png ; $\sigma = \pi - A - B - C$ ; confidence 1.000
+
123. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007054.png ; $f ^ { \prime } ( x _ { m } ) = m$ ; confidence 0.822
  
124. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041850/f04185024.png ; $\square ^ { 1 } s _ { 2 }$ ; confidence 0.744
+
124. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014056.png ; $\emptyset \neq M \subseteq X$ ; confidence 0.822
  
125. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005093.png ; $\square ^ { 1 } s _ { w }$ ; confidence 0.659
+
125. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001015.png ; $2 \kappa \Delta c - f _ { 0 } ^ { \prime } ( c ) = \lambda \text { in } V,$ ; confidence 0.821
  
126. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120106.png ; $U _ { \mathfrak { p } }$ ; confidence 0.219
+
126. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025055.png ; $\mathcal{M} _ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.821
  
127. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120109.png ; $p \in T \backslash S$ ; confidence 0.423
+
127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103006.png ; $H_{*} \Omega X$ ; confidence 0.821
  
128. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013032.png ; $f _ { j } ( x ) \in Z ^ { n }$ ; confidence 0.807
+
128. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067080.png ; $V ^ { * } = \operatorname { Hom } ( V , \mathbf{R} )$ ; confidence 0.821
  
129. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010074.png ; $\alpha \in S ^ { n - 1 }$ ; confidence 0.876
+
129. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002026.png ; $| l | = m ( l )$ ; confidence 0.821
  
130. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120140/l12014025.png ; $p ( t ) , q ( t ) \in F [ t ]$ ; confidence 0.975
+
130. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007016.png ; $F ( 2,6 ) = \pi _ { 1 } ( M _ { 3 } )$ ; confidence 0.821
  
131. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015029.png ; $[ x , y ] _ { d } = [ d x , y ]$ ; confidence 0.859
+
131. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001082.png ; $S = Q ^ { * } G$ ; confidence 0.821
  
132. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015030.png ; $[ x , y ] _ { d } = [ x , d y ]$ ; confidence 0.831
+
132. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080182.png ; $( \overline { \partial } + \mu \partial + \overline{L}) \psi = 0$ ; confidence 0.821
  
133. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170281.png ; $d _ { 2 } ( e _ { 2 } ^ { j } )$ ; confidence 0.640
+
133. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q1200203.png ; $\operatorname{SL} ( n , \mathbf{C} )$ ; confidence 0.821
  
134. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017054.png ; $K _ { 0 } ^ { n + 1 } K _ { 1 }$ ; confidence 0.917
+
134. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012047.png ; $O _ { K , \text{p} }$ ; confidence 0.821
  
135. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017086.png ; $Z _ { 2 } \times Z _ { 4 }$ ; confidence 0.435
+
135. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002062.png ; $x ^ { - } = x \wedge e$ ; confidence 0.821
  
136. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062000/m0620006.png ; $( X _ { n } ) _ { n } \leq k$ ; confidence 0.964
+
136. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002036.png ; $S : V ^ { \prime } \rightarrow U$ ; confidence 0.821
  
137. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003085.png ; $H _ { \vec { \theta } }$ ; confidence 0.946
+
137. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c120300110.png ; $\mathcal{O} _ { 2 }$ ; confidence 0.821
  
138. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030110.png ; $\rho ( - u ) = \rho ( u )$ ; confidence 0.998
+
138. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130040/k13004013.png ; $x _ { i } = \left\{ \begin{array} { l l } { 1 } & { \text { if } a _ { i } \leq c - \sum _ { j = 1 } ^ { i - 1 } a _ { j } x _ { j }, } \\ { 0 } & { \text { otherwise. } } \end{array} \right.$ ; confidence 0.821
  
139. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002069.png ; $P ^ { 1 } \times P ^ { 1 }$ ; confidence 0.990
+
139. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t1301509.png ; $f \in L ^ { \infty } ( \mathbf{T} )$ ; confidence 0.821
  
140. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007069.png ; $m ( P ) \geq c _ { 2 } ( s )$ ; confidence 0.894
+
140. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327026.png ; $r ( A \bigcup B ) + r ( A \bigcap B ) \leq r ( A ) + r ( B ).$ ; confidence 0.820
  
141. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009044.png ; $\vec { E } = 1 / P ( \xi )$ ; confidence 0.838
+
141. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302308.png ; $\operatorname { lim } _ { n \rightarrow \infty } ( ( 1 - Q ) ( I - P ) ) ^ { n } f = ( I - P _ { \overline{U + V} } ) f$ ; confidence 0.820
  
142. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100144.png ; $S ^ { 3 } \times S ^ { 1 }$ ; confidence 0.948
+
142. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008031.png ; $m = k - l$ ; confidence 0.820
  
143. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011066.png ; $H * ( \overline { M } )$ ; confidence 0.865
+
143. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001055.png ; $y _ { i } = f ( x _ { i } )$ ; confidence 0.820
  
144. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012049.png ; $0 \neq a , b , c , d \in R$ ; confidence 0.964
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010910/a01091016.png ; $C_i$ ; confidence 0.820
  
145. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012080.png ; $( a f ) b = \alpha ( g b )$ ; confidence 0.288
+
145. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014093.png ; $f \in C ( \mathbf{C} ^ { n } )$ ; confidence 0.820
  
146. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130060/m1300601.png ; $f _ { 1 } : = x _ { 1 } ^ { d }$ ; confidence 0.642
+
146. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007031.png ; $\xi \in \mathbf{C} ^ { k }$ ; confidence 0.820
  
147. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013035.png ; $f ^ { \prime } ( N * ) > 0$ ; confidence 0.925
+
147. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025021.png ; $\mathcal{S} _ { \Gamma } ^ { \prime } ( \mathbf{R} ^ { n } )$ ; confidence 0.820
  
148. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013036.png ; $f ^ { \prime } ( N * ) < 0$ ; confidence 0.940
+
148. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n12004013.png ; $A _ { N } ( F f \circ s \circ f ^ { - 1 } ) = ( G f ) \circ A _ { M } ( s ) \circ f ^ { - 1 }$ ; confidence 0.820
  
149. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013090.png ; $m _ { i j } \in \{ 0,1 \}$ ; confidence 0.505
+
149. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007026.png ; $k [ g ]$ ; confidence 0.820
  
150. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013022.png ; $L = [ k _ { j } ] = M M ^ { T }$ ; confidence 0.928
+
150. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602042.png ; $| \Delta P ( i \omega ) | < | R ( i \omega ) | , \quad \text { a.a. } \omega,$ ; confidence 0.820
  
151. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016063.png ; $\Phi = B B ^ { \prime }$ ; confidence 0.996
+
151. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200605.png ; $\Omega = \mathbf{R} ^ { m }$ ; confidence 0.820
  
152. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140108.png ; $\overline { D } _ { 1 }$ ; confidence 0.542
+
152. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300106.png ; $a _ { 0 } ( 1 - x _ { 0 } f ) + a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1.$ ; confidence 0.820
  
153. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019010.png ; $P _ { \nu } ^ { ( k ) } ( x )$ ; confidence 0.965
+
153. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030148.png ; $\operatorname{Ch} : K _ { 0 } ( A ) \rightarrow  \operatorname{HC} _ { 2 n } ( A )$ ; confidence 0.820
  
154. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101102.png ; $\square _ { p } F _ { q }$ ; confidence 0.428
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015029.png ; $\operatorname { Der } ( \mathfrak { g } )$ ; confidence 0.820
  
155. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m1302003.png ; $\{ f , g \} = P ( d f , d g )$ ; confidence 1.000
+
155. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060103.png ; $Z \in X$ ; confidence 0.820
  
156. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022045.png ; $( g , h ) \in M \times M$ ; confidence 0.956
+
156. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005021.png ; $\Sigma ^ { i , j } ( f ) = \Sigma ^ { j } ( f | _ { \Sigma ^ { i } ( f ) } ).$ ; confidence 0.820
  
157. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023074.png ; $( 0 , T ) \times R ^ { N }$ ; confidence 0.276
+
157. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003073.png ; $b,$ ; confidence 0.820
  
158. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023034.png ; $( ( K x + B ) \cdot v ) < 0$ ; confidence 0.302
+
158. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013058.png ; $p _ { \pi }$ ; confidence 0.820
  
159. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023043.png ; $R _ { j } = R _ { \geq 0 } v$ ; confidence 0.386
+
159. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110114.png ; $z ^ { - ( 1 + q ) }$ ; confidence 0.820
  
160. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023062.png ; $\phi * O _ { X } = O _ { Y }$ ; confidence 0.911
+
160. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017094.png ; $s _ { 1 } \geq \ldots \geq s _ { m } \geq 0$ ; confidence 0.820
  
161. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025079.png ; $u ( x , \varepsilon )$ ; confidence 0.994
+
161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029023.png ; $H _ { f } ^ { U }$ ; confidence 0.820
  
162. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026018.png ; $\vec { A } = A \oplus C$ ; confidence 0.301
+
162. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024054.png ; $1 / 2 \operatorname{tr}$ ; confidence 0.820
  
163. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180144.png ; $( - 1 ) ^ { k } \mu ( 0 , X )$ ; confidence 0.999
+
163. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021011.png ; $V _ { Y }$ ; confidence 0.820
  
164. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002029.png ; $Y _ { \alpha } = [ 0,1 ]$ ; confidence 0.998
+
164. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062016.png ; $( \operatorname { cos } \alpha ) y ( 0 ) + ( \operatorname { sin } \alpha ) y ^ { \prime } ( 0 ) = 0,$ ; confidence 0.820
  
165. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002082.png ; $m \mapsto V _ { F } ( m )$ ; confidence 0.993
+
165. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049038.png ; $\{ A _ { j n } \}$ ; confidence 0.820
  
166. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630121.png ; $u | \partial \Omega$ ; confidence 0.961
+
166. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280172.png ; $i \in \mathbf{Z}$ ; confidence 0.819
  
167. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020070/c02007028.png ; $f \in L _ { p } ( R ^ { n } )$ ; confidence 0.967
+
167. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300908.png ; $F ( u ) = \int _ { \mathbf{R} } \left( u ^ { 2 } + \frac { 1 } { 3 } u ^ { 3 } \right) d x$ ; confidence 0.819
  
168. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130070/n13007023.png ; $[ - \infty , \infty ]$ ; confidence 1.000
+
168. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015062.png ; $C ^ { * } ( S ) \otimes _ { \delta } \mathcal{C} _ { 0 } ( S )$ ; confidence 0.819
  
169. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696017.png ; $F _ { R } ( x ; \lambda )$ ; confidence 0.667
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006075.png ; $u \in D ( S ^ { 2 } )$ ; confidence 0.819
  
170. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520464.png ; $\tilde { A } = A \cap K$ ; confidence 0.397
+
170. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430116.png ; $\varepsilon \left( \begin{array} { l l } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right)$ ; confidence 0.819
  
171. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520232.png ; $B \in R ^ { n \times m }$ ; confidence 0.964
+
171. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019010.png ; $p , v \in X$ ; confidence 0.819
  
172. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520244.png ; $d _ { i } \times d _ { j }$ ; confidence 0.759
+
172. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014044.png ; $\mathbf{X} \mapsto \underline{\operatorname { dim }} \mathbf{X} = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ ; confidence 0.819
  
173. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520134.png ; $E _ { A , K [ \lambda ] }$ ; confidence 0.470
+
173. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578013.png ; $F ( \tau ) = \frac { 2 \pi \operatorname { sinh } \pi \tau } { \pi ^ { 2 } | I _ { i \alpha } ( \alpha ) | ^ { 2 } } \times$ ; confidence 0.819
  
174. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520462.png ; $j \neq i 1 , \ldots , i$ ; confidence 0.165
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160082.png ; $k ^ { \prime }$ ; confidence 0.819
  
175. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520433.png ; $\lambda _ { j } \neq 0$ ; confidence 0.534
+
175. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024085.png ; $\phi ( t _ { 0 } ) = x ( t _ { 0 } )$ ; confidence 0.819
  
176. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001013.png ; $\delta \theta _ { 0 }$ ; confidence 0.999
+
176. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020148.png ; $\{ \widehat { \phi } ( j + k ) \}_{ j , k \geq 0}$ ; confidence 0.819
  
177. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001065.png ; $\Gamma u = u _ { N } + h u$ ; confidence 0.992
+
177. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004014.png ; $G _ { 0 } ^ { s } ( \Omega ) = G ^ { s } ( \Omega ) \cap C _ { 0 } ^ { \infty } ( \Omega )$ ; confidence 0.819
  
178. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068080/o0680808.png ; $B _ { i \alpha } \beta$ ; confidence 0.480
+
178. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620222.png ; $B \subseteq A$ ; confidence 0.819
  
179. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005035.png ; $\mathfrak { H } _ { + }$ ; confidence 0.326
+
179. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009036.png ; $Q ( x ) e ^ { i \xi x }$ ; confidence 0.819
  
180. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006066.png ; $p ( A _ { 1 } , A _ { 2 } ) = 0$ ; confidence 0.997
+
180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201008.png ; $X \equiv ( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.819
  
181. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060114.png ; $\hat { c } ( \lambda )$ ; confidence 0.088
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017030.png ; $R = \int _ { 0 } ^ { + \infty } \beta ( a ) \Pi ( a ) d a,$ ; confidence 0.819
  
182. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060176.png ; $u = u ( t _ { 1 } , t _ { 2 } )$ ; confidence 0.998
+
182. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021013.png ; $0 \neq \phi \in E ( \lambda , D _ { Y } ) \text { with } \pi ^ { * } \phi \in E ( \mu , D _ { Z } ).$ ; confidence 0.819
  
183. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060174.png ; $f = f ( t _ { 1 } , t _ { 2 } )$ ; confidence 0.999
+
183. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060111.png ; $\{ a_{i , i} \} _ { i = 1 } ^ { n }$ ; confidence 0.819
  
184. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060177.png ; $v = v ( t _ { 1 } , t _ { 2 } )$ ; confidence 0.911
+
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040790.png ; $g = g ^ { \prime }$ ; confidence 0.819
  
185. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008038.png ; $h \in L ^ { 1 } ( R _ { + } )$ ; confidence 0.845
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010019.png ; $x \notin D ( A )$ ; confidence 0.819
  
186. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005024.png ; $\varphi ( u ) = u ^ { p }$ ; confidence 0.945
+
186. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260152.png ; $b = b ^ { * }$ ; confidence 0.818
  
187. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006034.png ; $L _ { \Phi } ( \Omega )$ ; confidence 0.956
+
187. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202201.png ; $\partial _ { t } f + v . \nabla _ { x } f = \frac { Q ( f ) } { \varepsilon },$ ; confidence 0.818
  
188. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006047.png ; $E _ { \Phi } ( \Omega )$ ; confidence 0.999
+
188. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340167.png ; $\widetilde { \Sigma } = \Sigma \backslash \cup _ { i = 1,2,3 } U _ { i }$ ; confidence 0.818
  
189. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011038.png ; $\sum f ( \vec { e } ) = 0$ ; confidence 0.961
+
189. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008033.png ; $N _ { A } ( x )$ ; confidence 0.818
  
190. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p1201208.png ; $g ^ { \prime } = \phi g$ ; confidence 0.882
+
190. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327027.png ; $A \subseteq S$ ; confidence 0.818
  
191. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013043.png ; $S ^ { \prime \prime }$ ; confidence 0.676
+
191. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003018.png ; $| \mu _ { n } ( E ) | < \varepsilon$ ; confidence 0.818
  
192. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015076.png ; $\varphi = \tau \psi$ ; confidence 0.984
+
192. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b1302304.png ; $[G : H ] < \infty$ ; confidence 0.818
  
193. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009036.png ; $P _ { \Omega } ( , \xi )$ ; confidence 0.630
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410123.png ; $2 d$ ; confidence 0.818
  
194. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100106.png ; $C ^ { x } \backslash K$ ; confidence 0.262
+
194. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 },$ ; confidence 0.818
  
195. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015031.png ; $\alpha \nmid \beta$ ; confidence 0.944
+
195. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510147.png ; $\sigma ( \mathbf{u} ) = \gamma ( u _ { 1 } ) \oplus \ldots \oplus \gamma ( u _ { m } )$ ; confidence 0.818
  
196. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754806.png ; $p \supset ( p \vee q )$ ; confidence 0.997
+
196. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190203.png ; $\cosh d ( x , y ) = \sqrt { 1 + x ^ { 2 } } \sqrt { 1 + y ^ { 2 } } - x y$ ; confidence 0.818
  
197. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754807.png ; $q \supset ( p \vee q )$ ; confidence 0.996
+
197. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202909.png ; $\sum _ { k = 1 } ^ { \infty } x _ {{ n } _ { k }}$ ; confidence 0.818
  
198. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017020.png ; $\hat { H } = H \oplus H$ ; confidence 0.808
+
198. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i1200202.png ; $f ( x ) = \frac { 1 } { ( \pi x ) ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( 2 \pi \tau ) \times \times \left| \Gamma \left( \frac { 1 } { 2 } - \mu - i \tau \right) \right| ^ { 2 } W _ { \mu , i \tau } ( x ) F ( \tau ) d \tau ;$ ; confidence 0.818
  
199. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017018.png ; $\hat { A } = A \oplus B$ ; confidence 0.447
+
199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004032.png ; $\overline{\mathbf{R}}$ ; confidence 0.818
  
200. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001020.png ; $H = H ^ { im } = H ^ { out }$ ; confidence 0.119
+
200. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b1302302.png ; $\{ H _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.818
  
201. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001025.png ; $X _ { t + s } \sim X _ { s }$ ; confidence 0.868
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027055.png ; $W _ { P } ( \rho ) / W _ { P } ( \operatorname { det } _ { \rho } )$ ; confidence 0.818
  
202. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510138.png ; $X \in \mathfrak { h }$ ; confidence 0.384
+
202. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003079.png ; $\mathcal{A} ( \Gamma \backslash G ( \mathbf{R} ) ) \subset C _ { 0 } ( \Gamma \backslash G ( \mathbf{R} ) )$ ; confidence 0.818
  
203. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001092.png ; $\mathfrak { q } ^ { c }$ ; confidence 0.373
+
203. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020126.png ; $f \in \operatorname{BMOA} = \operatorname{BMO} \cap H ^ { 2 }$ ; confidence 0.817
  
204. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003063.png ; $\mathfrak { G } = K A N$ ; confidence 0.843
+
204. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004013.png ; $\Delta x = x _ { i + 1/2}  - x _ { i - 1/2 } $ ; confidence 0.817
  
205. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300405.png ; $W _ { loc } ^ { 1 , n } ( G )$ ; confidence 0.500
+
205. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007043.png ; $B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \overline { \varphi _ { j } ( x ) } \varphi _ { j } ( y )$ ; confidence 0.817
  
206. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005031.png ; $D \backslash [ 0 , r ]$ ; confidence 0.978
+
206. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150262.png ; $\beta_3$ ; confidence 0.817
  
207. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005044.png ; $\{ M ^ { 3 / 2 } , 2 M - 1 \}$ ; confidence 0.981
+
207. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017051.png ; $f ( \lambda ) = ( 2 \pi ) ^ { - 1 } k ( e ^ { - i \lambda } ) \Sigma k ^ { * } ( e ^ { - i \lambda } ),$ ; confidence 0.817
  
208. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005024.png ; $f ( \infty ) = \infty$ ; confidence 0.998
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028066.png ; $( \mathcal{X} , \mathcal{X}_{*} )$ ; confidence 0.817
  
209. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007015.png ; $R _ { 23 } = 1 \otimes R$ ; confidence 0.986
+
209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029029.png ; $\operatorname { Ker } ( \mu )$ ; confidence 0.817
  
210. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070132.png ; $k \{ t ^ { i } \square j$ ; confidence 0.575
+
210. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036023.png ; $Y _ { t } = B _ { t } - \operatorname { min } _ { 0 \leq s \leq t } B _ { s } \bigwedge 0,$ ; confidence 0.817
  
211. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004014.png ; $\dot { v } , 1 = 2.4048$ ; confidence 0.177
+
211. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250155.png ; $N ( A )$ ; confidence 0.817
  
212. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007041.png ; $H _ { + } = R ( A ^ { 1 / 2 } )$ ; confidence 0.996
+
212. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v0969104.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \sum _ { k = 0 } ^ { n - 1 } U ^ { k } h = \overline{h}$ ; confidence 0.817
  
213. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010061.png ; $( \Gamma _ { A } ) _ { s }$ ; confidence 0.922
+
213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037064.png ; $L \subseteq \{ 0,1 \}^*$ ; confidence 0.817
  
214. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012022.png ; $u ^ { * } u \leq y ^ { * } y$ ; confidence 0.987
+
214. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013021.png ; $\sigma _ { ess } ( - \Delta + V ) = [ 0 , \infty )$ ; confidence 0.817
  
215. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232033.png ; $\sigma _ { N } ( \rho )$ ; confidence 0.865
+
215. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003057.png ; $[ 0 , \omega ]$ ; confidence 0.817
  
216. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002050.png ; $\overline { U M } = U M$ ; confidence 0.801
+
216. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003070.png ; $\operatorname{DB} _ { 1 } ^ { * }$ ; confidence 0.817
  
217. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011035.png ; $w ( s ) < w ( r ) < w ( s + 1 )$ ; confidence 0.998
+
217. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021038.png ; $( s _ { 1 } , \dots , s _ { k } , B _ { m } )$ ; confidence 0.817
  
218. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011041.png ; $\mathfrak { S } _ { w }$ ; confidence 0.156
+
218. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001029.png ; $\sigma ( \alpha ) : = \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta$ ; confidence 0.817
  
219. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040128.png ; $w _ { 1 } \ldots w _ { k }$ ; confidence 0.548
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032059.png ; $\theta = q$ ; confidence 0.817
  
220. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691076.png ; $\lambda ^ { \prime }$ ; confidence 0.998
+
220. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010056.png ; $( i , x )$ ; confidence 0.817
  
221. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015049.png ; $x = t _ { 1 } ^ { 2 } t _ { 2 }$ ; confidence 0.838
+
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240312.png ; $\operatorname{SS} _ { e } = \sum _ { i j k } ( y _ { i j k } - y _ { i j .} ) ^ { 2 }$ ; confidence 0.817
  
222. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040017.png ; $X \cong D ^ { \gamma }$ ; confidence 0.459
+
222. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100166.png ; $f : T \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.817
  
223. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041061.png ; $\sqrt { z ^ { 2 } - 1 } > 0$ ; confidence 1.000
+
223. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013014.png ; $S ( V ) ^ { \operatorname{GL} ( V ) }$ ; confidence 0.817
  
224. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041018.png ; $\mu _ { 0 } = \mu _ { 1 } =$ ; confidence 0.985
+
224. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006014.png ; $\mathsf{P} ( \overline { B } ( t , \omega ) = B ( t , \omega ) ) = 1$ ; confidence 0.816
  
225. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017018.png ; $\{ F ( A , d ) : A \in X \}$ ; confidence 0.998
+
225. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105088.png ; $F ( \omega )$ ; confidence 0.816
  
226. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s1201709.png ; $F ( A , d ) \subseteq A$ ; confidence 0.995
+
226. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011035.png ; $G _ { n } ( f_{( k , n )} ) = k$ ; confidence 0.816
  
227. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017022.png ; $D = \{ 1,0 , - 1 \} ^ { x }$ ; confidence 0.359
+
227. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011049.png ; $d \beta _ { j } / d t$ ; confidence 0.816
  
228. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085260/s08526049.png ; $\overline { D ^ { + } }$ ; confidence 0.889
+
228. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b1301604.png ; $\| f \| : = \{ \| f ( x ) \| : x \in X \}.$ ; confidence 0.816
  
229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018020.png ; $\alpha , \beta \in K$ ; confidence 0.998
+
229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028036.png ; $[ g ] : Y \rightarrow P$ ; confidence 0.816
  
230. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s1304402.png ; $[ W \wedge X , S ] _ { 0 }$ ; confidence 0.693
+
230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029048.png ; $ \operatorname{l} _ { A } ( A / \mathfrak { q } ) - e _ { \mathfrak { q } } ^ { 0 } ( A )$ ; confidence 0.816
  
231. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s1202108.png ; $E ( \lambda , D _ { Y } )$ ; confidence 0.999
+
231. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140107.png ; $\mathcal{D} _ { 1 }$ ; confidence 0.816
  
232. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s1202109.png ; $E ( \lambda , D _ { Z } )$ ; confidence 0.985
+
232. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019047.png ; $\dot { X } = A ( t ) X$ ; confidence 0.816
  
233. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048013.png ; $\alpha _ { 1 } = \beta$ ; confidence 0.948
+
233. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005072.png ; $f ^ { * } f_{*} \mathcal{O} _ { X } ( m q ( H + \lambda ( K _ { X } + B ) ) ) \rightarrow$ ; confidence 0.816
  
234. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049059.png ; $0 \leq i < j \leq r ( P )$ ; confidence 0.999
+
234. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105060.png ; $f ( [ a , b ] )$ ; confidence 0.816
  
235. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202306.png ; $X = \Gamma X \Lambda$ ; confidence 0.554
+
235. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090110.png ; $\frac { 1 } { \sqrt { n _ { 1 } ! n _ { 2 } ! \ldots } }.$ ; confidence 0.816
  
236. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051076.png ; $v _ { j } \in F ( u _ { j } )$ ; confidence 0.785
+
236. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013050.png ; $\operatorname{Hom}_\Lambda( T ,. ) : \operatorname { mod } \Lambda \rightarrow \operatorname{mod} \Gamma$ ; confidence 0.816
  
237. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510133.png ; $\gamma ( u ) = \infty$ ; confidence 0.995
+
237. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012059.png ; $eR Ce$ ; confidence 0.816
  
238. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024050.png ; $< \varepsilon _ { i }$ ; confidence 0.922
+
238. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053093.png ; $( r - r _ { P } - 1 )$ ; confidence 0.816
  
239. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202409.png ; $( X _ { i } , x _ { i 0 } ) = X$ ; confidence 0.846
+
239. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583040.png ; $T ^ { n } \rightarrow 0$ ; confidence 0.816
  
240. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054097.png ; $\{ a , b \} _ { \infty }$ ; confidence 0.753
+
240. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015043.png ; $\operatorname { Ad } ( G ) X = \{ \operatorname { Ad } ( g ) X : g \in G \}$ ; confidence 0.816
  
241. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054088.png ; $SL _ { \eta } ( Q _ { p } )$ ; confidence 0.164
+
241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010049.png ; $U ( t ) = e ^ { \mathcal{A} } S ( - t ) e ^ { - \mathcal{A} }.$ ; confidence 0.816
  
242. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054049.png ; $\alpha , b \in F ^ { * }$ ; confidence 0.802
+
242. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013042.png ; $\left( h _ { \theta } ^ { * } - \frac { I } { 2 } \right) V + V \left( h _ { \theta } ^ { * } - \frac { I } { 2 } \right) ^ { T } = R ( \theta ^ { * } ),$ ; confidence 0.816
  
243. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025043.png ; $( a , b ) = ( 0 , \infty )$ ; confidence 0.985
+
243. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201005.png ; $\nu \geq 1$ ; confidence 0.815
  
244. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026025.png ; $\Gamma ( L ^ { 2 } ( R ) )$ ; confidence 0.992
+
244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170149.png ; $\overline{Z} = \alpha 1 + \beta Z$ ; confidence 0.815
  
245. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026035.png ; $\partial _ { t } ^ { * }$ ; confidence 0.590
+
245. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006068.png ; $N _ { 2 } ^ { * } = \operatorname { min } _ { i } \{ m _ { i } + p _ { i } \}$ ; confidence 0.815
  
246. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062033.png ; $q ( x ) \rightarrow 0$ ; confidence 0.978
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040754.png ; $\operatorname{mng}_{\mathcal{S}_{P \cup R}} , \mathfrak { M } ( r ) = \operatorname { mng } _{\mathcal{S}_ { P \cup R }} , \mathfrak { M } ( \varphi _ { r } )$ ; confidence 0.815
  
247. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032012.png ; $p ( x , y ) = p ( x ) + p ( y )$ ; confidence 0.900
+
247. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110160/g11016028.png ; $M _ { 24 }$ ; confidence 0.815
  
248. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032068.png ; $\Pi ( M ) _ { I } = N _ { U }$ ; confidence 0.470
+
248. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558405.png ; $[ x , y ] = \overline{[ y , x ]}$ ; confidence 0.815
  
249. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340203.png ; $SH ^ { * } ( M , \omega )$ ; confidence 0.976
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130059.png ; $S ^ { n }$ ; confidence 0.815
  
250. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340116.png ; $\overline { x } _ { + }$ ; confidence 0.093
+
250. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840352.png ; $\operatorname { Im } \sigma ( Z ) \geq 0$ ; confidence 0.815
  
251. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035033.png ; $\hat { \theta } _ { N }$ ; confidence 0.744
+
251. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d1102202.png ; $L y \equiv y ^ { ( n ) } + p _ { 1 } ( x ) y ^ { ( n - 1 ) } + \ldots + p _ { n } ( x ) y = 0$ ; confidence 0.815
  
252. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064032.png ; $a ( e ^ { i \theta } ) - z$ ; confidence 0.662
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027050.png ; $g \in Y$ ; confidence 0.815
  
253. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065014.png ; $H \in H ^ { 2 } ( \mu , D )$ ; confidence 0.913
+
253. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193049.png ; $G / H$ ; confidence 0.815
  
254. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092030/t0920308.png ; $U _ { X } \nsupseteq y$ ; confidence 0.544
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025089.png ; $\mathcal{K}$ ; confidence 0.815
  
255. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004036.png ; $D Q _ { n } ( x ) : = x ^ { n }$ ; confidence 0.249
+
255. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019037.png ; $- j ^ { 2 } a_j$ ; confidence 0.815
  
256. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004031.png ; $\tau T _ { N } ^ { * } ( x )$ ; confidence 0.742
+
256. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002072.png ; $\mathcal{F} ( S ^ { d } ) ^ { q }$ ; confidence 0.815
  
257. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050159.png ; $A _ { i } : = M _ { z _ { i } }$ ; confidence 0.498
+
257. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055066.png ; $B _ { G }$ ; confidence 0.815
  
258. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007019.png ; $t \mapsto \theta - t$ ; confidence 0.996
+
258. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022038.png ; $S , T \in \mathcal{L} ( X )$ ; confidence 0.814
  
259. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005052.png ; $R ^ { n } \times R ^ { p }$ ; confidence 0.363
+
259. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001092.png ; $\operatorname{GF} ( 2 ^ { 593 } )$ ; confidence 0.814
  
260. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050112.png ; $\Sigma ^ { 1,1,1,1 }$ ; confidence 0.850
+
260. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020060.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , 2 n - 1 } \frac { | s _ { k } | } { M _ { 2 } ( k ) } = 1$ ; confidence 0.814
  
261. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007058.png ; $g \mapsto a _ { n } ( g )$ ; confidence 0.942
+
261. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222054.png ; $P _ { 0 } ^ { n + 1 }$ ; confidence 0.814
  
262. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070141.png ; $- ( x , \omega ( x ) ) > 0$ ; confidence 0.865
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450177.png ; $X ( \mathbf{C} )$ ; confidence 0.814
  
263. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013055.png ; $M = M \Lambda ^ { t }$ ; confidence 0.505
+
263. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015030.png ; $O ( \varepsilon ^ { q - N } )$ ; confidence 0.814
  
264. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t120140102.png ; $\sigma ( T _ { \phi } )$ ; confidence 1.000
+
264. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055020/k05502018.png ; $T ^ { t } \xi$ ; confidence 0.814
  
265. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015058.png ; $A ^ { \prime \prime }$ ; confidence 0.738
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005014.png ; $t \in [ 0 , T]$ ; confidence 0.814
  
266. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015070.png ; $\xi , \eta \in A _ { 0 }$ ; confidence 0.994
+
266. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020054.png ; $| z _ { 1 } | \geq \ldots \geq | z _ { n } |$ ; confidence 0.814
  
267. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356033.png ; $\mathfrak { M } _ { f }$ ; confidence 0.995
+
267. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037017.png ; $X _ { 2 }$ ; confidence 0.814
  
268. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200238.png ; $n _ { 1 } , n _ { 2 } \geq 1$ ; confidence 0.773
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060011.png ; $C ^ { 2 }$ ; confidence 0.814
  
269. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200165.png ; $| z | > \rho \in ( 0,1 )$ ; confidence 0.996
+
269. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014060.png ; $\mathbf{M} _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } = \mathbf{M} _ { v _ { i } \times v _ { j } } ( K )$ ; confidence 0.814
  
270. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020082.png ; $R _ { N } < 1 - 1 / ( 250 n )$ ; confidence 0.460
+
270. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840243.png ; $q \bar{q}$ ; confidence 0.814
  
271. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021026.png ; $t ( M ; 2,2 ) = 2 ^ { | E | }$ ; confidence 0.217
+
271. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w1200104.png ; $\mathbf{C} ^ { * } = \mathbf{C} \backslash \{ 0 , \infty \}$ ; confidence 0.814
  
272. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021073.png ; $h _ { 11 } ( x ) = t ( x , 1 )$ ; confidence 0.061
+
272. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005023.png ; $\left( \begin{array} { c c } { t ( k ) } & { r _ { - } ( k ) } \\ { r _ { + } ( k ) } & { t ( k ) } \end{array} \right) = S ( k )$ ; confidence 0.814
  
273. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002015.png ; $H _ { 0 } ( M , G ) \cong G$ ; confidence 0.998
+
273. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k1300103.png ; $\langle L \rangle$ ; confidence 0.814
  
274. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020102.png ; $y _ { 0 } \in G ( y _ { 0 } )$ ; confidence 0.792
+
274. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003073.png ; $- h \Delta$ ; confidence 0.814
  
275. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002055.png ; $M _ { k } ( f ) \subset Y$ ; confidence 0.988
+
275. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019024.png ; $\sum _ { i = 1 } ^ { m } \left( \sum _ { j = 1 } ^ { m } a _ { i j } x _ { j } \right) \frac { \partial _ { v } } { \partial x _ { i } } = U.$ ; confidence 0.813
  
276. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020153.png ; $N _ { K } ( F ) \subset X$ ; confidence 0.979
+
276. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007019.png ; $|\mathbf{v} ( M ) | = 1$ ; confidence 0.813
  
277. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020115.png ; $x _ { 0 } \in F ( x _ { 0 } )$ ; confidence 0.627
+
277. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005053.png ; $D v$ ; confidence 0.813
  
278. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007060.png ; $\theta ( 1 ) = - \pi / 2$ ; confidence 0.935
+
278. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020176.png ; $( \operatorname{MP} )$ ; confidence 0.813
  
279. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007015.png ; $\nabla ^ { 2 } \phi = 0$ ; confidence 0.999
+
279. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002042.png ; $p = o ( n ^ { - 1 / 2 } )$ ; confidence 0.813
  
280. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004019.png ; $\Delta ( G ) + \mu ( G )$ ; confidence 0.991
+
280. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004035.png ; $4 ^ { - k }$ ; confidence 0.813
  
281. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044960/g04496018.png ; $\chi ^ { \prime } ( G )$ ; confidence 0.998
+
281. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180403.png ; $S ( \widetilde{g} ) = 0 \in C ^ { \infty } ( \widetilde { M } )$ ; confidence 0.813
  
282. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900141.png ; $p = 1 , \ldots , N _ { 0 }$ ; confidence 0.477
+
282. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009069.png ; $\mathcal{F} \mu$ ; confidence 0.813
  
283. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300
+
283. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520147.png ; $A \in M _ { n \times n } ( K )$ ; confidence 0.813
  
284. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690092.png ; $\phi ( T _ { \alpha } )$ ; confidence 0.999
+
284. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017053.png ; $\underset{ \sim i }{\succ} y$ ; confidence 0.813
  
285. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030122.png ; $n K + m ^ { - 1 } B _ { X } * *$ ; confidence 0.737
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011990/a0119907.png ; $\leq x$ ; confidence 0.813
  
286. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003039.png ; $[ \omega _ { 0 } , \mu ]$ ; confidence 0.997
+
286. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066058.png ; $| x ^ { \prime } - x | \leq | x - y | / 2$ ; confidence 0.813
  
287. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003029.png ; $\| P _ { \alpha } \| = 1$ ; confidence 0.964
+
287. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160170.png ; $2 ^ { - n ^ { k } }$ ; confidence 0.813
  
288. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004052.png ; $\eta ( W ) d g ( W ) \in R$ ; confidence 0.997
+
288. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018066.png ; $\langle x , x \rangle > 0$ ; confidence 0.813
  
289. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006056.png ; $\varphi \in T _ { A } M$ ; confidence 0.996
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280122.png ; $M ^ { U } ( E ) = \{ x \in \mathcal{X} : \operatorname { sp } _ { U } ( x ) \subseteq E \}.$ ; confidence 0.813
  
290. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007077.png ; $\sigma ( D , X ) _ { KN }$ ; confidence 0.895
+
290. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027014.png ; $p = [ cn ]$ ; confidence 0.813
  
291. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007098.png ; $i \overline { \xi A }$ ; confidence 0.489
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005098.png ; $A ( . )$ ; confidence 0.813
  
292. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008028.png ; $P = - i \vec { \nabla }$ ; confidence 0.702
+
292. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013016.png ; $\{ c _ { n,j }  \}$ ; confidence 0.813
  
293. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009054.png ; $\Lambda ^ { + } ( n , r )$ ; confidence 0.990
+
293. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007065.png ; $Z ( C ) = \mathcal{Z}$ ; confidence 0.813
  
294. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011020.png ; $( J ^ { t } a ) ( x , \xi ) =$ ; confidence 0.947
+
294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053020.png ; $( f _ { n } ) _ { n = 1 } ^ { \infty } \subset L _ { + }$ ; confidence 0.813
  
295. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011069.png ; $R _ { \xi } ^ { \gamma }$ ; confidence 0.398
+
295. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302504.png ; $x \in [ a , b ]$ ; confidence 0.813
  
296. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080162.png ; $( z 0 , z 0 ) \in \gamma$ ; confidence 0.295
+
296. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010057.png ; $L _ { \gamma , n} ^ { 1 }$ ; confidence 0.813
  
297. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080111.png ; $a _ { j } = \alpha _ { i }$ ; confidence 0.410
+
297. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014091.png ; $\frac { \phi } { | \phi | } = \operatorname { exp } ( \xi + \widetilde { \eta } + c ),$ ; confidence 0.812
  
298. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080169.png ; $\alpha = 1 , \dots , 1$ ; confidence 0.205
+
298. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012060.png ; $\phi _ { k } = d ( a _ { k } )$ ; confidence 0.812
  
299. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080219.png ; $1 \leq \alpha \leq g$ ; confidence 0.999
+
299. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021032.png ; $\{ P _ { n } \}$ ; confidence 0.812
  
300. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080110.png ; $F ^ { SW } = \tilde { F }$ ; confidence 0.618
+
300. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008028.png ; $P _ { A } = \{ \mathfrak { p } : F _ { L / K}  ( \mathfrak { p } ) = A \}$ ; confidence 0.812

Latest revision as of 19:07, 19 May 2020

List

1. b11047042.png ; $l + 1$ ; confidence 0.829

2. b120210127.png ; $w _ { 1 } , \dots , w _ { k }$ ; confidence 0.829

3. c02211023.png ; $x _ { 0 } < \ldots < x _ { k }$ ; confidence 0.829

4. a01091014.png ; $C _ { 1 }$ ; confidence 0.829

5. l06002010.png ; $\alpha = \Pi ( l ) = 2 \operatorname { arctan } e ^ { - l / R },$ ; confidence 0.829

6. m13025081.png ; $\mathcal{M} _ { 5 } ( \mathbf{R} ^ { n } ) = \{$ ; confidence 0.829

7. c130070217.png ; $\epsilon = \operatorname { ord } _ { T } ( d x / d \tau )$ ; confidence 0.829

8. b12030086.png ; $\int _ { \mathbf{R} ^ { N } } | g ( y ) | ^ { 2 } d y = \int _ { Y ^ { \prime } } \sum _ { m = 1 } ^ { \infty } | \hat{g} _ { m } ( \eta ) | ^ { 2 } d \eta.$ ; confidence 0.829

9. l120170197.png ; $\pi_2 ( K )$ ; confidence 0.829

10. l12010076.png ; $\sum _ { j \geq 1 } \int _ { \mathbf{R} ^ { n } } | \nabla f _ { j } ( x ) | ^ { 2 } d x \geq K _ { n } \int _ { \mathbf{R} ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x.$ ; confidence 0.829

11. m130260144.png ; $= \{ ( m , b ) \in M ( A ) \bigoplus B : \pi ( m ) = \tau ( b ) \}.$ ; confidence 0.828

12. b110220101.png ; $F _ { \infty } \in \operatorname { Gal } ( \mathbf{C} / \mathbf{R})$ ; confidence 0.828

13. a0120607.png ; $m!$ ; confidence 0.828

14. s1304107.png ; $p ^ { ( i ) }$ ; confidence 0.828

15. b120400118.png ; $p : \mathfrak { b } \rightarrow \mathbf{C}$ ; confidence 0.828

16. a1303203.png ; $\mathsf{E} _ { \theta } ( N ) = \sum _ { n = 1 } ^ { \infty } n \mathsf{P} _ { \theta } ( N = n ) = \sum _ { n = 0 } ^ { \infty } \mathsf{P} _ { \theta } ( N > n ).$ ; confidence 0.828

17. b110100387.png ; $K _ { 2 }$ ; confidence 0.828

18. r11011056.png ; $x ^ { n } > y$ ; confidence 0.828

19. t12014072.png ; $\operatorname { dist } _ { L^\infty } ( u , H ^ { \infty } ) < 1$ ; confidence 0.828

20. s13063020.png ; $( y _ { 1 } , \dots , y _ { s } )$ ; confidence 0.828

21. d12016055.png ; $\pi _ { k } ( S )$ ; confidence 0.828

22. b13023032.png ; $\operatorname { St } _ { G } ( u ) = \{ g \in G : u ^ { g } = u \}$ ; confidence 0.828

23. c13014022.png ; $\sum _ { i = 1 } ^ { r } A _ { i } = J$ ; confidence 0.828

24. s09099047.png ; $f ( z ) = \sum _ { n = 0 } ^ { \infty } a _ { n } z ^ { n }$ ; confidence 0.828

25. c12007066.png ; $Z ( \alpha ) = 1 _ { \mathbf{Z} }$ ; confidence 0.828

26. b12004021.png ; $e > 0$ ; confidence 0.828

27. r08232068.png ; $a , b \leq d , e$ ; confidence 0.828

28. w12005023.png ; $N ^ { r + 1 } = 0$ ; confidence 0.828

29. q130050103.png ; $\operatorname{QS} ( \mathbf{T} , \mathbf{C} )$ ; confidence 0.828

30. d12026034.png ; $\mathsf{P} \{ \operatorname { sup } _ { t } w ( t ) < z \}$ ; confidence 0.828

31. z12001055.png ; $p ^ { ( p ^ { m } - 1 ) / 2 }$ ; confidence 0.828

32. w1300503.png ; $W ( \mathfrak{g} )$ ; confidence 0.828

33. t12005071.png ; $j ^ { r } ( f )$ ; confidence 0.827

34. b13002090.png ; $x \circ y : = ( x | 1 ) y + ( y | 1 ) x - ( x | \sigma ( y ) ) 1,$ ; confidence 0.827

35. c120210114.png ; $\Lambda _ { n } ( \theta ) = \operatorname { log } ( d P _ { n , \theta _ { n } } / P _ { n , \theta } )$ ; confidence 0.827

36. n067520478.png ; $k + l + m = n$ ; confidence 0.827

37. b1301902.png ; $| \zeta ( 1 / 2 + i t ) |$ ; confidence 0.827

38. d12012031.png ; $\Phi : O G \rightarrow A \mathcal{C}$ ; confidence 0.827

39. s12032076.png ; $N = A ^ {r |s} $ ; confidence 0.827

40. j13004014.png ; $V _ { L } ( t )$ ; confidence 0.827

41. f04049042.png ; $\overline{Y} = \sum _ { j } Y _ { j } / n$ ; confidence 0.827

42. a13027080.png ; $X _ { n } \subset X _ { n + 1} $ ; confidence 0.827

43. p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827

44. k12012047.png ; $\frac { - x f ^ { \prime } ( x ) } { f ( x ) } \nearrow \infty , \quad x \rightarrow \infty.$ ; confidence 0.827

45. d12029058.png ; $\sum _ { n = 1 } ^ { \infty } \varphi ( q _ { n } ) f ( q _ { n } )$ ; confidence 0.827

46. f13028028.png ; $\mathbf{c} ^ { \text{T} } \mathbf{x} \in \widetilde { G }$ ; confidence 0.827

47. b12002016.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } } \frac { \| \alpha _ { n } + \beta _ { n } \| } { \| \alpha _ { n } \| ^ { 1 / 2 } } = 1 \text{ a.s.},$ ; confidence 0.827

48. a12026037.png ; $Y = ( Y _ { 1 } , \dots , Y _ { s } )$ ; confidence 0.827

49. a12013052.png ; $\overline { \theta } _ { n } = \overline { \theta } _ { n - 1 } + \frac { 1 } { n } ( \theta _ { n - 1 } - \overline { \theta } _ { n - 1 } ).$ ; confidence 0.827

50. a110610106.png ; $A \in \mathcal{A}$ ; confidence 0.826

51. f13021050.png ; $A ( G _ { 2 } )$ ; confidence 0.826

52. p13012041.png ; $6_2$ ; confidence 0.826

53. s1304506.png ; $\{ ( R _ { i } , S _ { i } ) \} _ { i = 1 } ^ { n }$ ; confidence 0.826

54. e12023053.png ; $= \int _ { a } ^ { b } \left[ \frac { \partial L } { \partial y } ( \sigma ^ { 1 } ( x ) ) z ( x ) + \frac { \partial L } { \partial y ^ { \prime } } ( \sigma ^ { 1 } ( x ) ) z ^ { \prime } ( x ) \right] d x =$ ; confidence 0.826

55. o13005016.png ; $\frac { J - W _ { \Theta } ( z ) J W _ { \Theta } ( w ) ^ { * } } { z - \overline { w } } = 2 i K ^ { * } ( T - z I ) ^ { - 1 } ( T ^ { * } - \overline { w } I ) ^ { - 1 } K,$ ; confidence 0.826

56. q13003021.png ; $p _ { 0 } = \| P _ { 0 } \psi \| ^ { 2 }$ ; confidence 0.826

57. e13007029.png ; $o ( \# A )$ ; confidence 0.826

58. l13001076.png ; $0 \leq s _ { 1 } + \ldots + s _ { n } \leq N$ ; confidence 0.826

59. e120140103.png ; $\left( \varphi \rightarrow \varphi \left( \begin{array} { c } { x } \\ { \varepsilon x \varphi } \end{array} \right) \right) = 1$ ; confidence 0.826

60. c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826

61. b12037087.png ; $n ^ { \Omega ( \sqrt { k } ) }$ ; confidence 0.826

62. w12006017.png ; $\varphi _ { i } : U _ { i } \subset \mathbf{R} ^ { m } \rightarrow M$ ; confidence 0.826

63. l13001060.png ; $C _ { 1 } \operatorname { ln } ^ { n } N \leq \| S _ { N B } \| \leq C _ { 2 } \operatorname { ln } ^ { n } N.$ ; confidence 0.826

64. z12001052.png ; $t \in \mathbf{Z} / p \mathbf{Z}$ ; confidence 0.826

65. k12005069.png ; $H + \lambda ( K _ { X } + B )$ ; confidence 0.826

66. b11070040.png ; $C ( \mathbf{T} )$ ; confidence 0.825

67. b11002021.png ; $b : U \times V \rightarrow \mathbf{R}$ ; confidence 0.825

68. n067520263.png ; $\left\| \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right\| \mapsto \left\| \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right\|.$ ; confidence 0.825

69. b11066033.png ; $L _ { \infty } ( \mathbf{R} )$ ; confidence 0.825

70. c12007089.png ; $K = \mathcal{Z}$ ; confidence 0.825

71. v12002024.png ; $H_{*} ( X , \mathbf{Q} )$ ; confidence 0.825

72. o13001043.png ; $\widehat { f } ( \xi ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } } \int _ { D ^ { \prime } } f ( x ) \overline { u ( x , \xi ) } d x : = \mathcal{F} f.$ ; confidence 0.825

73. s130530104.png ; $S ^ { r - 1 } \subset \mathbf{R} ^ { r }$ ; confidence 0.825

74. e13005014.png ; $\overline{E} ( \alpha , \beta ) = \partial _ { x } \partial _ { y } - \frac { \beta } { x - y } \partial _ { x } + \frac { \alpha } { x - y } \partial y.$ ; confidence 0.825

75. f12009027.png ; $C _ { \epsilon } > 0$ ; confidence 0.825

76. g12005035.png ; $R = R _ { c }$ ; confidence 0.825

77. f12008041.png ; $\| \varphi \| = \operatorname { inf } \| \xi \| \| \eta \|$ ; confidence 0.825

78. v13007041.png ; $w = \phi _ { 0 }$ ; confidence 0.824

79. d12007013.png ; $[ E : K ]$ ; confidence 0.824

80. e120010128.png ; $f = G d \circ e$ ; confidence 0.824

81. m130140117.png ; $Q = \| q _ { p s , i l} \|$ ; confidence 0.824

82. b1204902.png ; $m : \Sigma \rightarrow X$ ; confidence 0.824

83. f12011067.png ; $D ^ { n } = \mathbf{R} ^ { n } \cup S _ { \infty } ^ { n - 1 }$ ; confidence 0.824

84. c12001031.png ; $T : \mathbf{P} ^ { m } \backslash X \rightarrow \mathbf{P} ^ { n }$ ; confidence 0.824

85. e035000135.png ; $\operatorname { lim } _ { k \rightarrow \infty } \frac { S ( T ^ { k } , a f ( \epsilon ) ^ { k } ) } { k } = 2 \mathcal{H} _ { \epsilon } ^ { \prime } ( \xi ),$ ; confidence 0.824

86. w12007050.png ; $\sigma : \mathbf{R} ^ { 2 n } \rightarrow \mathbf{C}$ ; confidence 0.824

87. t12005064.png ; $\overline { \Sigma } \square ^ { i } ( f )$ ; confidence 0.824

88. m1200302.png ; $F _ { \theta }$ ; confidence 0.824

89. f13029068.png ; $f^\rightarrow$ ; confidence 0.824

90. r08232037.png ; $\operatorname { ln } \rho$ ; confidence 0.824

91. a12012071.png ; $( x ^ { * } , y ^ { * } , p ^ { * } )$ ; confidence 0.824

92. l12009035.png ; $[ d f , d g ] _ { P } = d \{ f , g \} _ { P }$ ; confidence 0.824

93. t12013080.png ; $x , y \in \mathbf{R} ^ { l + 1 }$ ; confidence 0.823

94. b13010021.png ; $\widetilde{T} ( z ) = \langle T k _ { z } , k _ { z } \rangle.$ ; confidence 0.823

95. b12027072.png ; $\{ u _ { j } \}$ ; confidence 0.823

96. v09691026.png ; $\overline{h} ( x )$ ; confidence 0.823

97. a11050011.png ; $\mathbf{Q} _ { p }$ ; confidence 0.823

98. p12013035.png ; $n \rightarrow \infty$ ; confidence 0.823

99. b12013013.png ; $k _ { z } ( w )$ ; confidence 0.823

100. a11041046.png ; $X ^ { \prime }$ ; confidence 0.823

101. f0409807.png ; $H _ { 2 } ( M ; \mathbf{Z} )$ ; confidence 0.823

102. m130260176.png ; $\mathbf{C M} _ { n } = C _ { 0 } ( ]0,1 ] ) \otimes \mathbf{M} _ { n }$ ; confidence 0.823

103. d12015017.png ; $( v , k , \lambda , n ) = \left( \frac { q ^ { d + 1 } - 1 } { q - 1 } , \frac { q ^ { d } - 1 } { q - 1 } , \frac { q ^ { d - 1 } - 1 } { q - 1 } , q ^ { d - 1 } \right) ,$ ; confidence 0.823

104. i13007039.png ; $M : = \left\{ \theta : \theta \in \mathbf{C} ^ { 3 } , \theta . \theta = k ^ { 2_0 } \right\}$ ; confidence 0.823

105. m13018068.png ; $y \leq z$ ; confidence 0.823

106. w12007018.png ; $\mathbf{p} _ { k }$ ; confidence 0.823

107. v11006013.png ; $D = \frac { E h ^ { 3 } } { 12 ( 1 - \nu ^ { 2 } ) }$ ; confidence 0.823

108. l12017021.png ; $L^3$ ; confidence 0.823

109. l12014015.png ; $p ( T ) x = 0$ ; confidence 0.823

110. q12002031.png ; $\mathcal{C} = \operatorname { Fun } _ { q } ( C )$ ; confidence 0.823

111. o13003051.png ; $Y _ { j } = - \sqrt { 3 } \lambda _ { j } ( j = 1,2,3 ) , Y _ { 4 } = \sqrt { 3 } \lambda _ { 8 }$ ; confidence 0.822

112. b12017016.png ; $\mathcal{G} _ { \alpha } ^ { - 1 } = \mathcal{G} _ { - \alpha }$ ; confidence 0.822

113. b13020035.png ; $e _ { i } , f _ { i } , h _ { i j }$ ; confidence 0.822

114. k055840351.png ; $Z ^ { * } Z \leq B _ { 0 }$ ; confidence 0.822

115. t1301306.png ; $T _ { 0 } , T _ { 1 } \in \operatorname { add } T$ ; confidence 0.822

116. a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822

117. s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822

118. p11015047.png ; $x \preceq y \preceq z \Rightarrow y \in H.$ ; confidence 0.822

119. r13008065.png ; $f ( p ) = L g : = \int _ { T } g ( t ) \overline { h ( t , p ) } d m ( t ).$ ; confidence 0.822

120. s13037026.png ; $t = ( t _ { 1 } , \dots , t _ { k } )$ ; confidence 0.822

121. k13002022.png ; $T = \sum _ { t } t ( t - 1 ) / 2$ ; confidence 0.822

122. m120030106.png ; $\frac { 1 } { n } \sum _ { i = 1 } ^ { n } \rho \left( \frac { r_i } { s } \right) = K,$ ; confidence 0.822

123. e13007054.png ; $f ^ { \prime } ( x _ { m } ) = m$ ; confidence 0.822

124. c13014056.png ; $\emptyset \neq M \subseteq X$ ; confidence 0.822

125. c13001015.png ; $2 \kappa \Delta c - f _ { 0 } ^ { \prime } ( c ) = \lambda \text { in } V,$ ; confidence 0.821

126. m13025055.png ; $\mathcal{M} _ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.821

127. a1103006.png ; $H_{*} \Omega X$ ; confidence 0.821

128. s09067080.png ; $V ^ { * } = \operatorname { Hom } ( V , \mathbf{R} )$ ; confidence 0.821

129. h12002026.png ; $| l | = m ( l )$ ; confidence 0.821

130. f13007016.png ; $F ( 2,6 ) = \pi _ { 1 } ( M _ { 3 } )$ ; confidence 0.821

131. x12001082.png ; $S = Q ^ { * } G$ ; confidence 0.821

132. w130080182.png ; $( \overline { \partial } + \mu \partial + \overline{L}) \psi = 0$ ; confidence 0.821

133. q1200203.png ; $\operatorname{SL} ( n , \mathbf{C} )$ ; confidence 0.821

134. l12012047.png ; $O _ { K , \text{p} }$ ; confidence 0.821

135. l11002062.png ; $x ^ { - } = x \wedge e$ ; confidence 0.821

136. b11002036.png ; $S : V ^ { \prime } \rightarrow U$ ; confidence 0.821

137. c120300110.png ; $\mathcal{O} _ { 2 }$ ; confidence 0.821

138. k13004013.png ; $x _ { i } = \left\{ \begin{array} { l l } { 1 } & { \text { if } a _ { i } \leq c - \sum _ { j = 1 } ^ { i - 1 } a _ { j } x _ { j }, } \\ { 0 } & { \text { otherwise. } } \end{array} \right.$ ; confidence 0.821

139. t1301509.png ; $f \in L ^ { \infty } ( \mathbf{T} )$ ; confidence 0.821

140. c02327026.png ; $r ( A \bigcup B ) + r ( A \bigcap B ) \leq r ( A ) + r ( B ).$ ; confidence 0.820

141. a1302308.png ; $\operatorname { lim } _ { n \rightarrow \infty } ( ( 1 - Q ) ( I - P ) ) ^ { n } f = ( I - P _ { \overline{U + V} } ) f$ ; confidence 0.820

142. z13008031.png ; $m = k - l$ ; confidence 0.820

143. m13001055.png ; $y _ { i } = f ( x _ { i } )$ ; confidence 0.820

144. a01091016.png ; $C_i$ ; confidence 0.820

145. m13014093.png ; $f \in C ( \mathbf{C} ^ { n } )$ ; confidence 0.820

146. w12007031.png ; $\xi \in \mathbf{C} ^ { k }$ ; confidence 0.820

147. m13025021.png ; $\mathcal{S} _ { \Gamma } ^ { \prime } ( \mathbf{R} ^ { n } )$ ; confidence 0.820

148. n12004013.png ; $A _ { N } ( F f \circ s \circ f ^ { - 1 } ) = ( G f ) \circ A _ { M } ( s ) \circ f ^ { - 1 }$ ; confidence 0.820

149. q12007026.png ; $k [ g ]$ ; confidence 0.820

150. h04602042.png ; $| \Delta P ( i \omega ) | < | R ( i \omega ) | , \quad \text { a.a. } \omega,$ ; confidence 0.820

151. a1200605.png ; $\Omega = \mathbf{R} ^ { m }$ ; confidence 0.820

152. r1300106.png ; $a _ { 0 } ( 1 - x _ { 0 } f ) + a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1.$ ; confidence 0.820

153. i130030148.png ; $\operatorname{Ch} : K _ { 0 } ( A ) \rightarrow \operatorname{HC} _ { 2 n } ( A )$ ; confidence 0.820

154. a12015029.png ; $\operatorname { Der } ( \mathfrak { g } )$ ; confidence 0.820

155. d130060103.png ; $Z \in X$ ; confidence 0.820

156. t12005021.png ; $\Sigma ^ { i , j } ( f ) = \Sigma ^ { j } ( f | _ { \Sigma ^ { i } ( f ) } ).$ ; confidence 0.820

157. z13003073.png ; $b,$ ; confidence 0.820

158. p13013058.png ; $p _ { \pi }$ ; confidence 0.820

159. z130110114.png ; $z ^ { - ( 1 + q ) }$ ; confidence 0.820

160. s12017094.png ; $s _ { 1 } \geq \ldots \geq s _ { m } \geq 0$ ; confidence 0.820

161. b12029023.png ; $H _ { f } ^ { U }$ ; confidence 0.820

162. d12024054.png ; $1 / 2 \operatorname{tr}$ ; confidence 0.820

163. s12021011.png ; $V _ { Y }$ ; confidence 0.820

164. s13062016.png ; $( \operatorname { cos } \alpha ) y ( 0 ) + ( \operatorname { sin } \alpha ) y ^ { \prime } ( 0 ) = 0,$ ; confidence 0.820

165. b12049038.png ; $\{ A _ { j n } \}$ ; confidence 0.820

166. d031280172.png ; $i \in \mathbf{Z}$ ; confidence 0.819

167. b1300908.png ; $F ( u ) = \int _ { \mathbf{R} } \left( u ^ { 2 } + \frac { 1 } { 3 } u ^ { 3 } \right) d x$ ; confidence 0.819

168. t13015062.png ; $C ^ { * } ( S ) \otimes _ { \delta } \mathcal{C} _ { 0 } ( S )$ ; confidence 0.819

169. a12006075.png ; $u \in D ( S ^ { 2 } )$ ; confidence 0.819

170. b120430116.png ; $\varepsilon \left( \begin{array} { l l } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right)$ ; confidence 0.819

171. e12019010.png ; $p , v \in X$ ; confidence 0.819

172. t13014044.png ; $\mathbf{X} \mapsto \underline{\operatorname { dim }} \mathbf{X} = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ ; confidence 0.819

173. k05578013.png ; $F ( \tau ) = \frac { 2 \pi \operatorname { sinh } \pi \tau } { \pi ^ { 2 } | I _ { i \alpha } ( \alpha ) | ^ { 2 } } \times$ ; confidence 0.819

174. a01160082.png ; $k ^ { \prime }$ ; confidence 0.819

175. f12024085.png ; $\phi ( t _ { 0 } ) = x ( t _ { 0 } )$ ; confidence 0.819

176. h120020148.png ; $\{ \widehat { \phi } ( j + k ) \}_{ j , k \geq 0}$ ; confidence 0.819

177. g12004014.png ; $G _ { 0 } ^ { s } ( \Omega ) = G ^ { s } ( \Omega ) \cap C _ { 0 } ^ { \infty } ( \Omega )$ ; confidence 0.819

178. s130620222.png ; $B \subseteq A$ ; confidence 0.819

179. m12009036.png ; $Q ( x ) e ^ { i \xi x }$ ; confidence 0.819

180. b1201008.png ; $X \equiv ( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.819

181. a12017030.png ; $R = \int _ { 0 } ^ { + \infty } \beta ( a ) \Pi ( a ) d a,$ ; confidence 0.819

182. s12021013.png ; $0 \neq \phi \in E ( \lambda , D _ { Y } ) \text { with } \pi ^ { * } \phi \in E ( \mu , D _ { Z } ).$ ; confidence 0.819

183. g130060111.png ; $\{ a_{i , i} \} _ { i = 1 } ^ { n }$ ; confidence 0.819

184. a130040790.png ; $g = g ^ { \prime }$ ; confidence 0.819

185. a12010019.png ; $x \notin D ( A )$ ; confidence 0.819

186. m130260152.png ; $b = b ^ { * }$ ; confidence 0.818

187. b1202201.png ; $\partial _ { t } f + v . \nabla _ { x } f = \frac { Q ( f ) } { \varepsilon },$ ; confidence 0.818

188. s120340167.png ; $\widetilde { \Sigma } = \Sigma \backslash \cup _ { i = 1,2,3 } U _ { i }$ ; confidence 0.818

189. c13008033.png ; $N _ { A } ( x )$ ; confidence 0.818

190. c02327027.png ; $A \subseteq S$ ; confidence 0.818

191. v12003018.png ; $| \mu _ { n } ( E ) | < \varepsilon$ ; confidence 0.818

192. b1302304.png ; $[G : H ] < \infty$ ; confidence 0.818

193. a012410123.png ; $2 d$ ; confidence 0.818

194. c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 },$ ; confidence 0.818

195. s130510147.png ; $\sigma ( \mathbf{u} ) = \gamma ( u _ { 1 } ) \oplus \ldots \oplus \gamma ( u _ { m } )$ ; confidence 0.818

196. e120190203.png ; $\cosh d ( x , y ) = \sqrt { 1 + x ^ { 2 } } \sqrt { 1 + y ^ { 2 } } - x y$ ; confidence 0.818

197. s1202909.png ; $\sum _ { k = 1 } ^ { \infty } x _ {{ n } _ { k }}$ ; confidence 0.818

198. i1200202.png ; $f ( x ) = \frac { 1 } { ( \pi x ) ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( 2 \pi \tau ) \times \times \left| \Gamma \left( \frac { 1 } { 2 } - \mu - i \tau \right) \right| ^ { 2 } W _ { \mu , i \tau } ( x ) F ( \tau ) d \tau ;$ ; confidence 0.818

199. f12004032.png ; $\overline{\mathbf{R}}$ ; confidence 0.818

200. b1302302.png ; $\{ H _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.818

201. a12027055.png ; $W _ { P } ( \rho ) / W _ { P } ( \operatorname { det } _ { \rho } )$ ; confidence 0.818

202. e13003079.png ; $\mathcal{A} ( \Gamma \backslash G ( \mathbf{R} ) ) \subset C _ { 0 } ( \Gamma \backslash G ( \mathbf{R} ) )$ ; confidence 0.818

203. h120020126.png ; $f \in \operatorname{BMOA} = \operatorname{BMO} \cap H ^ { 2 }$ ; confidence 0.817

204. l12004013.png ; $\Delta x = x _ { i + 1/2} - x _ { i - 1/2 } $ ; confidence 0.817

205. r13007043.png ; $B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \overline { \varphi _ { j } ( x ) } \varphi _ { j } ( y )$ ; confidence 0.817

206. c023150262.png ; $\beta_3$ ; confidence 0.817

207. w13017051.png ; $f ( \lambda ) = ( 2 \pi ) ^ { - 1 } k ( e ^ { - i \lambda } ) \Sigma k ^ { * } ( e ^ { - i \lambda } ),$ ; confidence 0.817

208. a12028066.png ; $( \mathcal{X} , \mathcal{X}_{*} )$ ; confidence 0.817

209. c12029029.png ; $\operatorname { Ker } ( \mu )$ ; confidence 0.817

210. s13036023.png ; $Y _ { t } = B _ { t } - \operatorname { min } _ { 0 \leq s \leq t } B _ { s } \bigwedge 0,$ ; confidence 0.817

211. c023250155.png ; $N ( A )$ ; confidence 0.817

212. v0969104.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \sum _ { k = 0 } ^ { n - 1 } U ^ { k } h = \overline{h}$ ; confidence 0.817

213. b12037064.png ; $L \subseteq \{ 0,1 \}^*$ ; confidence 0.817

214. w12013021.png ; $\sigma _ { ess } ( - \Delta + V ) = [ 0 , \infty )$ ; confidence 0.817

215. w12003057.png ; $[ 0 , \omega ]$ ; confidence 0.817

216. d12003070.png ; $\operatorname{DB} _ { 1 } ^ { * }$ ; confidence 0.817

217. w12021038.png ; $( s _ { 1 } , \dots , s _ { k } , B _ { m } )$ ; confidence 0.817

218. o13001029.png ; $\sigma ( \alpha ) : = \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta$ ; confidence 0.817

219. a13032059.png ; $\theta = q$ ; confidence 0.817

220. r13010056.png ; $( i , x )$ ; confidence 0.817

221. a130240312.png ; $\operatorname{SS} _ { e } = \sum _ { i j k } ( y _ { i j k } - y _ { i j .} ) ^ { 2 }$ ; confidence 0.817

222. p130100166.png ; $f : T \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.817

223. d12013014.png ; $S ( V ) ^ { \operatorname{GL} ( V ) }$ ; confidence 0.817

224. w11006014.png ; $\mathsf{P} ( \overline { B } ( t , \omega ) = B ( t , \omega ) ) = 1$ ; confidence 0.816

225. l06105088.png ; $F ( \omega )$ ; confidence 0.816

226. z13011035.png ; $G _ { n } ( f_{( k , n )} ) = k$ ; confidence 0.816

227. v13011049.png ; $d \beta _ { j } / d t$ ; confidence 0.816

228. b1301604.png ; $\| f \| : = \{ \| f ( x ) \| : x \in X \}.$ ; confidence 0.816

229. s12028036.png ; $[ g ] : Y \rightarrow P$ ; confidence 0.816

230. b13029048.png ; $ \operatorname{l} _ { A } ( A / \mathfrak { q } ) - e _ { \mathfrak { q } } ^ { 0 } ( A )$ ; confidence 0.816

231. m130140107.png ; $\mathcal{D} _ { 1 }$ ; confidence 0.816

232. l12019047.png ; $\dot { X } = A ( t ) X$ ; confidence 0.816

233. k12005072.png ; $f ^ { * } f_{*} \mathcal{O} _ { X } ( m q ( H + \lambda ( K _ { X } + B ) ) ) \rightarrow$ ; confidence 0.816

234. l06105060.png ; $f ( [ a , b ] )$ ; confidence 0.816

235. w130090110.png ; $\frac { 1 } { \sqrt { n _ { 1 } ! n _ { 2 } ! \ldots } }.$ ; confidence 0.816

236. t13013050.png ; $\operatorname{Hom}_\Lambda( T ,. ) : \operatorname { mod } \Lambda \rightarrow \operatorname{mod} \Gamma$ ; confidence 0.816

237. m12012059.png ; $eR Ce$ ; confidence 0.816

238. s13053093.png ; $( r - r _ { P } - 1 )$ ; confidence 0.816

239. c02583040.png ; $T ^ { n } \rightarrow 0$ ; confidence 0.816

240. a12015043.png ; $\operatorname { Ad } ( G ) X = \{ \operatorname { Ad } ( g ) X : g \in G \}$ ; confidence 0.816

241. b12010049.png ; $U ( t ) = e ^ { \mathcal{A} } S ( - t ) e ^ { - \mathcal{A} }.$ ; confidence 0.816

242. a12013042.png ; $\left( h _ { \theta } ^ { * } - \frac { I } { 2 } \right) V + V \left( h _ { \theta } ^ { * } - \frac { I } { 2 } \right) ^ { T } = R ( \theta ^ { * } ),$ ; confidence 0.816

243. b1201005.png ; $\nu \geq 1$ ; confidence 0.815

244. c120170149.png ; $\overline{Z} = \alpha 1 + \beta Z$ ; confidence 0.815

245. l13006068.png ; $N _ { 2 } ^ { * } = \operatorname { min } _ { i } \{ m _ { i } + p _ { i } \}$ ; confidence 0.815

246. a130040754.png ; $\operatorname{mng}_{\mathcal{S}_{P \cup R}} , \mathfrak { M } ( r ) = \operatorname { mng } _{\mathcal{S}_ { P \cup R }} , \mathfrak { M } ( \varphi _ { r } )$ ; confidence 0.815

247. g11016028.png ; $M _ { 24 }$ ; confidence 0.815

248. k0558405.png ; $[ x , y ] = \overline{[ y , x ]}$ ; confidence 0.815

249. a01130059.png ; $S ^ { n }$ ; confidence 0.815

250. k055840352.png ; $\operatorname { Im } \sigma ( Z ) \geq 0$ ; confidence 0.815

251. d1102202.png ; $L y \equiv y ^ { ( n ) } + p _ { 1 } ( x ) y ^ { ( n - 1 ) } + \ldots + p _ { n } ( x ) y = 0$ ; confidence 0.815

252. a13027050.png ; $g \in Y$ ; confidence 0.815

253. a01193049.png ; $G / H$ ; confidence 0.815

254. a12025089.png ; $\mathcal{K}$ ; confidence 0.815

255. f13019037.png ; $- j ^ { 2 } a_j$ ; confidence 0.815

256. h13002072.png ; $\mathcal{F} ( S ^ { d } ) ^ { q }$ ; confidence 0.815

257. a01055066.png ; $B _ { G }$ ; confidence 0.815

258. a12022038.png ; $S , T \in \mathcal{L} ( X )$ ; confidence 0.814

259. g13001092.png ; $\operatorname{GF} ( 2 ^ { 593 } )$ ; confidence 0.814

260. t12020060.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , 2 n - 1 } \frac { | s _ { k } | } { M _ { 2 } ( k ) } = 1$ ; confidence 0.814

261. m06222054.png ; $P _ { 0 } ^ { n + 1 }$ ; confidence 0.814

262. a011450177.png ; $X ( \mathbf{C} )$ ; confidence 0.814

263. c13015030.png ; $O ( \varepsilon ^ { q - N } )$ ; confidence 0.814

264. k05502018.png ; $T ^ { t } \xi$ ; confidence 0.814

265. a12005014.png ; $t \in [ 0 , T]$ ; confidence 0.814

266. t12020054.png ; $| z _ { 1 } | \geq \ldots \geq | z _ { n } |$ ; confidence 0.814

267. a11037017.png ; $X _ { 2 }$ ; confidence 0.814

268. a01060011.png ; $C ^ { 2 }$ ; confidence 0.814

269. t13014060.png ; $\mathbf{M} _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } = \mathbf{M} _ { v _ { i } \times v _ { j } } ( K )$ ; confidence 0.814

270. k055840243.png ; $q \bar{q}$ ; confidence 0.814

271. w1200104.png ; $\mathbf{C} ^ { * } = \mathbf{C} \backslash \{ 0 , \infty \}$ ; confidence 0.814

272. i13005023.png ; $\left( \begin{array} { c c } { t ( k ) } & { r _ { - } ( k ) } \\ { r _ { + } ( k ) } & { t ( k ) } \end{array} \right) = S ( k )$ ; confidence 0.814

273. k1300103.png ; $\langle L \rangle$ ; confidence 0.814

274. n13003073.png ; $- h \Delta$ ; confidence 0.814

275. l12019024.png ; $\sum _ { i = 1 } ^ { m } \left( \sum _ { j = 1 } ^ { m } a _ { i j } x _ { j } \right) \frac { \partial _ { v } } { \partial x _ { i } } = U.$ ; confidence 0.813

276. e12007019.png ; $|\mathbf{v} ( M ) | = 1$ ; confidence 0.813

277. v13005053.png ; $D v$ ; confidence 0.813

278. d120020176.png ; $( \operatorname{MP} )$ ; confidence 0.813

279. j13002042.png ; $p = o ( n ^ { - 1 / 2 } )$ ; confidence 0.813

280. g13004035.png ; $4 ^ { - k }$ ; confidence 0.813

281. c120180403.png ; $S ( \widetilde{g} ) = 0 \in C ^ { \infty } ( \widetilde { M } )$ ; confidence 0.813

282. f12009069.png ; $\mathcal{F} \mu$ ; confidence 0.813

283. n067520147.png ; $A \in M _ { n \times n } ( K )$ ; confidence 0.813

284. s12017053.png ; $x \underset{ \sim i }{\succ} y$ ; confidence 0.813

285. a0119907.png ; $\leq x$ ; confidence 0.813

286. b11066058.png ; $| x ^ { \prime } - x | \leq | x - y | / 2$ ; confidence 0.813

287. c130160170.png ; $2 ^ { - n ^ { k } }$ ; confidence 0.813

288. s12018066.png ; $\langle x , x \rangle > 0$ ; confidence 0.813

289. a120280122.png ; $M ^ { U } ( E ) = \{ x \in \mathcal{X} : \operatorname { sp } _ { U } ( x ) \subseteq E \}.$ ; confidence 0.813

290. d03027014.png ; $p = [ cn ]$ ; confidence 0.813

291. a12005098.png ; $A ( . )$ ; confidence 0.813

292. d12013016.png ; $\{ c _ { n,j } \}$ ; confidence 0.813

293. c12007065.png ; $Z ( C ) = \mathcal{Z}$ ; confidence 0.813

294. b12053020.png ; $( f _ { n } ) _ { n = 1 } ^ { \infty } \subset L _ { + }$ ; confidence 0.813

295. d0302504.png ; $x \in [ a , b ]$ ; confidence 0.813

296. l12010057.png ; $L _ { \gamma , n} ^ { 1 }$ ; confidence 0.813

297. t12014091.png ; $\frac { \phi } { | \phi | } = \operatorname { exp } ( \xi + \widetilde { \eta } + c ),$ ; confidence 0.812

298. d12012060.png ; $\phi _ { k } = d ( a _ { k } )$ ; confidence 0.812

299. c12021032.png ; $\{ P _ { n } \}$ ; confidence 0.812

300. c13008028.png ; $P _ { A } = \{ \mathfrak { p } : F _ { L / K} ( \mathfrak { p } ) = A \}$ ; confidence 0.812

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/39. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/39&oldid=44449