Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/7"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 7 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(25 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017012.png ; $\Pi ( \alpha ) = \operatorname { exp } ( - \int _ { 0 } ^ { \alpha } \mu ( \sigma ) d \sigma )$ ; confidence 0.946
+
1. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240217.png ; $\operatorname { dim } ( \omega ) = r - q$ ; confidence 0.998
  
2. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220107.png ; $0 \rightarrow F ^ { i + 1 - m } H _ { DR } ^ { i } ( X / R ) \rightarrow H _ { B } ^ { i } ( X / R , R ( i - m ) )$ ; confidence 0.472
+
2. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n1300506.png ; $1 - ( s ^ { 2 } \mu , s \mu , r )$ ; confidence 0.998
  
3. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022051.png ; $\partial _ { t } u + \sum _ { j = 1 } ^ { N } \frac { \partial } { \partial x _ { j } } F _ { j } ( u ) = 0$ ; confidence 0.979
+
3. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004019.png ; $U ( t ) \psi ( 0 )$ ; confidence 0.998
  
4. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010101.png ; $L _ { \rho } ( a ; w ) = \sum _ { j , k } \rho _ { j \overline { k } } ( a ) w _ { j } \overline { w } _ { k }$ ; confidence 0.713
+
4. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024026.png ; $\{ A B C \} : = 1 / 2 ( A B C + C B A )$ ; confidence 0.998
  
5. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200204.png ; $\int _ { 0 } ^ { \infty } \frac { f ^ { * } u _ { t } ^ { * } v _ { t } } { t } d t = \sigma _ { \lambda , v } f$ ; confidence 0.117
+
5. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042019.png ; $( V , W )$ ; confidence 0.998
  
6. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026037.png ; $\| V ^ { n } \| ^ { 2 } \leq \| V ^ { 0 } \| ^ { 2 } + C \sum _ { m = 1 } ^ { n } k \| ( L _ { k k } V ) ^ { m } \| ^ { 2 }$ ; confidence 0.484
+
6. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017018.png ; $\{ F ( A , d ) : A \in \mathcal X \}$ ; confidence 0.998
  
7. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031039.png ; $e _ { N } ( H _ { i j } ^ { k } ) \asymp n ^ { - k } \cdot ( \operatorname { log } n ) ^ { ( \phi - 1 ) / 2 }$ ; confidence 0.058
+
7. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180221.png ; $\varphi \in \mathcal{E}$ ; confidence 0.998
  
8. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012096.png ; $\mu ^ { ( t + 1 ) } = \frac { \sum _ { i } w _ { i } ^ { ( t + 1 ) } y _ { i } } { \sum _ { i } w _ { i } ^ { ( t + 1 ) } }$ ; confidence 0.942
+
8. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018018.png ; $> y$ ; confidence 0.998
  
9. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300307.png ; $M _ { n } = \{ P ( X , Y ) = \sum _ { \nu = 0 } ^ { n } a _ { \nu } X ^ { \nu } Y ^ { n - \nu } : a _ { \nu } \in Q \}$ ; confidence 0.635
+
9. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005091.png ; $\phi \in [ 0,1 ]$ ; confidence 0.998
  
10. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011060.png ; $E = - \nabla \phi - \frac { 1 } { c } \frac { \partial A } { \partial t } , B = \nabla \times A$ ; confidence 0.913
+
10. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f13017024.png ; $\sigma ( A _ { 2 } ( G ) , C V _ { 2 } ( G ) )$ ; confidence 0.998
  
11. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009028.png ; $U _ { n + 1 } ( x , y ) = \sum _ { j = 0 } ^ { [ n / 2 ] } \frac { ( n - j ) ! } { j ! ( n - 2 j ) ! } x ^ { n - 2 j } y ^ { j }$ ; confidence 0.865
+
11. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010044.png ; $\Delta ( z ) = ( 60 G _ { 4 } ) ^ { 3 } - 27 ( 140 G _ { 6 } ) ^ { 2 }$ ; confidence 0.998
  
12. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010090.png ; $J = \left( \begin{array} { c c } { 0 } & { I _ { n } } \\ { - I _ { N } } & { 0 } \end{array} \right)$ ; confidence 0.248
+
12. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017400/b017400124.png ; $\Phi ^ { - } ( t )$ ; confidence 0.998
  
13. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060113.png ; $\cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i } , j ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A )$ ; confidence 0.402
+
13. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005021.png ; $W _ { k } = W ( G , K ) _ { k } = W ( G , K ) / F W.$ ; confidence 0.998
  
14. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043320/g0433201.png ; $\| u \| _ { \pi / 2 } ^ { 2 } \leq c _ { 1 } \operatorname { Re } B [ u , u ] = c _ { 2 } \| u \| _ { 0 } ^ { 2 }$ ; confidence 0.077
+
14. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005068.png ; $\lambda \neq + \infty$ ; confidence 0.998
  
15. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004075.png ; $( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 )$ ; confidence 0.972
+
15. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060770/l06077086.png ; $r ( x )$ ; confidence 0.998
  
16. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007018.png ; $\int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { det } C _ { s } ( t ) d t \geq$ ; confidence 0.850
+
16. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070178.png ; $R ^ { \prime } ( P )$ ; confidence 0.998
  
17. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012040.png ; $\int _ { 0 } ^ { \infty } \frac { - \operatorname { ln } f ( x ^ { 2 } ) } { 1 + x ^ { 2 } } d x < \infty$ ; confidence 0.999
+
17. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016028.png ; $p ^ { \prime } = p$ ; confidence 0.998
  
18. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012041.png ; $\int _ { 0 } ^ { \infty } \frac { - \operatorname { ln } f ( x ^ { 2 } ) } { 1 + x ^ { 2 } } d x = \infty$ ; confidence 0.999
+
18. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019078.png ; $\{ p , q \} \equiv \{ r , s \}$ ; confidence 0.998
  
19. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020132.png ; $( M ^ { \perp } \cup N ^ { \perp } ) ^ { \perp } = M ^ { \perp \perp } \cap ^ { N ^ { \perp } \perp }$ ; confidence 0.401
+
19. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008014.png ; $( f ( x ) , K ( x , y ) ) = f ( y )$ ; confidence 0.998
  
20. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006047.png ; $( \phi , e ^ { - i H t } \phi ) = \frac { 1 } { 2 \pi i } \int _ { C } e ^ { - i z t } ( \phi , G ( z ) \phi ) d z$ ; confidence 0.897
+
20. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024072.png ; $y ^ { 2 } = x ^ { 3 } - p ^ { 2 } x$ ; confidence 0.998
  
21. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003041.png ; $\gamma ^ { * } = \operatorname { sup } _ { x } | \operatorname { IF } ( x ; T , F _ { \theta } ) |$ ; confidence 0.603
+
21. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015034.png ; $H ^ { 2 } ( S )$ ; confidence 0.998
  
22. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003045.png ; $\psi _ { b } ( x ) = [ x ] ^ { b } - b = \operatorname { min } ( b , \operatorname { max } ( - b , x ) )$ ; confidence 0.608
+
22. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017080.png ; $( A , d )$ ; confidence 0.998
  
23. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001023.png ; $A ( \alpha ^ { \prime } , \alpha , - k ) = \overline { A ( \alpha ^ { \prime } , \alpha , - k ) }$ ; confidence 0.975
+
23. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027210/c027210182.png ; $m = 3$ ; confidence 0.998
  
24. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009043.png ; $\operatorname { lim } _ { x \rightarrow \eta } P _ { \Omega } ( x , \xi ) = 0 , \eta \neq \xi$ ; confidence 0.994
+
24. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003044.png ; $F _ { \theta } ( x ) = \Phi ( x - \theta )$ ; confidence 0.998
  
25. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015070.png ; $\int _ { | x - \alpha _ { j } | \leq r _ { j } } f ( x ) d x , \quad | \alpha _ { j } | + r _ { j } < 1 , j = 1,2$ ; confidence 0.075
+
25. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007014.png ; $M ( P Q ) = M ( P ) M ( Q )$ ; confidence 0.998
  
26. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005066.png ; $H _ { new } = H - \frac { H y y ^ { T } H } { y ^ { T } H y } + \frac { s s ^ { T } } { s ^ { T } y } + \phi . w v ^ { T }$ ; confidence 0.576
+
26. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005022.png ; $H ^ { * } ( W _ { k } )$ ; confidence 0.998
  
27. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r1300403.png ; $0 < \lambda _ { 1 } ( \Omega ) < \lambda _ { 2 } ( \Omega ) \leq \lambda _ { 3 } ( \Omega ) \leq$ ; confidence 0.996
+
27. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025097.png ; $( k , n )$ ; confidence 0.998
  
28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150133.png ; $\pi _ { G \times G _ { x } } s : G \times _ { G _ { X } } S \rightarrow ( G \times _ { G _ { X } } S ) / / G$ ; confidence 0.274
+
28. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062013.png ; $T = - d ^ { 2 } / d x ^ { 2 } + q ( x )$ ; confidence 0.998
  
29. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005012.png ; $\Sigma ^ { i } ( f ) = \{ x \in V : \operatorname { dim } \operatorname { Ker } d f _ { x } = i \}$ ; confidence 0.240
+
29. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k1300508.png ; $N \simeq 10 ^ { 19 }$ ; confidence 0.998
  
30. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301406.png ; $\Phi ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j }$ ; confidence 0.648
+
30. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015078.png ; $A \in \Phi _ { - } ( X , Y ) \backslash \Phi ( X , Y ),$ ; confidence 0.998
  
31. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004017.png ; $X ( p ) = \operatorname { Re } \int _ { p _ { 0 } } ^ { p } ( \omega _ { 1 } , \ldots , \omega _ { n } )$ ; confidence 0.637
+
31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014034.png ; $\phi \mapsto T _ { \phi }$ ; confidence 0.998
  
32. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080216.png ; $T _ { i } = - \frac { n + 1 } { n + 1 - i } \operatorname { Res } _ { \infty } W ^ { 1 - [ i / ( n + 1 ) ] } d p$ ; confidence 0.909
+
32. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006014.png ; $p - 1 \mid 2 n$ ; confidence 0.998
  
33. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008056.png ; $\partial _ { i } \rightarrow \partial _ { i } + \epsilon ( \partial / \partial T _ { i } )$ ; confidence 0.989
+
33. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030038.png ; $| B ( 2,4 ) | = 2 ^ { 12 }$ ; confidence 0.998
  
34. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018069.png ; $r _ { 2 } ( t , s ) = \prod _ { l = 1 } ^ { N } t _ { i } \wedge s _ { i } - \prod _ { l = 1 } ^ { N } t _ { l } s _ { l }$ ; confidence 0.325
+
34. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017012.png ; $Z ( G ) \leq \omega ( G ) \leq Z _ { 2 } ( G )$ ; confidence 0.998
  
35. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017017.png ; $K _ { j } \in R ^ { n \times n } , K _ { 0 } = l , \sum _ { j = 0 } ^ { \infty } \| K _ { j } \| ^ { 2 } < \infty$ ; confidence 0.753
+
35. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064540/m0645407.png ; $D ( u )$ ; confidence 0.998
  
36. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003070.png ; $\hat { f } ( w ) = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { \infty } f ( x ) e ^ { i u x } d x$ ; confidence 0.684
+
36. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230101.png ; $H \in \mathcal{O} ( p , n )$ ; confidence 0.998
  
37. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050169.png ; $\zeta _ { K } ( z ) = \sum _ { I \in G _ { K } } | I | ^ { - z } = \sum _ { n = 1 } ^ { \infty } K ( n ) n ^ { - z }$ ; confidence 0.465
+
37. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150106.png ; $i ( F ( x ) ) = 0$ ; confidence 0.998
  
38. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006027.png ; $A u = \sum _ { j = 1 } ^ { m } \alpha _ { j } ( x ) \frac { \partial u } { \partial x _ { j } } + c ( x ) u$ ; confidence 0.749
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014022.png ; $2 \leq n < \infty$ ; confidence 0.998
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007096.png ; $B _ { j } ( t , x , D _ { x } ) u = 0 , \text { on } [ 0 , T ] \times \partial \Omega , j = 1 , \ldots , m$ ; confidence 0.592
+
39. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m1201504.png ; $X ( p \times n )$ ; confidence 0.998
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007076.png ; $| \frac { d } { d t } A ( t ) ^ { - 1 } - \frac { d } { d s } A ( s ) ^ { - 1 } \| \leq K _ { 2 } | t - s | ^ { \eta }$ ; confidence 0.840
+
40. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027600/c0276007.png ; $0 \leq \phi < 2 \pi$ ; confidence 0.998
  
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006086.png ; $\overline { H _ { 1 } } \cdot \overline { H _ { 2 } } = \overline { H _ { 1 } \cup _ { d } H _ { 2 } }$ ; confidence 0.417
+
41. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001065.png ; $V _ { 0 } = V$ ; confidence 0.998
  
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060133.png ; $F ^ { \# } ( n ) \sim K _ { 0 } C _ { 0 } q _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.297
+
42. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021027.png ; $x ( t - \tau _ { i } )$ ; confidence 0.998
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031080.png ; $\sum _ { X } \mu ( X ) \frac { ( \operatorname { tim } e _ { A } ( X ) ) ^ { 1 / k } } { | X | } < \infty$ ; confidence 0.274
+
43. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w1301109.png ; $( X , \mathcal{F} , \mu , T )$ ; confidence 0.998
  
44. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009017.png ; $\frac { \partial f ( z , t ) } { \partial t } = - z f ^ { \prime } ( z , t ) \frac { 1 + k z } { 1 - k z }$ ; confidence 0.996
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a1200204.png ; $f : A \rightarrow X$ ; confidence 0.998
  
45. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220181.png ; $r _ { D } \oplus z _ { D } : R \oplus ( N S ( X ) \otimes Q ) \rightarrow H _ { D } ^ { 3 } ( X , R ( 2 ) )$ ; confidence 0.101
+
45. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t1200301.png ; $f : R \rightarrow R ^ { \prime }$ ; confidence 0.998
  
46. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022054.png ; $\operatorname { ch } _ { M } : K _ { i } ( X ) \rightarrow \oplus H ^ { 2 j - i _ { M } ( X , Q ( j ) ) }$ ; confidence 0.241
+
46. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007020.png ; $B ( m , D , 1 ) \leq m D.$ ; confidence 0.998
  
47. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022096.png ; $\operatorname { ch } _ { D } : K _ { i } ( X ) \rightarrow \oplus H ^ { 2 j - i _ { D } } ( X , A ( j ) )$ ; confidence 0.151
+
47. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024037.png ; $U ( \varepsilon )$ ; confidence 0.998
  
48. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030029.png ; $f ( y ) = \frac { 1 } { ( 2 \pi ) ^ { N / 2 } } \int _ { R ^ { N } } \hat { f } ( \eta ) e ^ { i \eta y } d \eta$ ; confidence 0.715
+
48. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008058.png ; $U ( \alpha + 2 ) / U ( \alpha + 1 )$ ; confidence 0.998
  
49. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001023.png ; $\frac { \partial ^ { 2 } u } { \partial \xi \partial \eta } = \operatorname { sin } ( u )$ ; confidence 1.000
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032033.png ; $R _ { 0 } ^ { ( s + 1 ) } ( z )$ ; confidence 0.998
  
50. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004029.png ; $\sum _ { k = 1 } ^ { \infty } ( \frac { ( 2 k + 1 ) ! } { k ! ( k + 1 ) ! } ) ^ { 2 } \frac { 2 ^ { - 4 k } } { k } =$ ; confidence 0.919
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160014.png ; $O _ { K }$ ; confidence 0.998
  
51. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029018.png ; $\operatorname { St } ( \Lambda , I ) \rightarrow \operatorname { GL } ( \Lambda , I )$ ; confidence 0.299
+
51. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010040.png ; $R ( X , Y ) = - R ( Y , X ),$ ; confidence 0.998
  
52. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019026.png ; $\lambda ( L ) = \operatorname { sup } \{ E ( f ) : f \in L , \| f \| _ { L _ { 2 } ( \Omega ) } = 1 \}$ ; confidence 0.899
+
52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008059.png ; $s = R - L$ ; confidence 0.998
  
53. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002046.png ; $A ( ( X ) ) = \{ \sum _ { n \geq n _ { 0 } } ^ { \infty } a _ { n } X ^ { n } : n _ { 0 } \in Z , a _ { n } \in A \}$ ; confidence 0.737
+
53. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018057.png ; $\varphi \rightarrow \psi$ ; confidence 0.998
  
54. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009011.png ; $U _ { n + 1 } ( x ) = \sum _ { j = 0 } ^ { [ n / 2 ] } \frac { ( n - j ) ! } { j ! ( n - 2 j ) ! } x ^ { n - 2 j } , n = 0,1$ ; confidence 0.639
+
54. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e1202309.png ; $E = M \times F$ ; confidence 0.998
  
55. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110193.png ; $\{ z = x + i y : x _ { 1 } > \frac { | x ^ { \prime } | + 1 } { \varepsilon } , | y | < \varepsilon \}$ ; confidence 0.899
+
55. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058028.png ; $Q = U = 0$ ; confidence 0.998
  
56. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001046.png ; $a _ { n - 1 } = - \operatorname { Tr } ( \alpha ) \text { and } a _ { 0 } = ( - 1 ) ^ { n } N ( \alpha )$ ; confidence 0.966
+
56. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h1200106.png ; $f : V \rightarrow W$ ; confidence 0.998
  
57. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003073.png ; $\frac { q ( z ) t ( w ) - q ( w ) t ( z ) } { z - w } = \sum _ { i , j = 1 } ^ { n } b _ { i , j } z ^ { i - 1 } w ^ { j - 1 }$ ; confidence 0.914
+
57. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110890/b11089042.png ; $\nabla f$ ; confidence 0.998
  
58. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013027.png ; $\operatorname { Top } ( X , Y ) _ { n } = \operatorname { To } p ( X \times \Delta ^ { n } , Y )$ ; confidence 0.557
+
58. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029044.png ; $\partial : C ( w ) \rightarrow P$ ; confidence 0.998
  
59. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003055.png ; $\{ x y z \} = x \circ ( y ^ { * } \circ z ) + z \circ ( y ^ { * } \circ x ) - ( x \circ z ) \circ y ^ { * }$ ; confidence 0.755
+
59. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016024.png ; $A ( q , d ) =$ ; confidence 0.998
  
60. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508020.png ; $\omega = \frac { i } { 2 } \sum _ { \mu , \nu } h _ { \mu \nu } ( z ) d z _ { \mu } \wedge d z _ { \nu }$ ; confidence 0.856
+
60. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024014.png ; $m _ { i } \geq 0$ ; confidence 0.998
  
61. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001011.png ; $( c > 0 ) \& ( \alpha \preceq b ) \Rightarrow ( \alpha c \preceq b c ) \& ( c a \preceq c b )$ ; confidence 0.463
+
61. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023027.png ; $\operatorname { max } \{ 1 / t , 1 / ( T - t ) \}$ ; confidence 0.998
  
62. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001014.png ; $( \alpha > 0 ) \& ( \alpha \preceq b ) \Rightarrow ( \alpha \alpha \preceq \alpha c )$ ; confidence 0.924
+
62. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011024.png ; $g \in L ^ { 1 } ( \mu )$ ; confidence 0.998
  
63. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010082.png ; $\int _ { R ^ { n N } } | \nabla \Phi | ^ { 2 } \geq K _ { n } \int _ { R ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x$ ; confidence 0.955
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a1303207.png ; $H _ { 1 } : \theta > 0$ ; confidence 0.998
  
64. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004014.png ; $g _ { k + 1 } ( z ) = z g _ { k } ( z ) - \phi _ { k } f ( z ) , \quad k = 0,1 , \ldots ; \quad g _ { 0 } ( z ) = 1$ ; confidence 0.153
+
64. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004035.png ; $G ( \omega _ { 1 } , \omega _ { 1 } )$ ; confidence 0.998
  
65. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m1300203.png ; $\int ( F _ { A } , F _ { A } ) + ( D _ { A } \phi , D _ { A } \phi ) - \lambda ( 1 - \| \phi \| ^ { 2 } ) ^ { 2 }$ ; confidence 0.995
+
65. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012046.png ; $( 0 , y ) \in \mathcal{J}$ ; confidence 0.998
  
66. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015067.png ; $\frac { 1 } { \beta _ { p } ( a , b ) } | V | ^ { \alpha - ( p + 1 ) / 2 } | I _ { p } + V | ^ { - ( \alpha + b ) }$ ; confidence 0.634
+
66. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302807.png ; $\varepsilon > \mathbf 0 $ ; confidence 0.998
  
67. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023069.png ; $\operatorname { lim } _ { t \downarrow 0 } u ( t , x ) = f ( x ) \quad \text { for all } x \in H$ ; confidence 0.931
+
67. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691018.png ; $H = L _ { 2 } ( X , \mu )$ ; confidence 0.998
  
68. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230147.png ; $( ( X _ { n } + 1 , B _ { n } + 1 ) , f _ { n + 1 } ) = ( ( Y , \phi , \Phi _ { n } ) , f _ { n } \circ \phi ^ { - 1 } )$ ; confidence 0.068
+
68. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005069.png ; $\phi = s ^ { T } y ( s ^ { T } y - y ^ { T } H y ) ^ { - 1 }$ ; confidence 0.998
  
69. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n0669608.png ; $\phi ( t ) = ( 1 - 2 i t ) ^ { - N / 2 } \operatorname { exp } \{ \frac { \lambda i t } { 1 - 2 i t } \}$ ; confidence 0.674
+
69. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015039.png ; $B A \in \Phi ( X , Z )$ ; confidence 0.998
  
70. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520395.png ; $y _ { i } = z _ { 1 } ^ { \alpha _ { i 1 } } \ldots z _ { n } ^ { \alpha _ { i n } } , \quad i = 1 , \dots , n$ ; confidence 0.390
+
70. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002029.png ; $Y _ { \alpha } = [ 0,1 ]$ ; confidence 0.998
  
71. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o1200507.png ; $I ( \lambda f ) : = \int _ { 0 } ^ { \infty } \varphi ( \lambda f ^ { * } ( s ) ) w ( s ) d s < \infty$ ; confidence 0.956
+
71. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004071.png ; $\omega ( G ) + 1$ ; confidence 0.998
  
72. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009044.png ; $\operatorname { lim } _ { x \rightarrow \eta } \mu _ { x } ^ { \Omega } = \delta _ { \eta }$ ; confidence 0.993
+
72. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019077.png ; $t \rightarrow + \infty$ ; confidence 0.998
  
73. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001038.png ; $\sum _ { k } \sum _ { l } \overline { c } _ { k } c _ { l } S ( f _ { k } - \overline { f } _ { l } ) \geq 0$ ; confidence 0.228
+
73. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014062.png ; $\lambda \geq \frac { r ^ { 2 } + R ^ { 2 } } { 1 + ( r R ) ^ { 2 } }.$ ; confidence 0.998
  
74. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023051.png ; $| I _ { p } + \Sigma ^ { - 1 } X X ^ { \prime } | ^ { - ( \delta + n + p - 1 ) / 2 } , X \in R ^ { p \times n }$ ; confidence 0.357
+
74. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005055.png ; $\mathbf{T} = \partial \mathbf D $ ; confidence 0.998
  
75. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026017.png ; $[ D _ { t } , D _ { s } ^ { * } ] = \delta ( t - s ) , [ D _ { t } , D _ { s } ] = [ D _ { t } ^ { * } , D _ { s } ^ { * } ] = 0$ ; confidence 0.980
+
75. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007073.png ; $\leq 1200$ ; confidence 0.998
  
76. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050180.png ; $\sigma _ { T } ( ( L _ { A } , R _ { B } ) , L ( H ) ) = \sigma _ { T } ( A , H ) \times \sigma _ { T } ( B , H )$ ; confidence 0.334
+
76. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024027.png ; $( 2 \pi ) ^ { - 1 }$ ; confidence 0.998
  
77. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011081.png ; $\approx \rho \frac { V ^ { 2 } } { l } [ 1.587 \frac { U } { V } - 0.628 ( \frac { U } { V } ) ^ { 2 } ]$ ; confidence 0.990
+
77. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006058.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) = \operatorname { det } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma ).$ ; confidence 0.998
  
78. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007019.png ; $S _ { \lambda } = e ^ { \lambda + \rho } \sum _ { \gamma } ( - 1 ) ^ { | \gamma | } e ^ { - \gamma }$ ; confidence 0.564
+
78. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009086.png ; $\varphi ( z ) \in B ( \beta )$ ; confidence 0.998
  
79. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008028.png ; $\oint _ { A _ { j } } d \omega _ { 1 } = \oint _ { A _ { j } } d \omega _ { 3 } = 0 , j = 1 , \dots , g _ { s }$ ; confidence 0.474
+
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203606.png ; $\operatorname { exp } ( - E / k _ { B } T )$ ; confidence 0.998
  
80. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010037.png ; $\operatorname { exp } [ - \frac { 1 } { 2 } \lambda _ { d } \frac { t } { f ( t ) ^ { 2 / d ^ { 2 } } } ]$ ; confidence 0.317
+
80. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202307.png ; $\Gamma \in \mathcal{O} ( p )$ ; confidence 0.998
  
81. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010030.png ; $\forall x \forall y ( \forall z ( z \in x \leftrightarrow z \in y ) \rightarrow x = y )$ ; confidence 0.521
+
81. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021064.png ; $\theta \in \Theta ( M )$ ; confidence 0.998
  
82. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010051.png ; $\forall x \exists z \forall v ( v \in z \leftrightarrow \exists y ( y \in x / v \in y ) )$ ; confidence 0.462
+
82. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007014.png ; $\mathcal{R} _ { 12 } \equiv \mathcal{R} \otimes 1$ ; confidence 0.998
  
83. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008053.png ; $\int _ { 0 } ^ { 1 } R _ { k + } ^ { k - l } ( r , \alpha ) J _ { k - l } ( r s ) ( 1 - r ^ { 2 } ) ^ { \alpha } r d r =$ ; confidence 0.550
+
83. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017074.png ; $\lambda _ { 1 } ( \Omega _ { t } ) \leq t \lambda _ { 1 } ( \Omega _ { 1 } ) + ( 1 - t ) \lambda _ { 2 } ( \Omega _ { 2 } )$ ; confidence 0.998
  
84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013029.png ; $\phi _ { + } = \operatorname { exp } ( \sum _ { j = 1 } ^ { \infty } \phi _ { j } ( x , t ) z ^ { j } )$ ; confidence 0.999
+
84. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057540/l05754081.png ; $| t | \rightarrow \infty$ ; confidence 0.998
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180124.png ; $= \{ \langle b _ { 0 } , \dots , b _ { 2 } - 1 , a , b _ { 2 } + 1 , \dots , b _ { n - 1 } \rangle : a \in U$ ; confidence 0.114
+
85. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070101.png ; $C ^ { \prime } , s ^ { \prime } , r \geq 0$ ; confidence 0.998
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a1303205.png ; $E _ { \theta } ( X _ { i } ) = P _ { \theta } ( X _ { i } = 1 ) = \theta = 1 - P _ { \theta } ( X _ { i } = 0 )$ ; confidence 0.640
+
86. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011018.png ; $\theta \in \mathbf{R}$ ; confidence 0.998 ;
  
87. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004047.png ; $\mu _ { f } ( \lambda ) = \mu \{ t \in \Omega : | f ( t ) | > \lambda \} = \mu _ { g } ( \lambda )$ ; confidence 0.693
+
87. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010045.png ; $t = | \xi |$ ; confidence 0.998
  
88. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009066.png ; $f ( z ) = ( \beta \int _ { 0 } ^ { z } h ( \xi ) \xi ^ { - 1 } g ( \xi ) ^ { \beta } d \xi ) ^ { 1 / \beta }$ ; confidence 0.991
+
88. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a0132505.png ; $w = f ( z )$ ; confidence 0.998
  
89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220220.png ; $H _ { B } : \operatorname { Ext } _ { M M _ { O } } ^ { 1 } ( Q ( 0 ) , h ^ { i } ( X ) ( j ) ) \rightarrow$ ; confidence 0.307
+
89. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011021.png ; $A ( 4 , n )$ ; confidence 0.998
  
90. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220221.png ; $\rightarrow \operatorname { Ext } _ { M H _ { R } ^ { + } } ( R ( 0 ) , H _ { B } ^ { i } ( X ) , R ( j ) )$ ; confidence 0.159
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007063.png ; $- 1 / 25$ ; confidence 0.998
  
91. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012017.png ; $\sum _ { n = - \infty } ^ { \infty } | b _ { n } | \leq 10 \sum _ { n = 1 } ^ { \infty } a _ { n } ^ { * }$ ; confidence 0.938
+
91. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t1200306.png ; $U ^ { \prime } = f ( U ) \subset R ^ { \prime }$ ; confidence 0.998
  
92. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022011.png ; $\partial _ { t } \int \phi ( v ) f d v + \operatorname { div } _ { x } \int v \phi ( v ) f d v = 0$ ; confidence 0.530
+
92. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180314.png ; $R ( g ) = ( R ( \nabla ) \otimes 1 ) g$ ; confidence 0.998
  
93. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023034.png ; $\operatorname { St } _ { G } ( n ) = \cap _ { | \alpha | = n } \operatorname { St } _ { G } ( u )$ ; confidence 0.118
+
93. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680060.png ; $r ( t )$ ; confidence 0.998
  
94. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290137.png ; $G ( \mathfrak { q } ) = \oplus _ { n } \geq 0 \mathfrak { q } ^ { n } / \mathfrak { q } ^ { n + 1 }$ ; confidence 0.652
+
94. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010042.png ; $L ^ { 2 } ( D , d A )$ ; confidence 0.998
  
95. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300102.png ; $B ( m , n , i ) = \{ \alpha _ { 1 } , \dots , a _ { m } | A _ { 1 } ^ { n } , \dots , A _ { i } ^ { n } \rangle$ ; confidence 0.074
+
95. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004029.png ; $z ^ { 2 }$ ; confidence 0.998
  
96. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
+
96. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005057.png ; $1 < p , q < \infty$ ; confidence 0.998
  
97. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010186.png ; $P ( \partial ) = P ( \partial / \partial z _ { 1 } , \dots , \partial / \partial z _ { n } )$ ; confidence 0.600
+
97. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002032.png ; $\alpha \in E ^ { * }$ ; confidence 0.998
  
98. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004069.png ; $f ( z ) = \operatorname { lim } _ { m \rightarrow \infty } \int _ { \Gamma } f ( \zeta ) x$ ; confidence 0.863
+
98. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007086.png ; $H ^ { * } \otimes H$ ; confidence 0.998
  
99. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211043.png ; $\partial ^ { 2 } p _ { i } ( \theta ) \nmid \partial \theta _ { j } \partial \theta _ { r }$ ; confidence 0.679
+
99. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017290/b01729036.png ; $\partial V$ ; confidence 0.998
  
100. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c13011014.png ; $\partial f ( x ) : = \{ \zeta : f ^ { \circ } ( x ; v ) \geq \{ \zeta , v \} , \forall v \in X \}$ ; confidence 0.739
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010067.png ; $f \in L ^ { 2 } ( \Omega )$ ; confidence 0.998
  
101. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014058.png ; $\forall 1 \leq i \leq r : R _ { i } \subseteq M ^ { 2 } \vee R _ { i } \cap M ^ { 2 } = \emptyset$ ; confidence 0.653
+
101. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006066.png ; $W ^ { k - 1 } L _ { \Phi } ( \partial \Omega )$ ; confidence 0.998
  
102. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180194.png ; $\operatorname { Ric } ( g ) = g ^ { - 1 } \{ 2,3 \} R ( g ) = g ^ { - 1 } \{ 1,4 \} R ( g ) \in S ^ { 2 } E$ ; confidence 0.604
+
102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044099.png ; $R H$ ; confidence 0.998
  
103. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021089.png ; $L ( \Lambda _ { n } | P _ { n } ^ { \prime } ) \Rightarrow N ( \sigma ^ { 2 } / 2 , \sigma ^ { 2 } )$ ; confidence 0.978
+
103. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007011.png ; $X = \frac { 1 - t ^ { 2 } } { 1 + t ^ { 2 } } , Y = \frac { 2 t } { 1 + t ^ { 2 } }.$ ; confidence 0.998
  
104. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210132.png ; $L [ \sqrt { n } ( T _ { n } - \theta _ { n } ) | P _ { n , \theta _ { n } } ] \Rightarrow L ( \theta )$ ; confidence 0.929
+
104. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601023.png ; $W \approx M _ { 0 } \times [ 0,1 ]$ ; confidence 0.998
  
105. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031010.png ; $e ( Q _ { n } , F _ { d } ) = \operatorname { sup } \{ | I _ { d } ( f ) - Q _ { n } ( f ) | : f \in F _ { d } \}$ ; confidence 0.347
+
105. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201702.png ; $B ( H )$ ; confidence 0.998
  
106. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031018.png ; $n ( \epsilon , F _ { d } ) = \operatorname { min } \{ n : e _ { X } ( F _ { d } ) \leq \epsilon \}$ ; confidence 0.524
+
106. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040185.png ; $\delta \nu = 0$ ; confidence 0.998
  
107. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012014.png ; $d _ { 0 } : O G \rightarrow O G ^ { \prime } , \quad d _ { A } : A G \rightarrow A G ^ { \prime }$ ; confidence 0.899
+
107. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018074.png ; $\theta = \lambda d \rho$ ; confidence 0.998
  
108. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018083.png ; $\alpha \mapsto \operatorname { sup } \{ \| f g _ { \alpha } \| / \| f \| : f \in I _ { E } \}$ ; confidence 0.952
+
108. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007024.png ; $L [ 0,2 \pi ]$ ; confidence 0.998
  
109. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009012.png ; $R _ { \mu \nu } - \frac { 1 } { 2 } R g _ { \mu \nu } - \Lambda g _ { \mu \nu } = \chi T _ { \mu \nu }$ ; confidence 0.485
+
109. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220084.png ; $0 \leq t \leq 1$ ; confidence 0.998
  
110. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015019.png ; $\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$ ; confidence 0.338
+
110. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190105.png ; $( S , d )$ ; confidence 0.998
  
111. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007074.png ; $\ll A ^ { 2 / K } N \lambda _ { k } ^ { 1 / ( 2 K - 2 ) } + M ^ { 1 - 2 / K } \lambda _ { k } ^ { - 1 / ( 2 K - 2 ) }$ ; confidence 0.849
+
111. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b1205201.png ; $F ( x ) = 0,$ ; confidence 0.998
  
112. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007031.png ; $F ( r , m ) = \langle x _ { 1 } , \dots , x _ { m } | x _ { i } \dots x _ { i + r } - 1 = x _ { i + r } \rangle$ ; confidence 0.159
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180141.png ; $\mathfrak{Rel}_n( U )$ ; confidence 0.998 ; Note: I don't know of any package which represents the real part as such.
  
113. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009070.png ; $R _ { c } ( p ; k , n ) = p q ^ { n - 1 } \sum _ { j = 1 } ^ { k } j F _ { n - j + 1 } ^ { ( k ) } + 1 ( \frac { p } { q } )$ ; confidence 0.318
+
113. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068013.png ; $F ( z )$ ; confidence 0.998
  
114. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011086.png ; $Q ( \Omega ) = \tilde { O } ( U \# \Omega ) / \sum _ { j = 1 } ^ { n } \tilde { O } ( U \# ; \Omega )$ ; confidence 0.210
+
114. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002032.png ; $T _ { \mu } f$ ; confidence 0.998
  
115. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024046.png ; $L ( \varepsilon ) = L _ { - 2 } \oplus L _ { - 1 } \oplus L _ { 0 } \oplus L _ { 1 } \oplus L _ { 2 }$ ; confidence 0.293
+
115. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620124.png ; $y ( x , \lambda )$ ; confidence 0.998
  
116. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300205.png ; $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ ; confidence 0.979
+
116. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006011.png ; $\overline { B } ( t , \omega )$ ; confidence 0.998
  
117. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002075.png ; $\gamma ^ { d } \cap \alpha _ { 1 } = \ldots = \gamma ^ { d } \cap \alpha _ { q } = \emptyset$ ; confidence 0.878
+
117. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025440/c02544063.png ; $u ( y )$ ; confidence 0.998
  
118. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020113.png ; $\rho _ { n } ( \phi ) = \operatorname { inf } \{ \| \phi - r \| _ { BMO } : \rho \in R _ { n } \}$ ; confidence 0.359
+
118. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140124.png ; $R = K Q$ ; confidence 0.998
  
119. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005084.png ; $\operatorname { log } \alpha _ { n } = o ( n ^ { 1 / 3 } ) \text { as } n \rightarrow \infty$ ; confidence 0.683
+
119. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003025.png ; $T ( F _ { \theta } ) = \theta$ ; confidence 0.998
  
120. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090227.png ; $Y ^ { \chi } = \{ y \in Y : \delta . y = \chi ( \delta ) \text { yfor } \delta \in \Delta \}$ ; confidence 0.672
+
120. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013076.png ; $t = x - y$ ; confidence 0.998
  
121. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001041.png ; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
+
121. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n1201109.png ; $\xi : \mathbf{R} \rightarrow [ 0,1 ]$ ; confidence 0.998 ;
  
122. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009048.png ; $E ( x ) = \frac { 1 } { ( 2 \pi ) ^ { N } } \int _ { R ^ { n } } \frac { 1 } { P ( \xi ) } e ^ { i \xi x } d \xi$ ; confidence 0.605
+
122. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021058.png ; $s _ { 1 } = s _ { 2 } = s _ { 3 } = s _ { 4 } = 1$ ; confidence 0.998
  
123. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019022.png ; $( f ^ { * } g ) ( x ) = \int _ { 1 } ^ { \infty } \int _ { 1 } ^ { \infty } S ( x , y , t ) f ( t ) g ( y ) d t d y$ ; confidence 0.942
+
123. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019032.png ; $m _ { k } = L ( f _ { k } )$ ; confidence 0.998
  
124. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027038.png ; $\Gamma ( z _ { 1 } ) = z _ { 1 } ^ { M } + b _ { 1 } z _ { 1 } ^ { M - 1 } + \ldots + b _ { M - 1 } z _ { 1 } + b _ { M }$ ; confidence 0.665
+
124. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232017.png ; $K = \overline { H }$ ; confidence 0.998
  
125. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663095.png ; $_ { 1 } , \ldots , v _ { n } ( f ) \leq c \sum _ { l = 1 } ^ { n } \frac { M _ { i } } { v _ { i } ^ { r _ { i } } }$ ; confidence 0.064
+
125. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037046.png ; $D _ { \Omega } ( f )$ ; confidence 0.998
  
126. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n066630107.png ; $f - q \in H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( M _ { 1 } ^ { * } , \ldots , M _ { n } ^ { * } ; R ^ { n } )$ ; confidence 0.418
+
126. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007046.png ; $m ( P ) = 0$ ; confidence 0.998
  
127. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001089.png ; $A ( \alpha ^ { \prime } , \alpha , k ) \approx - \frac { h | S | } { 4 \pi ( 1 + h | S | C ^ { - 1 } ) }$ ; confidence 0.853
+
127. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110125.png ; $f ( x ) = F ( x + i 0 ) - F ( x - i 0 )$ ; confidence 0.998
  
128. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006059.png ; $\operatorname { det } ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) \not \equiv 0$ ; confidence 0.662
+
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040151.png ; $0 < \theta < 1$ ; confidence 0.998
  
129. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300805.png ; $q _ { m } ( x ) \in L _ { 1,1 } ( R _ { + } ) : = \{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty \}$ ; confidence 0.509
+
129. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050030.png ; $( X , \pi )$ ; confidence 0.998
  
130. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005059.png ; $H _ { k + 1 } = H _ { k } + \beta _ { k } u ^ { k } ( u ^ { k } ) ^ { T } + \gamma _ { k } v ^ { k } ( v ^ { k } ) ^ { T }$ ; confidence 0.757
+
130. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009049.png ; $w = w ( z )$ ; confidence 0.998
  
131. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007046.png ; $\| B ( x , y ) \| _ { + } \leq c \sum _ { j = 1 } ^ { \infty } \| \lambda ; \varphi ; ( x ) \| _ { + } =$ ; confidence 0.442
+
131. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023097.png ; $( X ^ { + } , B ^ { + } )$ ; confidence 0.998
  
132. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002012.png ; $M ( q ) \ddot { q } + C ( q , \dot { q } ) \dot { q } + g ( q ) + f ( \dot { q } ) + J ( q ) ^ { T } \phi = \tau$ ; confidence 0.983
+
132. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y12003038.png ; $D _ { A } : \Gamma ( V _ { + } ) \rightarrow \Gamma ( V _ { - } )$ ; confidence 0.998
  
133. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051051.png ; $P _ { n } = \{ u \in V : n = \operatorname { min } m , F ( u ) \subseteq \cup _ { i < m } N _ { i } \}$ ; confidence 0.773
+
133. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013024.png ; $H ( r , \theta ) \rightarrow ( 1 / r ) H ( 1 / r ^ { 2 } , \theta )$ ; confidence 0.998
  
134. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059025.png ; $H _ { 0 } ^ { ( m ) } = 1 , H _ { k } ^ { ( m ) } = \operatorname { det } ( ( m + i + j ) _ { l , j = 0 } ^ { k - 1 }$ ; confidence 0.117
+
134. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392019.png ; $\alpha , \beta > 0$ ; confidence 0.998
  
135. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034027.png ; $SH ^ { * } ( M , \omega ) \otimes SH ^ { * } ( M , \omega ) \rightarrow SH ^ { * } ( M , \omega )$ ; confidence 0.732
+
135. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018060.png ; $\varphi \rightarrow \chi$ ; confidence 0.998
  
136. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060108.png ; $\rho _ { atom } ^ { TF } ( x , N = Z , Z ) \sim \gamma ^ { 3 } ( \frac { 3 } { \pi } ) ^ { 3 } | x | ^ { - 6 }$ ; confidence 0.626
+
136. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011049.png ; $G ( \xi + i \Delta 0 )$ ; confidence 0.998
  
137. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021037.png ; $R ( x ; a _ { 0 } , \dots , a _ { N } ) = \sum _ { n } r _ { n } ( a _ { 0 } , \dots , a _ { N } ) \phi _ { n } ( x )$ ; confidence 0.388
+
137. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036024.png ; $Y _ { 0 } = 0$ ; confidence 0.998
  
138. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020065.png ; $R _ { n } > \frac { \operatorname { log } 2 } { 1 + \frac { 1 } { 2 } + \ldots + \frac { 1 } { n } }$ ; confidence 0.506
+
138. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000136.png ; $T : H \rightarrow H$ ; confidence 0.998
  
139. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021067.png ; $A ( C , q , z ) = ( 1 - z ) ^ { r } z ^ { n - r } t ( M _ { C } ; \frac { 1 + ( q - 1 ) z } { 1 - z } , \frac { 1 } { z } )$ ; confidence 0.261
+
139. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420156.png ; $( V , \lambda )$ ; confidence 0.998
  
140. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005064.png ; $- x _ { 0 } ^ { - 1 } \delta ( \frac { x _ { 2 } - x _ { 1 } } { - x _ { 0 } } ) Y ( v , x _ { 2 } ) Y ( u , x _ { 1 } ) =$ ; confidence 0.981
+
140. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070107.png ; $s ^ { \prime } = 0$ ; confidence 0.998
  
141. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007057.png ; $k = \frac { \gamma \dot { b } ^ { 2 } \pi ^ { 2 } } { 12 \mu U \alpha ^ { 2 } ( 1 - \lambda ) ^ { 2 } }$ ; confidence 0.566
+
141. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021970/c0219702.png ; $( X , \rho )$ ; confidence 0.998
  
142. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004022.png ; $\operatorname { Re } \int _ { C } ( \omega _ { 1 } , \dots , \omega _ { n } ) = ( 0 , \dots , 0 )$ ; confidence 0.450
+
142. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005042.png ; $( X , B )$ ; confidence 0.998
  
143. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007012.png ; $\{ p _ { j } , p _ { k } \} = \{ q _ { j } , q _ { k } \} = 0 , \quad \{ p _ { j } , q _ { k } \} = \delta _ { j k }$ ; confidence 0.922
+
143. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z1301301.png ; $( r , \theta , \varphi )$ ; confidence 0.998
  
144. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w1201106.png ; $= \int \int e ^ { 2 i \pi ( x - y ) \cdot \xi } \alpha ( \frac { x + y } { 2 } , \xi ) u ( y ) d y d \xi$ ; confidence 0.682
+
144. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170164.png ; $p ( z , \bar{z} )$ ; confidence 0.998 ;
  
145. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010037.png ; $\forall x \forall y \exists z \forall v ( v \in z \leftrightarrow ( v = x \vee v = y ) )$ ; confidence 0.626
+
145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020011.png ; $\mathfrak { g } = \mathfrak { g } ( A )$ ; confidence 0.998
  
146. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008035.png ; $V _ { k + l } ^ { k - l } ( x , y ; \alpha ) = e ^ { i ( k - l ) \theta } R _ { k + l } ^ { k - l } ( r , \alpha ) =$ ; confidence 0.555
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007018.png ; $945$ ; confidence 0.998
  
147. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011059.png ; $R _ { n } ( x ) = \frac { G _ { p , n } ( x ) } { \int _ { 0 } ^ { \infty } ( 1 - e ^ { - z } ) G _ { p , n } ( d z ) }$ ; confidence 0.934
+
147. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010157.png ; $\theta ^ { \prime } - \theta = \xi$ ; confidence 0.998
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026023.png ; $\alpha _ { \langle p - 1 \rangle / 2 } \equiv \gamma _ { p } ( \operatorname { mod } p )$ ; confidence 0.294
+
148. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004091.png ; $0 \leq x \leq 0.3$ ; confidence 0.998
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010010.png ; $H _ { n } = \sum _ { i = 1 } ^ { n } p _ { i } ^ { 2 } / 2 + \sum _ { 1 = i < j } ^ { n } \Phi ( q _ { i } - q _ { j } )$ ; confidence 0.334
+
149. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003042.png ; $\partial ( \Gamma \backslash X )$ ; confidence 0.998
  
150. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021070.png ; $\mathfrak { F } _ { \lambda } ( M ) = ( M \otimes L ( \lambda ) ) _ { \theta _ { \lambda } }$ ; confidence 0.779
+
150. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230154.png ; $\sigma _ { t } ^ { k } = \phi _ { t } ^ { k } \circ \sigma ^ { k }$ ; confidence 0.998
  
151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002011.png ; $\operatorname { lim } _ { x \rightarrow \infty } \| \alpha _ { x } + \beta _ { x } \| = 0$ ; confidence 0.331
+
151. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i1200602.png ; $\operatorname{Idim}( P )$ ; confidence 0.998
  
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022038.png ; $\partial _ { t } f + \alpha ( \xi ) . \nabla _ { x } f = \frac { M _ { f } - f } { \varepsilon }$ ; confidence 0.336
+
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430143.png ; $H \rightarrow H _ { 1 }$ ; confidence 0.998
  
153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
+
153. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150103.png ; $i ( F ( x ) ) = i ( F ^ { \prime } ( x ) )$ ; confidence 0.998
  
154. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022060.png ; $| F ( u ) | \leq C _ { 1 } \sum _ { \alpha \in K } \rho ^ { m - N / p } \| D ^ { \alpha } u \| _ { p , T }$ ; confidence 0.372
+
154. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130020/z13002021.png ; $E \subset ( 0,1 )$ ; confidence 0.998
  
155. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025059.png ; $\overline { O K } = \frac { \overline { O \Omega } } { \operatorname { cos } \omega }$ ; confidence 0.970
+
155. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005012.png ; $e ^ { - x } / \sqrt { x }$ ; confidence 0.998
  
156. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180332.png ; $C ( g ) = \nabla A ( g ) - \tau ^ { - 1 } _ { 3 } \nabla A ( g ) \in \varnothing \square ^ { 3 } E$ ; confidence 0.179
+
156. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001039.png ; $V _ { L } ( t ) = f _ { L } ( A )$ ; confidence 0.998
  
157. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026052.png ; $\| \Delta ( U ^ { n } - u ^ { n } ) \| \leq \| \Delta ( U ^ { 0 } - u ^ { 0 } ) \| + O ( h ^ { 2 } + k ^ { 2 } )$ ; confidence 0.873
+
157. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024079.png ; $( i , j , k )$ ; confidence 0.998
  
158. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008071.png ; $[ L : K ] = \sum _ { i = 1 } ^ { m } \delta ( w _ { i } | v ) \cdot e ( w _ { i } | v ) \cdot f ( w _ { i } | w )$ ; confidence 0.295
+
158. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g04337013.png ; $( x , h ) \rightarrow D f ( x , h )$ ; confidence 0.998
  
159. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301108.png ; $H = c \frac { \hbar } { i } \vec { \alpha } . \vec { \nabla } + \vec { \beta } m _ { 0 } c ^ { 2 }$ ; confidence 0.348
+
159. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004042.png ; $( \kappa , \lambda ^ { * } )$ ; confidence 0.998
  
160. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e1201106.png ; $\nabla \times H - \frac { 1 } { c } \frac { \partial D } { \partial t } = \frac { 1 } { c } J$ ; confidence 0.977
+
160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032069.png ; $r , s , t \geq 0$ ; confidence 0.998
  
161. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f1201105.png ; $| \varphi ( z ) | e ^ { \delta | \overline { | } | } < \infty \text { for some } \delta > 0$ ; confidence 0.071
+
161. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500085.png ; $( X , \rho , \mu )$ ; confidence 0.998
  
162. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019031.png ; $L u = \operatorname { sin } ( x ) \frac { d ^ { 2 } u } { d x ^ { 2 } } - ( \frac { d u } { d x } ) ^ { 2 }$ ; confidence 0.951
+
162. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001031.png ; $\frac { \partial u } { \partial t } + 6 u \frac { \partial u } { \partial x } + \frac { \partial ^ { 3 } u } { \partial x ^ { 3 } } = 0$ ; confidence 0.998
  
163. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014035.png ; $z ( \zeta ) = \zeta + \frac { a _ { 1 } } { \zeta } + \frac { a _ { 2 } } { \zeta ^ { 2 } } + \ldots$ ; confidence 0.907
+
163. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021094.png ; $\lambda _ { 1 } - \lambda _ { 2 } \in \mathbf{N}$ ; confidence 0.998
  
164. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015057.png ; $r ^ { \prime } ( A ) = \operatorname { lim } _ { n \rightarrow \infty } \beta ( A ^ { n } )$ ; confidence 0.897
+
164. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008056.png ; $| F ^ { \prime } ( c ) | < 1$ ; confidence 0.998
  
165. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021081.png ; $m _ { j } = \sum \{ n _ { i } : 1 \leq i < \text { jand } \lambda _ { i } - \lambda _ { j } \in N \}$ ; confidence 0.732
+
165. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010022.png ; $( \varphi \wedge \psi )$ ; confidence 0.998
  
166. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024070.png ; $\overline { t } _ { 0 } : = \operatorname { inf } _ { t \geq t _ { 0 } } [ t - h ( t ) ] > - \infty$ ; confidence 0.789
+
166. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025037.png ; $f : K \rightarrow U ^ { \prime }$ ; confidence 0.998
  
167. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004073.png ; $D _ { x } ^ { \alpha } = D _ { x _ { 1 } } ^ { \alpha _ { 1 } } \ldots D _ { x _ { n } } ^ { \alpha _ { n } }$ ; confidence 0.632
+
167. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040143.png ; $\varepsilon ( L ) = \pm 1$ ; confidence 0.998
  
168. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g0433706.png ; $= \operatorname { lim } _ { t \rightarrow 0 } \frac { f ( x _ { 0 } + t h ) - f ( x _ { 0 } ) } { t }$ ; confidence 0.996
+
168. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021070.png ; $t ( M _ { H } ; 2,0 )$ ; confidence 0.998
  
169. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g0433906.png ; $= \operatorname { lim } _ { t \rightarrow 0 } \frac { f ( x _ { 0 } + t h ) - f ( x _ { 0 } ) } { t }$ ; confidence 0.986
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031036.png ; $C ( E )$ ; confidence 0.998
  
170. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001028.png ; $\operatorname { lim } _ { t \rightarrow \infty } \Phi _ { 1 } ( t ) / \Phi _ { 2 } ( s t ) = 0$ ; confidence 0.996
+
170. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015032.png ; $A + T \in \Phi ( X , Y )$ ; confidence 0.998
  
171. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002072.png ; $A ^ { * } = \operatorname { sup } _ { t \geq 0 } | A _ { t } | \leq \frac { 1 } { P [ T < \infty ] }$ ; confidence 0.925
+
171. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014027.png ; $H _ { 3 } = \{ 1 \}$ ; confidence 0.998
  
172. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002012.png ; $f ( z ) = \int k _ { \vartheta } ( z ) f ( e ^ { i \vartheta } ) \frac { d \vartheta } { 2 \pi }$ ; confidence 0.960
+
172. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070124.png ; $\leq G ( z , w ) \leq \operatorname { log } \operatorname { tanh } \delta ( z , w ),$ ; confidence 0.998
  
173. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020196.png ; $E [ | Y _ { \infty } - Y _ { T } | ^ { 2 } | F _ { T } ] = w ( B _ { \operatorname { min } } ( T , \tau ) )$ ; confidence 0.484
+
173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120114.png ; $f ^ { \prime } \in \mathcal{A}$ ; confidence 0.998
  
174. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004022.png ; $P _ { L } ( v , z ) = P _ { L } ( - v , - z ) = ( - 1 ) ^ { \operatorname { com } ( L ) - 1 } P _ { L } ( - v , z )$ ; confidence 0.974
+
174. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005024.png ; $f ( \infty ) = \infty$ ; confidence 0.998
  
175. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040136.png ; $P _ { L } ( i , i ) = ( i \sqrt { 2 } ) ^ { \operatorname { dim } ( H _ { 1 } ( M ^ { ( 3 ) } , Z _ { 2 } ) ) }$ ; confidence 0.365
+
175. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006015.png ; $+ n ( n + 1 ) Y = 0.$ ; confidence 0.998
  
176. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007019.png ; $\int _ { 0 } ^ { \pi } d s \int _ { s } ^ { \pi } f ( t - s ) \operatorname { sin } ^ { N } ( t - s ) d t$ ; confidence 0.967
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011019.png ; $A ( 2 , n ) = 2 n + 3$ ; confidence 0.998
  
177. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006059.png ; $| \Delta ( F ) | \geq \left( \begin{array} { c } { x } \\ { k - 1 } \end{array} \right)$ ; confidence 0.984
+
177. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008022.png ; $\partial \Delta$ ; confidence 0.998
  
178. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008041.png ; $A ^ { in / 0 ut } ( f ) = \operatorname { lim } _ { t \rightarrow \pm \infty } A _ { f } ^ { t }$ ; confidence 0.209
+
178. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004038.png ; $1 \leq s < 2$ ; confidence 0.998
  
179. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020026.png ; $\operatorname { ker } ( \gamma \circ \alpha ^ { \prime } ) \subset \mathfrak { g }$ ; confidence 0.637
+
179. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070110.png ; $\mathcal{R} = \beta$ ; confidence 0.998
  
180. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010017.png ; $\operatorname { Re } \langle f ( x , y ) - f ( x , z ) , y - z \rangle \leq 0 , y , z \in C ^ { n }$ ; confidence 0.273
+
180. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007015.png ; $Y ^ { 2 } = X ^ { 3 } - 1$ ; confidence 0.998
  
181. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520408.png ; $\sum _ { k = 1 } ^ { \infty } 2 ^ { - k } \operatorname { log } \omega _ { k } ^ { - 1 } < \infty$ ; confidence 0.997
+
181. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017068.png ; $M ( n ) \equiv M ( n ) ( \gamma )$ ; confidence 0.998
  
182. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001018.png ; $Re = \frac { \rho L U } { \mu } , \quad \varepsilon = U ( \frac { \rho } { g \mu } ) ^ { 1 / 3 }$ ; confidence 0.565
+
182. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222041.png ; $h = 1,2,3$ ; confidence 0.998
  
183. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120030/q12003056.png ; $\pi : \operatorname { Fun } _ { q } ( G ) \rightarrow \operatorname { Fun } _ { q } ( H )$ ; confidence 0.774
+
183. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016010.png ; $t ( n )$ ; confidence 0.998
  
184. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005045.png ; $\frac { d } { d \alpha } f ( x ^ { k } + \alpha d ^ { k } ) | _ { \alpha = 0 } = D f ( x ^ { k } ) d ^ { k } =$ ; confidence 0.926
+
184. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019016.png ; $t ( k , r ) \leq t ( k - 1 , r - 1 )$ ; confidence 0.998
  
185. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008057.png ; $f ( z , z 0 ) = \frac { 1 } { K _ { D } ( z 0 , z _ { 0 } ) } \int _ { z _ { 0 } } ^ { z } K _ { D } ( t , z _ { 0 } ) d t$ ; confidence 0.349
+
185. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003036.png ; $\{ \int f _ { n } d \mu \}$ ; confidence 0.998
  
186. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013012.png ; $P _ { \sigma } = \frac { 1 } { 2 \pi i } \int _ { \Gamma } ( \lambda - A ) ^ { - 1 } d \lambda$ ; confidence 0.932
+
186. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080118.png ; $\gamma = 1$ ; confidence 0.998
  
187. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s120050114.png ; $B ( z ) = C \prod _ { j = 1 } ^ { \kappa } \frac { z - \alpha j } { 1 - \overline { \alpha } j z }$ ; confidence 0.579
+
187. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004029.png ; $\Delta ( G ) \leq 5$ ; confidence 0.998
  
188. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045060.png ; $\rho _ { S } = 12 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } u v d C _ { X , Y } ( u , v ) - 3 =$ ; confidence 0.259
+
188. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840282.png ; $N ^ { 2 } = 0$ ; confidence 0.998
  
189. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021013.png ; $0 \neq \phi \in E ( \lambda , D _ { Y } ) \text { with } \pi ^ { * } \phi \in E ( \mu , D _ { Z } )$ ; confidence 0.819
+
189. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018024.png ; $\frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } f ( e ^ { i \theta } ) d \theta = f ( 0 )$ ; confidence 0.998
  
190. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230115.png ; $\lambda ( T T ^ { \prime } ) = \operatorname { diag } ( \tau _ { 1 } , \dots , \tau _ { 1 } )$ ; confidence 0.625
+
190. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008033.png ; $\lambda _ { 0 } = 2 \overline { u }$ ; confidence 0.998
  
191. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s13066018.png ; $\lambda _ { n k } = \frac { 1 } { \sum _ { j = 0 } ^ { n - 1 } | \phi _ { j } ( \xi _ { n k } ) | ^ { 2 } } > 0$ ; confidence 0.992
+
191. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290148.png ; $\operatorname { dim } A = 1$ ; confidence 0.998
  
192. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050172.png ; $\sigma _ { T } ( N , K ) \subseteq \sigma _ { T } ( S , H ) \subseteq \hat { \sigma } ( N , K )$ ; confidence 0.477
+
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040168.png ; $X = ( X _ { 0 } ) ^ { 1 - \theta } ( L _ { 2 } ( \mu ) ) ^ { \theta }$ ; confidence 0.998
  
193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013012.png ; $( L _ { 1 } , L _ { 2 } ) = ( S _ { 1 } \Lambda S _ { 1 } ^ { - 1 } , S _ { 2 } \Lambda ^ { t } S _ { 2 } ^ { - 1 } )$ ; confidence 0.756
+
193. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026050.png ; $\phi ( s ) \in ( L ^ { 2 } ) ^ { + }$ ; confidence 0.998
  
194. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408031.png ; $\pi _ { n } ( X ; A , B , ^ { * } ) = \pi _ { n - 1 } ( \Omega ( X ; B , * ) , \Omega ( A ; A \cap B , * ) , * )$ ; confidence 0.193
+
194. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001077.png ; $z ( z - \operatorname { cosh } w ) / ( z ^ { 2 } - 2 z \operatorname { cosh } w + 1 )$ ; confidence 0.998
  
195. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t1202106.png ; $t ( M ; x , y ) = \sum _ { S \subseteq E } ( x - 1 ) ^ { r ( M ) - \gamma ( S ) } ( y - 1 ) ^ { | S | } - r ( S )$ ; confidence 0.109
+
195. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015033.png ; $i ( A + T ) = i ( A ) , \quad \alpha ( A + T ) \leq \alpha ( A )$ ; confidence 0.998
  
196. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259
+
196. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002022.png ; $\operatorname{mor}( X , W )$ ; confidence 0.998
  
197. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011080.png ; $D = \rho \frac { \Gamma b } { l } ( V - 2 U ) + \rho \frac { \Gamma ^ { 2 } } { 2 \pi l } \approx$ ; confidence 0.884
+
197. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006028.png ; $T Y \rightarrow V Y$ ; confidence 0.998
  
198. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900176.png ; $\| T \| = \operatorname { ess } _ { S \in Z } \operatorname { sup } _ { \| T ( \zeta ) \| }$ ; confidence 0.091
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b1302004.png ; $( \text{l} \times \text{l} )$ ; confidence 0.998
  
199. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003034.png ; $\operatorname { dens } ( P _ { \alpha } ( X ) ) \leq \operatorname { card } ( \alpha )$ ; confidence 0.954
+
199. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026078.png ; $A = C _ { 0 } ( \Omega )$ ; confidence 0.998
  
200. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w1300505.png ; $W ( \mathfrak { g } ) = \bigwedge \mathfrak { g } ^ { * } \otimes S \mathfrak { g } ^ { * }$ ; confidence 0.334
+
200. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008046.png ; $\operatorname { lim } _ { H \rightarrow 0 } m ( T , H ) = 0$ ; confidence 0.998
  
201. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007020.png ; $\gamma = \sum _ { i = 1 } ^ { \gamma } \alpha _ { i } + \sum _ { j = 1 } ^ { s } p _ { j } \beta _ { j }$ ; confidence 0.597
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005054.png ; $\mathcal{A} = H ^ { \infty } ( B _ { E } )$ ; confidence 0.998
  
202. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w1200809.png ; $\Omega ( q , p ) \psi ( x ) = 2 ^ { n } \operatorname { exp } \{ 2 i p . ( x - q ) \} \psi ( 2 q - x )$ ; confidence 0.600
+
202. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005012.png ; $m = 4$ ; confidence 0.998
  
203. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110233.png ; $H ( X ) = \operatorname { sup } _ { T \neq 0 } \sqrt { \frac { G X ( T ) } { G _ { X } ^ { g } ( T ) } }$ ; confidence 0.528
+
203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018037.png ; $( \tau \backslash \{ P \} )$ ; confidence 0.998
  
204. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110258.png ; $\{ u \in S ^ { \prime } ( R ^ { n } ) : \forall a \in S ( m , G ) , a ^ { w } u \in L ^ { 2 } ( R ^ { n } ) \}$ ; confidence 0.264
+
204. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060176.png ; $u = u ( t _ { 1 } , t _ { 2 } )$ ; confidence 0.998
  
205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080172.png ; $\omega ^ { 0 } = \int \Sigma _ { g } \langle \delta A , \delta \overline { A } \rangle$ ; confidence 0.582
+
205. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004095.png ; $0.3 < x \leq 1$ ; confidence 0.998
  
206. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014026.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { n } { 2 } r ( n x ) = \delta ( x )$ ; confidence 0.904
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001083.png ; $A ^ { - 1 }$ ; confidence 0.998
  
207. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110133.png ; $\alpha ( x ) = \frac { \beta \Gamma ( x - \beta ) } { \Gamma ( 1 - \beta ) \Gamma ( x + 1 ) }$ ; confidence 0.987
+
207. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200187.png ; $( \rho \mid \alpha _ { i } ) = \frac { 1 } { 2 } ( \alpha _ { i } \mid \alpha _ { i } )$ ; confidence 0.998
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002017.png ; $\nu = \operatorname { lim } \sum _ { k = 0 } ^ { n - 1 } \frac { 1 } { n } \delta _ { T ^ { n } x }$ ; confidence 0.751
+
208. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026970/c02697047.png ; $0 < | z | < 1$ ; confidence 0.998
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200803.png ; $\sum _ { i , j = 1 } ^ { m } \alpha _ { i , j } ( x ) n _ { i } ( x ) \partial u / \partial x _ { j } = 0$ ; confidence 0.254
+
209. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230149.png ; $\{ d _ { i } \}$ ; confidence 0.998
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008010.png ; $\sum _ { i , j = 1 } ^ { m } \alpha _ { i , j } ( x ) \xi _ { i } \xi _ { j } \geq \delta | \xi | ^ { 2 }$ ; confidence 0.112
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020074.png ; $Q ( \lambda ) = \operatorname { det } ( T - \lambda I )$ ; confidence 0.998
  
211. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018010.png ; $\Delta ^ { 2 } S _ { n } = \Delta S _ { n + 1 } - \Delta S _ { n } = S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n }$ ; confidence 0.895
+
211. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013032.png ; $p ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018050.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { T _ { x } - S } { S _ { x } - S } = 0$ ; confidence 0.632
+
212. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008052.png ; $\sigma _ { p } < 1$ ; confidence 0.998
  
213. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027068.png ; $h _ { p } = ( 2 , d ) _ { P } \cdot W _ { P } ( \rho ) / W _ { P } ( \operatorname { det } _ { \rho } )$ ; confidence 0.615
+
213. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032047.png ; $V = V _ { \overline{1} }$ ; confidence 0.998
  
214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021050.png ; $\overline { \delta } k : \overline { D } _ { k } \rightarrow \overline { D } _ { k - 1 }$ ; confidence 0.420
+
214. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030028.png ; $( Y ( u ) , u \leq t )$ ; confidence 0.998
  
215. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040184.png ; $\Sigma _ { \gamma = 1 } ^ { \infty } \| T _ { X _ { \gamma } } \| _ { X } ^ { \gamma } < \infty$ ; confidence 0.114
+
215. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035014.png ; $f ( Z ^ { t - 1 } , t , \theta )$ ; confidence 0.998
  
216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005061.png ; $M ( H _ { b } ( \mathfrak { c } _ { 0 } ) ) = \{ \tilde { \delta _ { z } } : z \in l _ { \infty } \}$ ; confidence 0.053
+
216. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026040.png ; $( \lambda , \rho ) ^ { * } = ( \rho ^ { * } , \lambda ^ { * } )$ ; confidence 0.998
  
217. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200605.png ; $\Delta u + \epsilon \frac { 4 n ( n + 1 ) } { ( 1 + \epsilon ( x ^ { 2 } + y ^ { 2 } ) ) ^ { 2 } } u = 0$ ; confidence 0.991
+
217. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018056.png ; $H ( A ) = \sigma \left\{ W ^ { ( 2 ) } ( t ) : t \in A \right\}$ ; confidence 0.998
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016066.png ; $x _ { 2 } ^ { \prime } = x _ { 3 } ^ { \prime } = \frac { 1 } { 2 } [ ( x _ { 1 } + x _ { 2 } ) s - x _ { 1 } v ]$ ; confidence 0.971
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017050.png ; $\Psi ( x )$ ; confidence 0.998
  
219. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020018.png ; $\theta ( e ^ { i t } ) = \operatorname { lim } _ { r \rightarrow 1 } \theta ( r e ^ { i t } )$ ; confidence 0.968
+
219. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002015.png ; $F ( z ) = P ( e ^ { z } , e ^ { \beta z } )$ ; confidence 0.998
  
220. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012036.png ; $( f ^ { * } d \mu ) _ { N } ( x ) = \sum _ { k } \lambda ( \frac { k } { N } ) \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.140
+
220. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034070.png ; $( T M , J )$ ; confidence 0.998
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030047.png ; $| B ( m , 6 ) | = 2 ^ { \alpha } 3 ^ { C _ { \beta } ^ { 1 } + C _ { \beta } ^ { 2 } + C _ { \beta } ^ { 3 } }$ ; confidence 0.861
+
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200608.png ; $\bar{z} = x - i y$ ; confidence 0.998
  
222. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008069.png ; $= \sum _ { i = 0 } ^ { m } D _ { i , m - i } \Lambda ^ { i } M ^ { m - i } , D _ { i j } \in C ^ { n \times n }$ ; confidence 0.619
+
222. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620171.png ; $q ( x + L ) = q ( x )$ ; confidence 0.998
  
223. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010021.png ; $f = \sum _ { i = 1 } ^ { n } a _ { i } \chi _ { B _ { i } } , \quad B _ { i } = \cup _ { j = i } ^ { n } A _ { i }$ ; confidence 0.197
+
223. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026016.png ; $\Omega \cup \{ \infty \}$ ; confidence 0.998
  
224. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210121.png ; $L [ \Delta _ { n } ( \theta ) | P _ { n , \theta } ] \Rightarrow N ( 0 , \Gamma ( \theta ) )$ ; confidence 0.975
+
224. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005010.png ; $M ^ { - 1 } \leq \frac { h ( x + t ) - h ( x ) } { h ( x ) - h ( x - t ) } \leq M$ ; confidence 0.998
  
225. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200604.png ; $\psi [ 1 ] = \psi _ { x } + \sigma \psi ; \quad \sigma = - \varphi _ { x } \varphi ^ { - 1 }$ ; confidence 0.835
+
225. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840188.png ; $\rho ( \lambda )$ ; confidence 0.998
  
226. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006029.png ; $m _ { E _ { 1 } , E _ { 2 } } ( A ) = c . \sum _ { B , C , A = B \cap C } m _ { E _ { 1 } } ( B ) m _ { E _ { 2 } } ( C )$ ; confidence 0.208
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029047.png ; $\phi : M \rightarrow M$ ; confidence 0.998
  
227. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013022.png ; $f ( X ) = X ^ { q ^ { n } } + \sum _ { i = 0 } ^ { n - 1 } ( - 1 ) ^ { n - i } c _ { n , i } X ^ { q ^ { i } } \in K [ X ]$ ; confidence 0.576
+
227. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040142.png ; $P ( x , D ) u = f$ ; confidence 0.998
  
228. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011045.png ; $\gamma _ { 1 } ^ { 2 } = - 1 , \gamma _ { 2 } ^ { 2 } = \gamma _ { 3 } ^ { 2 } = \gamma _ { 4 } ^ { 2 } = 1$ ; confidence 0.610
+
228. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013013.png ; $N ( t ) = \frac { K } { 1 + b e ^ { - \lambda t } }$ ; confidence 0.998
  
229. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029050.png ; $\sum _ { q = 2 , q \text { prime } } ^ { \infty } f ( q ) q ( \operatorname { log } q ) ^ { - 1 }$ ; confidence 0.608
+
229. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013096.png ; $K = M ^ { T } M$ ; confidence 0.998
  
230. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010041.png ; $f ^ { em } = \operatorname { div } t ^ { em } - \frac { \partial G ^ { em } } { \partial t }$ ; confidence 0.635
+
230. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004040.png ; $\chi _ { T } ( G ) \leq \Delta ( G ) + 2$ ; confidence 0.998
  
231. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004046.png ; $= ( \Omega _ { + } - 1 ) g _ { 0 } P _ { + } \psi ( t ) + ( \Omega _ { + } - 1 ) g _ { 0 } P _ { - } \psi ( t )$ ; confidence 0.653
+
231. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008068.png ; $\xi \neq 0,$ ; confidence 0.998
  
232. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023091.png ; $y ^ { ( r ) } = \{ y _ { \alpha } ^ { \alpha } \} _ { | \alpha | = r } ^ { \alpha = 1 , \ldots , m }$ ; confidence 0.062
+
232. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011035.png ; $w ( s ) < w ( r ) < w ( s + 1 )$ ; confidence 0.998
  
233. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947
+
233. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009075.png ; $B ( \beta )$ ; confidence 0.998
  
234. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009030.png ; $H _ { K } ( \zeta ) = \operatorname { sup } _ { z \in K } \operatorname { Re } ( \zeta z )$ ; confidence 0.936
+
234. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051034.png ; $\mathcal{N} = \{ u \in V : g ( u ) > 0 \},$ ; confidence 0.998
  
235. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160130.png ; $\forall x _ { n } + 1 \vee \{ \psi _ { \mathfrak { A } } ^ { l } \overline { a } a : a \in A \}$ ; confidence 0.091
+
235. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022073.png ; $\eta ( u ) = \int H ( M ( u , \xi ) , \xi ) d \xi,$ ; confidence 0.998
  
236. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004077.png ; $P ( x , D ) u = ( 2 \pi ) ^ { - n } \int _ { R ^ { n } } e ^ { i x \xi } p ( x , \xi ) \hat { u } ( \xi ) d \xi$ ; confidence 0.187
+
236. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021012.png ; $n = 428$ ; confidence 0.998
  
237. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601091.png ; $\tau ( W \cup W ^ { \prime } , M _ { 0 } ) = \tau ( W , M _ { 0 } ) + \tau ( W ^ { \prime } , M _ { 1 } )$ ; confidence 0.702
+
237. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060179.png ; $( t _ { 1 } , t _ { 2 } ) \in \mathbf{R}^ { 2 }$ ; confidence 0.998
  
238. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003032.png ; $\frac { r ( z ^ { - 1 } ) } { z } - \frac { p ( z ) } { q ( z ) } = w _ { 0 } z ^ { 2 n } + w _ { 1 } z ^ { 2 n + 1 } +$ ; confidence 0.830
+
238. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008071.png ; $L ^ { 2 } ( T , d m )$ ; confidence 0.998
  
239. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005011.png ; $\frac { d ^ { 2 } \psi } { d x ^ { 2 } } + [ \lambda - u ( x , t ) ] \psi = 0 , - \infty < x < \infty$ ; confidence 0.997
+
239. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008043.png ; $| P _ { 1 } ( \omega ) |$ ; confidence 0.998
  
240. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005038.png ; $\frac { d ^ { 2 } \psi } { d x ^ { 2 } } + \lambda \rho ( x , t ) \psi = 0 , - \infty < x < \infty$ ; confidence 0.997
+
240. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024960/c02496014.png ; $\lambda < 0$ ; confidence 0.998
  
241. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012022.png ; $\alpha ( x ) = \operatorname { lim } _ { n \rightarrow \infty } 2 ^ { - n } f ( 2 ^ { n } x )$ ; confidence 0.568
+
241. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006015.png ; $f ( C ) \subseteq U$ ; confidence 0.998
  
242. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002023.png ; $P ( A _ { 1 } \cap \ldots \cap A _ { n } ) = \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } \frac { 1 } { k ! }$ ; confidence 0.569
+
242. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005035.png ; $= f ( t , x , u , u _ { t } , \nabla u )$ ; confidence 0.998
  
243. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004050.png ; $K ( s ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { N } } \frac { 1 } { \{ s , \zeta - z \} ^ { n } } \times$ ; confidence 0.278
+
243. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680101.png ; $\widehat{\pi}$ ; confidence 0.998
  
244. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005085.png ; $e ( T , V ) = \operatorname { lim } _ { n \rightarrow \infty } \frac { m ( n ; T , V ) } { n }$ ; confidence 0.988
+
244. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510107.png ; $\gamma ( u ) = \infty ( K )$ ; confidence 0.998
  
245. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005078.png ; $R _ { + } ( x ) : = \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } r _ { + } ( k ) e ^ { i k x } d k$ ; confidence 0.481
+
245. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048049.png ; $\pi : M \rightarrow B$ ; confidence 0.998
  
246. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010015.png ; $t _ { \operatorname { min } } < t _ { 1 } < \ldots < t _ { m } < t _ { \operatorname { max } }$ ; confidence 0.631
+
246. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020111.png ; $q ( x , y ) = y$ ; confidence 0.998
  
247. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l110010121.png ; $( a \wedge b = 0 ) \& ( c \succeq 0 ) \Rightarrow ( c a \wedge b = 0 ) \& ( a c \wedge b = 0 )$ ; confidence 0.318
+
247. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005043.png ; $\Pi ^ { - 1 } ( w )$ ; confidence 0.998
  
248. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l1200501.png ; $F ( \tau ) = \int _ { 0 } ^ { \infty } \operatorname { Re } K _ { 1 / 2 } + i \tau ( x ) f ( x ) d x$ ; confidence 0.594
+
248. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101804.png ; $\Psi ( x , y )$ ; confidence 0.998
  
249. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l1200508.png ; $F ( \tau ) = \int _ { 0 } ^ { \infty } \operatorname { Im } K _ { 1 / 2 } + i \tau ( x ) f ( x ) d x$ ; confidence 0.896
+
249. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062300/m0623008.png ; $\rho ( x , y )$ ; confidence 0.998
  
250. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003020.png ; $\underline { \beta } ^ { ( l ) } = ( \beta _ { 0 } ^ { ( l ) } , \beta _ { 1 } ^ { ( l ) } , \ldots )$ ; confidence 0.688
+
250. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002016.png ; $\mu ( X \backslash A ) = 0$ ; confidence 0.998
  
251. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110138.png ; $( v . \nabla ) v = \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } v ) \times v$ ; confidence 0.508
+
251. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d1200602.png ; $\psi ( x , \lambda ) , \varphi ( x , \mu ) \in C ^ { 2 }$ ; confidence 0.998
  
252. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016064.png ; $\psi ( u ) = \int _ { 0 } ^ { \infty } \Omega _ { p _ { 1 } n _ { 1 } } ( r ^ { 2 } u ) d F ( r ) , u \geq 0$ ; confidence 0.607
+
252. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007046.png ; $f ( z _ { 1 } , z _ { 2 } ) = \left( | z _ { 1 } | ^ { 2 } - \frac { 1 } { 2 } \right) ^ { 2 } = \left( | z _ { 2 } | ^ { 2 } - \frac { 1 } { 2 } \right) ^ { 2 },$ ; confidence 0.998
  
253. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006047.png ; $\mu _ { k + 1 } \leq \frac { 4 \pi ^ { 2 } k ^ { 2 / N } } { ( C _ { N } | \Omega | ) ^ { 2 / N } } , k = 0,1$ ; confidence 0.107
+
253. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004032.png ; $K ( f ) \leq K$ ; confidence 0.998
  
254. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663089.png ; $\mathfrak { W } _ { 1 } , \ldots , v _ { n } ( x _ { 1 } , \ldots , x _ { n } ) \in L _ { p } ( R ^ { n } )$ ; confidence 0.070
+
254. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180460.png ; $s ^ { 2 } t ^ { 2 } g ( P )$ ; confidence 0.998
  
255. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520278.png ; $\int _ { - \infty } ^ { + \infty } | F ( \xi ) | ^ { 2 } d ( E _ { \xi } h _ { 0 } , h _ { 0 } ) < \infty$ ; confidence 0.998
+
255. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110184.png ; $J ( D )$ ; confidence 0.998
  
256. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005068.png ; $\operatorname { inf } \{ \lambda > 0 : \int \psi ( f ^ { * } / \lambda w ) w < \infty \}$ ; confidence 0.693
+
256. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002034.png ; $\sum _ { k \in P } \lambda _ { k } = 1$ ; confidence 0.998
  
257. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001026.png ; $\int _ { \Omega } f _ { 1 } \circ X _ { t _ { 1 } } \ldots f _ { n } \circ X _ { t _ { n } } d P \geq 0$ ; confidence 0.785
+
257. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l1200302.png ; $\operatorname{Map}( X , Y )$ ; confidence 0.998
  
258. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007039.png ; $g E g ^ { - 1 } = q ^ { 2 } E , g F g ^ { - 1 } = q ^ { - 2 } F , [ E , F ] = \frac { g - g ^ { - 1 } } { q - q ^ { - 1 } }$ ; confidence 0.851
+
258. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026058.png ; $\Omega = \mathbf{R}$ ; confidence 0.998
  
259. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002019.png ; $F _ { 1 } ( q , \dot { q } ) = C _ { 1 } ( q , \dot { q } ) \dot { q } + g _ { 1 } ( q ) + f _ { 1 } ( \dot { q } )$ ; confidence 0.929
+
259. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030122.png ; $D = D _ { + } + D _ { + } ^ { * }$ ; confidence 0.998
  
260. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002020.png ; $F _ { 2 } ( q , \dot { q } ) = C _ { 2 } ( q , \dot { q } ) \dot { q } + g _ { 2 } ( q ) + f _ { 2 } ( \dot { q } )$ ; confidence 0.598
+
260. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850134.png ; $t \geq 1$ ; confidence 0.998
  
261. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011038.png ; $\mathfrak { S } _ { w } = x _ { r } \mathfrak { S } _ { v } + \sum \mathfrak { S } _ { v ( q , r ) }$ ; confidence 0.423
+
261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120121.png ; $\int f ( \theta , \phi ) d \phi = \int f ( \theta , \phi , \alpha ) d \phi$ ; confidence 0.998
  
262. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130660/s13066019.png ; $\operatorname { span } \{ z ^ { - n - 1 } , \ldots , z ^ { - 1 } , 1 , z , \ldots , z ^ { n - 1 } \}$ ; confidence 0.219
+
262. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001072.png ; $\xi ( \tau ) = \tau _ { 1 } \xi ^ { 1 } + \tau _ { 2 } \xi ^ { 2 } + \tau _ { 3 } \xi ^ { 3 }$ ; confidence 0.998
  
263. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050161.png ; $\sigma _ { 1 } ( A ) = \sigma _ { le } ( A ) = \sigma _ { re } ( A ) = \sigma _ { Te } ( A ) = S ^ { 3 }$ ; confidence 0.531
+
263. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001078.png ; $1$ ; confidence 0.998
  
264. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005063.png ; $x _ { 0 } ^ { - 1 } \delta ( \frac { x _ { 1 } - x _ { 2 } } { x _ { 0 } } ) Y ( u , x _ { 1 } ) Y ( v , x _ { 2 } ) +$ ; confidence 0.917
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013097.png ; $L ( \psi ) = z \psi$ ; confidence 0.998
  
265. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005065.png ; $= x _ { 2 } ^ { - 1 } \delta ( \frac { x _ { 1 } - x _ { 0 } } { x _ { 2 } } ) Y ( Y ( u , x _ { 0 } ) v , x _ { 2 } )$ ; confidence 0.904
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022035.png ; $r ( S ) \leq r ( T )$ ; confidence 0.998
  
266. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011045.png ; $= \int _ { R ^ { 2 n } } \hat { \alpha } ( \Xi ) \operatorname { exp } ( 2 i \pi \Xi M ) d \Xi$ ; confidence 0.522
+
266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240216.png ; $\operatorname { dim } ( \Omega ) = r$ ; confidence 0.998
  
267. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011058.png ; $\alpha ( x , \xi ) = \int k ( x + \frac { t } { 2 } , x - \frac { t } { 2 } ) e ^ { - 2 i \pi t \xi } d t$ ; confidence 0.841
+
267. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042090.png ; $n > 0$ ; confidence 0.998
  
268. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080189.png ; $\omega = \omega ^ { 0 } - ( 1 / \kappa ) \sum \delta H _ { \alpha } \delta t _ { \alpha }$ ; confidence 0.984
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200608.png ; $c ( x )$ ; confidence 0.998
  
269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009075.png ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n \}$ ; confidence 0.325
+
269. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420118.png ; $H$ ; confidence 0.998
  
270. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017051.png ; $f ( \lambda ) = ( 2 \pi ) ^ { - 1 } k ( e ^ { - i \lambda } ) \Sigma k ^ { * } ( e ^ { - i \lambda } )$ ; confidence 0.817
+
270. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017016.png ; $b ( t ) = F ( t ) + \int _ { 0 } ^ { t } K ( t - s ) b ( s ) d s$ ; confidence 0.998
  
271. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001011.png ; $Z ( \delta _ { k } ( n ) ) = \sum _ { j = 0 } ^ { \infty } \delta _ { k } ( j ) z ^ { - j } = z ^ { - k } fo$ ; confidence 0.550
+
271. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110360/a11036013.png ; $n > 1$ ; confidence 0.998
  
272. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003026.png ; $f ( t ) = ( 2 \gamma ) ^ { 1 / 4 } \operatorname { exp } ( - \pi \gamma t ^ { 2 } ) , \gamma > 0$ ; confidence 0.998
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043023.png ; $t \rightarrow \infty$ ; confidence 0.998
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007068.png ; $| ( A ( t ) - A ( s ) ) A ( 0 ) ^ { - 1 } \| \leq C _ { 2 } | t - s | ^ { \alpha } , \quad t , s \in [ 0 , T ]$ ; confidence 0.911
+
273. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001094.png ; $V ^ { * } - V$ ; confidence 0.998
  
274. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008072.png ; $t _ { N } ( x ) = \frac { c _ { N } } { s } ( 1 + \frac { ( x - m ) ^ { 2 } } { s ^ { 2 } n } ) ^ { - ( n + 1 ) / 2 }$ ; confidence 0.342
+
274. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290121.png ; $\operatorname { dim } A = 2$ ; confidence 0.998
  
275. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028064.png ; $\langle U _ { \mu } ( x ) , \rho \rangle = \int \{ U _ { t } ( x ) , \rho \rangle d \mu ( t )$ ; confidence 0.507
+
275. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c1300406.png ; $\psi ( z ) : = \frac { d } { d z } \{ \operatorname { log } \Gamma ( z ) \} = \frac { \Gamma ^ { \prime } ( z ) } { \Gamma ( z ) }$ ; confidence 0.998
  
276. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010033.png ; $F ( 0 ) = ( F _ { 1 } ( 0 , x _ { 1 } ) , \ldots , F _ { N } ( 0 , x _ { 1 } , \ldots , x _ { N } ) , \ldots )$ ; confidence 0.084
+
276. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583071.png ; $i B _ { 0 }$ ; confidence 0.998
  
277. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201001.png ; $F ( t ) = ( F _ { 1 } ( t , x _ { 1 } ) , \ldots , F _ { n } ( t , x _ { 1 } , \ldots , x _ { n } ) , \ldots )$ ; confidence 0.326
+
277. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e1300407.png ; $U _ { 0 } ( t )$ ; confidence 0.998
  
278. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210112.png ; $( - , N ) : N ^ { \prime } \rightarrow \operatorname { Hom } _ { a } ( N ^ { \prime } , N )$ ; confidence 0.774
+
278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026092.png ; $( L _ { \mu } ) ^ { p }$ ; confidence 0.998
  
279. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220133.png ; $_ { S = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } H _ { D } ^ { i + 1 } ( X / R , R ( i + 1 - m ) )$ ; confidence 0.273
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040170.png ; $\bar{A}$ ; confidence 0.998
  
280. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220192.png ; $F ^ { m } H _ { DR } ^ { 2 m - 1 } ( X / R ) \rightleftarrows H _ { B } ^ { 2 m - 1 } ( X / R , R ( m - 1 ) )$ ; confidence 0.242
+
280. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004046.png ; $\partial D \times D$ ; confidence 0.998
  
281. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009018.png ; $d ( u , \phi ) ( t ) = \operatorname { inf } \{ \| u - \phi ( x - v t - c ) \| _ { 1 } : c \in R \}$ ; confidence 0.953
+
281. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040145.png ; $M ^ { ( 2 ) }$ ; confidence 0.998
  
282. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014052.png ; $S ( z ) \equiv \frac { \omega ( z ) } { \sigma ( z ) } ( \operatorname { mod } z ^ { 2 t } )$ ; confidence 0.978
+
282. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l0570007.png ; $( M N ) \in \Lambda$ ; confidence 0.998
  
283. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016052.png ; $C ( X , \tau ) : = \{ f \in C ( X ) : f ( \tau ( x ) ) = \overline { f ( x ) } , \forall x \in X \}$ ; confidence 0.953
+
283. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m1200304.png ; $f _ { \theta } ( x )$ ; confidence 0.998
  
284. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034031.png ; $\sum _ { \alpha } \operatorname { sup } _ { D _ { r } } | c _ { \alpha } z ^ { \alpha } | < 1$ ; confidence 0.383
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970244.png ; $L ( f )$ ; confidence 0.998
  
285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043068.png ; $\Psi ( y \bigotimes y ) = q ^ { 2 } y \otimes y \Psi ( x \varnothing y ) = q y \otimes x$ ; confidence 0.176
+
285. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c022780177.png ; $( n )$ ; confidence 0.998
  
286. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026044.png ; $y \notin f ( \overline { \Omega } \backslash ( \Omega _ { 1 } \cup \Omega _ { 2 } ) )$ ; confidence 0.656
+
286. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014049.png ; $\gamma \in \mathbf{R}$ ; confidence 0.998
  
287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052061.png ; $( B + u v ^ { T } ) ^ { - 1 } = ( I - \frac { ( B ^ { - 1 } u ) v ^ { T } } { 1 + v ^ { T } B ^ { - 1 } u } ) B ^ { - 1 }$ ; confidence 0.954
+
287. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010417.png ; $\rho < 1$ ; confidence 0.998
  
288. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007014.png ; $\{ M ( \alpha _ { n } + 1 ) \text { pr } \{ \alpha _ { 1 } , \dots , \alpha _ { n } \rangle +$ ; confidence 0.465
+
288. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004027.png ; $s _ { \lambda } = \sum _ { T } \mathbf{x} ^ { T },$ ; confidence 0.998
  
289. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002033.png ; $v ^ { * } = \sum _ { k \in P } \lambda _ { k } x ^ { ( k ) } + \sum _ { k \in R } \mu _ { k } x ^ { ( k ) }$ ; confidence 0.323
+
289. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s1202804.png ; $\overline { f } : X \rightarrow Y$ ; confidence 0.998
  
290. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301107.png ; $= ( \alpha _ { x } p _ { x } + \alpha _ { y } p y + \alpha _ { z } p _ { z } + \beta m _ { 0 } c ) ^ { 2 }$ ; confidence 0.359
+
290. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005033.png ; $D _ { A } ^ { 2 } = 0$ ; confidence 0.998
  
291. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017034.png ; $\lambda _ { k } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } }$ ; confidence 0.935
+
291. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009023.png ; $f ^ { - 1 } ( S )$ ; confidence 0.998
  
292. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020017.png ; $\int _ { 0 } ^ { 1 } | p _ { R } ( i t ) | ^ { 2 } d t = \sum _ { m = 1 } ^ { n } | a _ { m } | ^ { 2 } ( T + O ( m ) )$ ; confidence 0.464
+
292. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200142.png ; $m > - 1$ ; confidence 0.998
  
293. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020012.png ; $\zeta ( s ) = \sum _ { m \leq x } m ^ { - s } + \frac { x ^ { 1 - s } } { s - 1 } + O ( x ^ { - \sigma } )$ ; confidence 0.949
+
293. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080124.png ; $T _ { 1 } \sim \Lambda$ ; confidence 0.998
  
294. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024033.png ; $\operatorname { im } \mathfrak { g } - \operatorname { dim } \mathfrak { g } ( f )$ ; confidence 0.575
+
294. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022015.png ; $\Delta ^ { ( 0 ) } = \Delta$ ; confidence 0.998
  
295. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000109.png ; $I _ { \epsilon } = \operatorname { inf } _ { \rho \in R _ { \epsilon } ( X ) } I ( \rho )$ ; confidence 0.469
+
295. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006093.png ; $0 \leq \lambda < 1$ ; confidence 0.998
  
296. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e1201508.png ; $\frac { d ^ { 2 } x ^ { i } } { d t ^ { 2 } } + g ^ { i } ( x , \dot { x } , t ) = 0 , \quad i = 1 , \dots , n$ ; confidence 0.531
+
296. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034065.png ; $1 / 3$ ; confidence 0.998
  
297. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240130.png ; $c _ { l } \in H ^ { 1 } ( G ( \overline { Q } / Q ) ; \operatorname { Sym } ^ { 2 } T _ { p } ( E ) )$ ; confidence 0.588
+
297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031058.png ; $R \rightarrow \infty$ ; confidence 0.998
  
298. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150182.png ; $\nu ( A ) = \operatorname { sup } _ { M } \text { inf } \{ \| A x \| : x \in M , \| x \| = 1 \}$ ; confidence 0.250
+
298. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051033.png ; $\mathcal{P} = \{ u \in V : g ( u ) = 0 \},$ ; confidence 0.998
  
299. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f1202303.png ; $\Omega ( M , T M ) = \oplus _ { k = 0 } ^ { \operatorname { dim } M } \Omega ^ { k } ( M , T M )$ ; confidence 0.926
+
299. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602051.png ; $\Phi ^ { - } ( z )$ ; confidence 0.998
  
300. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004053.png ; $| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$ ; confidence 0.103
+
300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204002.png ; $\pi : E \rightarrow M$ ; confidence 0.998

Latest revision as of 12:39, 17 May 2020

List

1. a130240217.png ; $\operatorname { dim } ( \omega ) = r - q$ ; confidence 0.998

2. n1300506.png ; $1 - ( s ^ { 2 } \mu , s \mu , r )$ ; confidence 0.998

3. e13004019.png ; $U ( t ) \psi ( 0 )$ ; confidence 0.998

4. f13024026.png ; $\{ A B C \} : = 1 / 2 ( A B C + C B A )$ ; confidence 0.998

5. b12042019.png ; $( V , W )$ ; confidence 0.998

6. s12017018.png ; $\{ F ( A , d ) : A \in \mathcal X \}$ ; confidence 0.998

7. c120180221.png ; $\varphi \in \mathcal{E}$ ; confidence 0.998

8. d11018018.png ; $> y$ ; confidence 0.998

9. q12005091.png ; $\phi \in [ 0,1 ]$ ; confidence 0.998

10. f13017024.png ; $\sigma ( A _ { 2 } ( G ) , C V _ { 2 } ( G ) )$ ; confidence 0.998

11. f12010044.png ; $\Delta ( z ) = ( 60 G _ { 4 } ) ^ { 3 } - 27 ( 140 G _ { 6 } ) ^ { 2 }$ ; confidence 0.998

12. b017400124.png ; $\Phi ^ { - } ( t )$ ; confidence 0.998

13. w13005021.png ; $W _ { k } = W ( G , K ) _ { k } = W ( G , K ) / F W.$ ; confidence 0.998

14. k12005068.png ; $\lambda \neq + \infty$ ; confidence 0.998

15. l06077086.png ; $r ( x )$ ; confidence 0.998

16. c130070178.png ; $R ^ { \prime } ( P )$ ; confidence 0.998

17. b12016028.png ; $p ^ { \prime } = p$ ; confidence 0.998

18. e12019078.png ; $\{ p , q \} \equiv \{ r , s \}$ ; confidence 0.998

19. r13008014.png ; $( f ( x ) , K ( x , y ) ) = f ( y )$ ; confidence 0.998

20. e12024072.png ; $y ^ { 2 } = x ^ { 3 } - p ^ { 2 } x$ ; confidence 0.998

21. t13015034.png ; $H ^ { 2 } ( S )$ ; confidence 0.998

22. s12017080.png ; $( A , d )$ ; confidence 0.998

23. c027210182.png ; $m = 3$ ; confidence 0.998

24. m12003044.png ; $F _ { \theta } ( x ) = \Phi ( x - \theta )$ ; confidence 0.998

25. m12007014.png ; $M ( P Q ) = M ( P ) M ( Q )$ ; confidence 0.998

26. w13005022.png ; $H ^ { * } ( W _ { k } )$ ; confidence 0.998

27. a12025097.png ; $( k , n )$ ; confidence 0.998

28. s13062013.png ; $T = - d ^ { 2 } / d x ^ { 2 } + q ( x )$ ; confidence 0.998

29. k1300508.png ; $N \simeq 10 ^ { 19 }$ ; confidence 0.998

30. f12015078.png ; $A \in \Phi _ { - } ( X , Y ) \backslash \Phi ( X , Y ),$ ; confidence 0.998

31. t12014034.png ; $\phi \mapsto T _ { \phi }$ ; confidence 0.998

32. v12006014.png ; $p - 1 \mid 2 n$ ; confidence 0.998

33. b13030038.png ; $| B ( 2,4 ) | = 2 ^ { 12 }$ ; confidence 0.998

34. w12017012.png ; $Z ( G ) \leq \omega ( G ) \leq Z _ { 2 } ( G )$ ; confidence 0.998

35. m0645407.png ; $D ( u )$ ; confidence 0.998

36. s120230101.png ; $H \in \mathcal{O} ( p , n )$ ; confidence 0.998

37. f120150106.png ; $i ( F ( x ) ) = 0$ ; confidence 0.998

38. a13014022.png ; $2 \leq n < \infty$ ; confidence 0.998

39. m1201504.png ; $X ( p \times n )$ ; confidence 0.998

40. c0276007.png ; $0 \leq \phi < 2 \pi$ ; confidence 0.998

41. b13001065.png ; $V _ { 0 } = V$ ; confidence 0.998

42. d13021027.png ; $x ( t - \tau _ { i } )$ ; confidence 0.998

43. w1301109.png ; $( X , \mathcal{F} , \mu , T )$ ; confidence 0.998

44. a1200204.png ; $f : A \rightarrow X$ ; confidence 0.998

45. t1200301.png ; $f : R \rightarrow R ^ { \prime }$ ; confidence 0.998

46. h13007020.png ; $B ( m , D , 1 ) \leq m D.$ ; confidence 0.998

47. f13024037.png ; $U ( \varepsilon )$ ; confidence 0.998

48. z13008058.png ; $U ( \alpha + 2 ) / U ( \alpha + 1 )$ ; confidence 0.998

49. a11032033.png ; $R _ { 0 } ^ { ( s + 1 ) } ( z )$ ; confidence 0.998

50. a01160014.png ; $O _ { K }$ ; confidence 0.998

51. i12010040.png ; $R ( X , Y ) = - R ( Y , X ),$ ; confidence 0.998

52. a13008059.png ; $s = R - L$ ; confidence 0.998

53. b12018057.png ; $\varphi \rightarrow \psi$ ; confidence 0.998

54. e1202309.png ; $E = M \times F$ ; confidence 0.998

55. s13058028.png ; $Q = U = 0$ ; confidence 0.998

56. h1200106.png ; $f : V \rightarrow W$ ; confidence 0.998

57. b11089042.png ; $\nabla f$ ; confidence 0.998

58. c12029044.png ; $\partial : C ( w ) \rightarrow P$ ; confidence 0.998

59. s12016024.png ; $A ( q , d ) =$ ; confidence 0.998

60. f12024014.png ; $m _ { i } \geq 0$ ; confidence 0.998

61. m12023027.png ; $\operatorname { max } \{ 1 / t , 1 / ( T - t ) \}$ ; confidence 0.998

62. w13011024.png ; $g \in L ^ { 1 } ( \mu )$ ; confidence 0.998

63. a1303207.png ; $H _ { 1 } : \theta > 0$ ; confidence 0.998

64. h12004035.png ; $G ( \omega _ { 1 } , \omega _ { 1 } )$ ; confidence 0.998

65. a12012046.png ; $( 0 , y ) \in \mathcal{J}$ ; confidence 0.998

66. f1302807.png ; $\varepsilon > \mathbf 0 $ ; confidence 0.998

67. v09691018.png ; $H = L _ { 2 } ( X , \mu )$ ; confidence 0.998

68. q12005069.png ; $\phi = s ^ { T } y ( s ^ { T } y - y ^ { T } H y ) ^ { - 1 }$ ; confidence 0.998

69. f12015039.png ; $B A \in \Phi ( X , Z )$ ; confidence 0.998

70. n13002029.png ; $Y _ { \alpha } = [ 0,1 ]$ ; confidence 0.998

71. v12004071.png ; $\omega ( G ) + 1$ ; confidence 0.998

72. b13019077.png ; $t \rightarrow + \infty$ ; confidence 0.998

73. f12014062.png ; $\lambda \geq \frac { r ^ { 2 } + R ^ { 2 } } { 1 + ( r R ) ^ { 2 } }.$ ; confidence 0.998

74. q13005055.png ; $\mathbf{T} = \partial \mathbf D $ ; confidence 0.998

75. t12007073.png ; $\leq 1200$ ; confidence 0.998

76. b12024027.png ; $( 2 \pi ) ^ { - 1 }$ ; confidence 0.998

77. o13006058.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) = \operatorname { det } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma ).$ ; confidence 0.998

78. b12009086.png ; $\varphi ( z ) \in B ( \beta )$ ; confidence 0.998

79. b1203606.png ; $\operatorname { exp } ( - E / k _ { B } T )$ ; confidence 0.998

80. s1202307.png ; $\Gamma \in \mathcal{O} ( p )$ ; confidence 0.998

81. b12021064.png ; $\theta \in \Theta ( M )$ ; confidence 0.998

82. q12007014.png ; $\mathcal{R} _ { 12 } \equiv \mathcal{R} \otimes 1$ ; confidence 0.998

83. d13017074.png ; $\lambda _ { 1 } ( \Omega _ { t } ) \leq t \lambda _ { 1 } ( \Omega _ { 1 } ) + ( 1 - t ) \lambda _ { 2 } ( \Omega _ { 2 } )$ ; confidence 0.998

84. l05754081.png ; $| t | \rightarrow \infty$ ; confidence 0.998

85. w120070101.png ; $C ^ { \prime } , s ^ { \prime } , r \geq 0$ ; confidence 0.998

86. h12011018.png ; $\theta \in \mathbf{R}$ ; confidence 0.998 ;

87. l13010045.png ; $t = | \xi |$ ; confidence 0.998

88. a0132505.png ; $w = f ( z )$ ; confidence 0.998

89. a12011021.png ; $A ( 4 , n )$ ; confidence 0.998

90. a13007063.png ; $- 1 / 25$ ; confidence 0.998

91. t1200306.png ; $U ^ { \prime } = f ( U ) \subset R ^ { \prime }$ ; confidence 0.998

92. c120180314.png ; $R ( g ) = ( R ( \nabla ) \otimes 1 ) g$ ; confidence 0.998

93. q07680060.png ; $r ( t )$ ; confidence 0.998

94. b13010042.png ; $L ^ { 2 } ( D , d A )$ ; confidence 0.998

95. l06004029.png ; $z ^ { 2 }$ ; confidence 0.998

96. o12005057.png ; $1 < p , q < \infty$ ; confidence 0.998

97. n12002032.png ; $\alpha \in E ^ { * }$ ; confidence 0.998

98. q12007086.png ; $H ^ { * } \otimes H$ ; confidence 0.998

99. b01729036.png ; $\partial V$ ; confidence 0.998

100. a12010067.png ; $f \in L ^ { 2 } ( \Omega )$ ; confidence 0.998

101. o12006066.png ; $W ^ { k - 1 } L _ { \Phi } ( \partial \Omega )$ ; confidence 0.998

102. b12044099.png ; $R H$ ; confidence 0.998

103. c13007011.png ; $X = \frac { 1 - t ^ { 2 } } { 1 + t ^ { 2 } } , Y = \frac { 2 t } { 1 + t ^ { 2 } }.$ ; confidence 0.998

104. h04601023.png ; $W \approx M _ { 0 } \times [ 0,1 ]$ ; confidence 0.998

105. p1201702.png ; $B ( H )$ ; confidence 0.998

106. g130040185.png ; $\delta \nu = 0$ ; confidence 0.998

107. c12018074.png ; $\theta = \lambda d \rho$ ; confidence 0.998

108. t13007024.png ; $L [ 0,2 \pi ]$ ; confidence 0.998

109. a01220084.png ; $0 \leq t \leq 1$ ; confidence 0.998

110. e120190105.png ; $( S , d )$ ; confidence 0.998

111. b1205201.png ; $F ( x ) = 0,$ ; confidence 0.998

112. a130180141.png ; $\mathfrak{Rel}_n( U )$ ; confidence 0.998 ; Note: I don't know of any package which represents the real part as such.

113. a01068013.png ; $F ( z )$ ; confidence 0.998

114. c12002032.png ; $T _ { \mu } f$ ; confidence 0.998

115. s130620124.png ; $y ( x , \lambda )$ ; confidence 0.998

116. w11006011.png ; $\overline { B } ( t , \omega )$ ; confidence 0.998

117. c02544063.png ; $u ( y )$ ; confidence 0.998

118. t130140124.png ; $R = K Q$ ; confidence 0.998

119. m12003025.png ; $T ( F _ { \theta } ) = \theta$ ; confidence 0.998

120. t12013076.png ; $t = x - y$ ; confidence 0.998

121. n1201109.png ; $\xi : \mathbf{R} \rightarrow [ 0,1 ]$ ; confidence 0.998 ;

122. w12021058.png ; $s _ { 1 } = s _ { 2 } = s _ { 3 } = s _ { 4 } = 1$ ; confidence 0.998

123. m13019032.png ; $m _ { k } = L ( f _ { k } )$ ; confidence 0.998

124. r08232017.png ; $K = \overline { H }$ ; confidence 0.998

125. b12037046.png ; $D _ { \Omega } ( f )$ ; confidence 0.998

126. m12007046.png ; $m ( P ) = 0$ ; confidence 0.998

127. f120110125.png ; $f ( x ) = F ( x + i 0 ) - F ( x - i 0 )$ ; confidence 0.998

128. b120040151.png ; $0 < \theta < 1$ ; confidence 0.998

129. s13050030.png ; $( X , \pi )$ ; confidence 0.998

130. b12009049.png ; $w = w ( z )$ ; confidence 0.998

131. m13023097.png ; $( X ^ { + } , B ^ { + } )$ ; confidence 0.998

132. y12003038.png ; $D _ { A } : \Gamma ( V _ { + } ) \rightarrow \Gamma ( V _ { - } )$ ; confidence 0.998

133. z13013024.png ; $H ( r , \theta ) \rightarrow ( 1 / r ) H ( 1 / r ^ { 2 } , \theta )$ ; confidence 0.998

134. g04392019.png ; $\alpha , \beta > 0$ ; confidence 0.998

135. b12018060.png ; $\varphi \rightarrow \chi$ ; confidence 0.998

136. f12011049.png ; $G ( \xi + i \Delta 0 )$ ; confidence 0.998

137. s13036024.png ; $Y _ { 0 } = 0$ ; confidence 0.998

138. e035000136.png ; $T : H \rightarrow H$ ; confidence 0.998

139. b120420156.png ; $( V , \lambda )$ ; confidence 0.998

140. w120070107.png ; $s ^ { \prime } = 0$ ; confidence 0.998

141. c0219702.png ; $( X , \rho )$ ; confidence 0.998

142. k12005042.png ; $( X , B )$ ; confidence 0.998

143. z1301301.png ; $( r , \theta , \varphi )$ ; confidence 0.998

144. c120170164.png ; $p ( z , \bar{z} )$ ; confidence 0.998 ;

145. b13020011.png ; $\mathfrak { g } = \mathfrak { g } ( A )$ ; confidence 0.998

146. a13007018.png ; $945$ ; confidence 0.998

147. o130010157.png ; $\theta ^ { \prime } - \theta = \xi$ ; confidence 0.998

148. l12004091.png ; $0 \leq x \leq 0.3$ ; confidence 0.998

149. e13003042.png ; $\partial ( \Gamma \backslash X )$ ; confidence 0.998

150. e120230154.png ; $\sigma _ { t } ^ { k } = \phi _ { t } ^ { k } \circ \sigma ^ { k }$ ; confidence 0.998

151. i1200602.png ; $\operatorname{Idim}( P )$ ; confidence 0.998

152. b120430143.png ; $H \rightarrow H _ { 1 }$ ; confidence 0.998

153. f120150103.png ; $i ( F ( x ) ) = i ( F ^ { \prime } ( x ) )$ ; confidence 0.998

154. z13002021.png ; $E \subset ( 0,1 )$ ; confidence 0.998

155. l12005012.png ; $e ^ { - x } / \sqrt { x }$ ; confidence 0.998

156. k13001039.png ; $V _ { L } ( t ) = f _ { L } ( A )$ ; confidence 0.998

157. a13024079.png ; $( i , j , k )$ ; confidence 0.998

158. g04337013.png ; $( x , h ) \rightarrow D f ( x , h )$ ; confidence 0.998

159. h12004042.png ; $( \kappa , \lambda ^ { * } )$ ; confidence 0.998

160. b12032069.png ; $r , s , t \geq 0$ ; confidence 0.998

161. e03500085.png ; $( X , \rho , \mu )$ ; confidence 0.998

162. b12001031.png ; $\frac { \partial u } { \partial t } + 6 u \frac { \partial u } { \partial x } + \frac { \partial ^ { 3 } u } { \partial x ^ { 3 } } = 0$ ; confidence 0.998

163. f12021094.png ; $\lambda _ { 1 } - \lambda _ { 2 } \in \mathbf{N}$ ; confidence 0.998

164. d13008056.png ; $| F ^ { \prime } ( c ) | < 1$ ; confidence 0.998

165. z13010022.png ; $( \varphi \wedge \psi )$ ; confidence 0.998

166. m12025037.png ; $f : K \rightarrow U ^ { \prime }$ ; confidence 0.998

167. j130040143.png ; $\varepsilon ( L ) = \pm 1$ ; confidence 0.998

168. t12021070.png ; $t ( M _ { H } ; 2,0 )$ ; confidence 0.998

169. a12031036.png ; $C ( E )$ ; confidence 0.998

170. f12015032.png ; $A + T \in \Phi ( X , Y )$ ; confidence 0.998

171. m13014027.png ; $H _ { 3 } = \{ 1 \}$ ; confidence 0.998

172. p130070124.png ; $\leq G ( z , w ) \leq \operatorname { log } \operatorname { tanh } \delta ( z , w ),$ ; confidence 0.998

173. b130120114.png ; $f ^ { \prime } \in \mathcal{A}$ ; confidence 0.998

174. q13005024.png ; $f ( \infty ) = \infty$ ; confidence 0.998

175. b12006015.png ; $+ n ( n + 1 ) Y = 0.$ ; confidence 0.998

176. a12011019.png ; $A ( 2 , n ) = 2 n + 3$ ; confidence 0.998

177. d13008022.png ; $\partial \Delta$ ; confidence 0.998

178. g12004038.png ; $1 \leq s < 2$ ; confidence 0.998

179. q120070110.png ; $\mathcal{R} = \beta$ ; confidence 0.998

180. c13007015.png ; $Y ^ { 2 } = X ^ { 3 } - 1$ ; confidence 0.998

181. c12017068.png ; $M ( n ) \equiv M ( n ) ( \gamma )$ ; confidence 0.998

182. m06222041.png ; $h = 1,2,3$ ; confidence 0.998

183. c13016010.png ; $t ( n )$ ; confidence 0.998

184. t12019016.png ; $t ( k , r ) \leq t ( k - 1 , r - 1 )$ ; confidence 0.998

185. v12003036.png ; $\{ \int f _ { n } d \mu \}$ ; confidence 0.998

186. i120080118.png ; $\gamma = 1$ ; confidence 0.998

187. v12004029.png ; $\Delta ( G ) \leq 5$ ; confidence 0.998

188. k055840282.png ; $N ^ { 2 } = 0$ ; confidence 0.998

189. d12018024.png ; $\frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } f ( e ^ { i \theta } ) d \theta = f ( 0 )$ ; confidence 0.998

190. w13008033.png ; $\lambda _ { 0 } = 2 \overline { u }$ ; confidence 0.998

191. b130290148.png ; $\operatorname { dim } A = 1$ ; confidence 0.998

192. b120040168.png ; $X = ( X _ { 0 } ) ^ { 1 - \theta } ( L _ { 2 } ( \mu ) ) ^ { \theta }$ ; confidence 0.998

193. s12026050.png ; $\phi ( s ) \in ( L ^ { 2 } ) ^ { + }$ ; confidence 0.998

194. z13001077.png ; $z ( z - \operatorname { cosh } w ) / ( z ^ { 2 } - 2 z \operatorname { cosh } w + 1 )$ ; confidence 0.998

195. f12015033.png ; $i ( A + T ) = i ( A ) , \quad \alpha ( A + T ) \leq \alpha ( A )$ ; confidence 0.998

196. e12002022.png ; $\operatorname{mor}( X , W )$ ; confidence 0.998

197. e12006028.png ; $T Y \rightarrow V Y$ ; confidence 0.998

198. b1302004.png ; $( \text{l} \times \text{l} )$ ; confidence 0.998

199. m13026078.png ; $A = C _ { 0 } ( \Omega )$ ; confidence 0.998

200. i12008046.png ; $\operatorname { lim } _ { H \rightarrow 0 } m ( T , H ) = 0$ ; confidence 0.998

201. b12005054.png ; $\mathcal{A} = H ^ { \infty } ( B _ { E } )$ ; confidence 0.998

202. f13005012.png ; $m = 4$ ; confidence 0.998

203. b12018037.png ; $( \tau \backslash \{ P \} )$ ; confidence 0.998

204. o130060176.png ; $u = u ( t _ { 1 } , t _ { 2 } )$ ; confidence 0.998

205. l12004095.png ; $0.3 < x \leq 1$ ; confidence 0.998

206. a11001083.png ; $A ^ { - 1 }$ ; confidence 0.998

207. b130200187.png ; $( \rho \mid \alpha _ { i } ) = \frac { 1 } { 2 } ( \alpha _ { i } \mid \alpha _ { i } )$ ; confidence 0.998

208. c02697047.png ; $0 < | z | < 1$ ; confidence 0.998

209. d120230149.png ; $\{ d _ { i } \}$ ; confidence 0.998

210. a12020074.png ; $Q ( \lambda ) = \operatorname { det } ( T - \lambda I )$ ; confidence 0.998

211. k12013032.png ; $p ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998

212. q12008052.png ; $\sigma _ { p } < 1$ ; confidence 0.998

213. s12032047.png ; $V = V _ { \overline{1} }$ ; confidence 0.998

214. d12030028.png ; $( Y ( u ) , u \leq t )$ ; confidence 0.998

215. s12035014.png ; $f ( Z ^ { t - 1 } , t , \theta )$ ; confidence 0.998

216. m13026040.png ; $( \lambda , \rho ) ^ { * } = ( \rho ^ { * } , \lambda ^ { * } )$ ; confidence 0.998

217. w12018056.png ; $H ( A ) = \sigma \left\{ W ^ { ( 2 ) } ( t ) : t \in A \right\}$ ; confidence 0.998

218. a12017050.png ; $\Psi ( x )$ ; confidence 0.998

219. g13002015.png ; $F ( z ) = P ( e ^ { z } , e ^ { \beta z } )$ ; confidence 0.998

220. s12034070.png ; $( T M , J )$ ; confidence 0.998

221. b1200608.png ; $\bar{z} = x - i y$ ; confidence 0.998

222. s130620171.png ; $q ( x + L ) = q ( x )$ ; confidence 0.998

223. m13026016.png ; $\Omega \cup \{ \infty \}$ ; confidence 0.998

224. q13005010.png ; $M ^ { - 1 } \leq \frac { h ( x + t ) - h ( x ) } { h ( x ) - h ( x - t ) } \leq M$ ; confidence 0.998

225. k055840188.png ; $\rho ( \lambda )$ ; confidence 0.998

226. a13029047.png ; $\phi : M \rightarrow M$ ; confidence 0.998

227. g120040142.png ; $P ( x , D ) u = f$ ; confidence 0.998

228. m12013013.png ; $N ( t ) = \frac { K } { 1 + b e ^ { - \lambda t } }$ ; confidence 0.998

229. m13013096.png ; $K = M ^ { T } M$ ; confidence 0.998

230. v12004040.png ; $\chi _ { T } ( G ) \leq \Delta ( G ) + 2$ ; confidence 0.998

231. r13008068.png ; $\xi \neq 0,$ ; confidence 0.998

232. s13011035.png ; $w ( s ) < w ( r ) < w ( s + 1 )$ ; confidence 0.998

233. b12009075.png ; $B ( \beta )$ ; confidence 0.998

234. s13051034.png ; $\mathcal{N} = \{ u \in V : g ( u ) > 0 \},$ ; confidence 0.998

235. b12022073.png ; $\eta ( u ) = \int H ( M ( u , \xi ) , \xi ) d \xi,$ ; confidence 0.998

236. w12021012.png ; $n = 428$ ; confidence 0.998

237. o130060179.png ; $( t _ { 1 } , t _ { 2 } ) \in \mathbf{R}^ { 2 }$ ; confidence 0.998

238. r13008071.png ; $L ^ { 2 } ( T , d m )$ ; confidence 0.998

239. l13008043.png ; $| P _ { 1 } ( \omega ) |$ ; confidence 0.998

240. c02496014.png ; $\lambda < 0$ ; confidence 0.998

241. e13006015.png ; $f ( C ) \subseteq U$ ; confidence 0.998

242. e13005035.png ; $= f ( t , x , u , u _ { t } , \nabla u )$ ; confidence 0.998

243. a110680101.png ; $\widehat{\pi}$ ; confidence 0.998

244. s130510107.png ; $\gamma ( u ) = \infty ( K )$ ; confidence 0.998

245. s13048049.png ; $\pi : M \rightarrow B$ ; confidence 0.998

246. v120020111.png ; $q ( x , y ) = y$ ; confidence 0.998

247. b12005043.png ; $\Pi ^ { - 1 } ( w )$ ; confidence 0.998

248. d1101804.png ; $\Psi ( x , y )$ ; confidence 0.998

249. m0623008.png ; $\rho ( x , y )$ ; confidence 0.998

250. a13002016.png ; $\mu ( X \backslash A ) = 0$ ; confidence 0.998

251. d1200602.png ; $\psi ( x , \lambda ) , \varphi ( x , \mu ) \in C ^ { 2 }$ ; confidence 0.998

252. p13007046.png ; $f ( z _ { 1 } , z _ { 2 } ) = \left( | z _ { 1 } | ^ { 2 } - \frac { 1 } { 2 } \right) ^ { 2 } = \left( | z _ { 2 } | ^ { 2 } - \frac { 1 } { 2 } \right) ^ { 2 },$ ; confidence 0.998

253. q13004032.png ; $K ( f ) \leq K$ ; confidence 0.998

254. c120180460.png ; $s ^ { 2 } t ^ { 2 } g ( P )$ ; confidence 0.998

255. f120110184.png ; $J ( D )$ ; confidence 0.998

256. d12002034.png ; $\sum _ { k \in P } \lambda _ { k } = 1$ ; confidence 0.998

257. l1200302.png ; $\operatorname{Map}( X , Y )$ ; confidence 0.998

258. e12026058.png ; $\Omega = \mathbf{R}$ ; confidence 0.998

259. i130030122.png ; $D = D _ { + } + D _ { + } ^ { * }$ ; confidence 0.998

260. f040850134.png ; $t \geq 1$ ; confidence 0.998

261. e120120121.png ; $\int f ( \theta , \phi ) d \phi = \int f ( \theta , \phi , \alpha ) d \phi$ ; confidence 0.998

262. t12001072.png ; $\xi ( \tau ) = \tau _ { 1 } \xi ^ { 1 } + \tau _ { 2 } \xi ^ { 2 } + \tau _ { 3 } \xi ^ { 3 }$ ; confidence 0.998

263. t12001078.png ; $1$ ; confidence 0.998

264. a13013097.png ; $L ( \psi ) = z \psi$ ; confidence 0.998

265. a12022035.png ; $r ( S ) \leq r ( T )$ ; confidence 0.998

266. a130240216.png ; $\operatorname { dim } ( \Omega ) = r$ ; confidence 0.998

267. a11042090.png ; $n > 0$ ; confidence 0.998

268. a1200608.png ; $c ( x )$ ; confidence 0.998

269. a110420118.png ; $H$ ; confidence 0.998

270. a12017016.png ; $b ( t ) = F ( t ) + \int _ { 0 } ^ { t } K ( t - s ) b ( s ) d s$ ; confidence 0.998

271. a11036013.png ; $n > 1$ ; confidence 0.998

272. a01043023.png ; $t \rightarrow \infty$ ; confidence 0.998

273. b13001094.png ; $V ^ { * } - V$ ; confidence 0.998

274. b130290121.png ; $\operatorname { dim } A = 2$ ; confidence 0.998

275. c1300406.png ; $\psi ( z ) : = \frac { d } { d z } \{ \operatorname { log } \Gamma ( z ) \} = \frac { \Gamma ^ { \prime } ( z ) } { \Gamma ( z ) }$ ; confidence 0.998

276. c02583071.png ; $i B _ { 0 }$ ; confidence 0.998

277. e1300407.png ; $U _ { 0 } ( t )$ ; confidence 0.998

278. e12026092.png ; $( L _ { \mu } ) ^ { p }$ ; confidence 0.998

279. a110040170.png ; $\bar{A}$ ; confidence 0.998

280. i12004046.png ; $\partial D \times D$ ; confidence 0.998

281. j130040145.png ; $M ^ { ( 2 ) }$ ; confidence 0.998

282. l0570007.png ; $( M N ) \in \Lambda$ ; confidence 0.998

283. m1200304.png ; $f _ { \theta } ( x )$ ; confidence 0.998

284. a012970244.png ; $L ( f )$ ; confidence 0.998

285. c022780177.png ; $( n )$ ; confidence 0.998

286. p13014049.png ; $\gamma \in \mathbf{R}$ ; confidence 0.998

287. c026010417.png ; $\rho < 1$ ; confidence 0.998

288. s12004027.png ; $s _ { \lambda } = \sum _ { T } \mathbf{x} ^ { T },$ ; confidence 0.998

289. s1202804.png ; $\overline { f } : X \rightarrow Y$ ; confidence 0.998

290. t13005033.png ; $D _ { A } ^ { 2 } = 0$ ; confidence 0.998

291. t13009023.png ; $f ^ { - 1 } ( S )$ ; confidence 0.998

292. t120200142.png ; $m > - 1$ ; confidence 0.998

293. w130080124.png ; $T _ { 1 } \sim \Lambda$ ; confidence 0.998

294. s12022015.png ; $\Delta ^ { ( 0 ) } = \Delta$ ; confidence 0.998

295. t12006093.png ; $0 \leq \lambda < 1$ ; confidence 0.998

296. b12034065.png ; $1 / 3$ ; confidence 0.998

297. b12031058.png ; $R \rightarrow \infty$ ; confidence 0.998

298. s13051033.png ; $\mathcal{P} = \{ u \in V : g ( u ) = 0 \},$ ; confidence 0.998

299. s08602051.png ; $\Phi ^ { - } ( z )$ ; confidence 0.998

300. b1204002.png ; $\pi : E \rightarrow M$ ; confidence 0.998

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/7. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/7&oldid=44417