Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/45"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 45 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015030.png ; $A \in \Phi ( X , Y )$ ; confidence 1.000
+
1. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005011.png ; $z \in E$ ; confidence 0.732
  
2. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015059.png ; $r ^ { \prime } ( A )$ ; confidence 0.969
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240122.png ; $t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.731
  
3. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015071.png ; $\Phi _ { - } ( X , Y )$ ; confidence 0.999
+
3. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004063.png ; $\Omega \times ( \mathbf{R} ^ { n } \backslash \{ 0 \} )$ ; confidence 0.731
  
4. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016012.png ; $\chi T + K = \chi T$ ; confidence 0.772
+
4. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054035.png ; $h ( a ) = w ( a ) w ( 1 ) ^ { - 1 }$ ; confidence 0.731
  
5. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017019.png ; $G = * A _ { i } f N ( r )$ ; confidence 0.655
+
5. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016750/b01675042.png ; $x ^ { \prime \prime }$ ; confidence 0.731
  
6. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024018.png ; $K ( a , b ) \equiv 0$ ; confidence 0.933
+
6. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024041.png ; $\mathbf{Y} = \mathbf{X} _ { 1 } \mathbf{BX} _ { 2 } + \mathbf{E},$ ; confidence 0.731
  
7. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f120190100.png ; $C _ { G } ( x ) \leq N$ ; confidence 0.615
+
7. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520279.png ; $E _ { \xi }$ ; confidence 0.731
  
8. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019032.png ; $C _ { G } ( h ) \leq H$ ; confidence 0.994
+
8. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090222.png ; $g.x = \tilde{g} x \tilde{g} ^ { - 1 }$ ; confidence 0.731
  
9. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021059.png ; $i = 1 , \dots , \nu$ ; confidence 0.387
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a01318090.png ; $k > 2$ ; confidence 0.731
  
10. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021019.png ; $z = u ^ { \lambda }$ ; confidence 1.000
+
10. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003057.png ; $\varepsilon ^ { * } ( \operatorname{MAD} ) = 1 / 2$ ; confidence 0.731
  
11. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021078.png ; $i = 1 , \dots , j - 1$ ; confidence 0.602
+
11. https://www.encyclopediaofmath.org/legacyimages/f/f038/f038070/f0380708.png ; $\operatorname{III}$ ; confidence 0.731
  
12. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021075.png ; $1 \leq j \leq \nu$ ; confidence 0.984
+
12. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008025.png ; $d \omega _ { 3 } ( \lambda ) = \frac { \lambda ^ { g + 1 } - \frac { 1 } { 2 } \sigma _ { 1 } \lambda ^ { g } + \beta _ { 1 } \lambda ^ { g - 1 } + \ldots + \beta _ { g } } { \sqrt { R _ { g } ( \lambda ) } } d \lambda \sim $ ; confidence 0.731
  
13. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023087.png ; $D = L _ { K } + i _ { L }$ ; confidence 0.977
+
13. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066080.png ; $= \operatorname{BMOA}= \operatorname{BMO} \cap H ^ { 2 }$ ; confidence 0.731
  
14. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230140.png ; $M \rightarrow B$ ; confidence 0.962
+
14. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f1300105.png ; $f \in \mathbf{F} _ { q } [ x ]$ ; confidence 0.731
  
15. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023057.png ; $[ . . ] ^ { \wedge }$ ; confidence 0.278
+
15. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026021.png ; $y _ { c } \cong \widehat { y }$ ; confidence 0.731
  
16. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023024.png ; $[ K _ { 1 } , K _ { 2 } ]$ ; confidence 0.932
+
16. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013052.png ; $\hbar = e = 1$ ; confidence 0.731
  
17. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024054.png ; $[ - h ( t ) , - g ( t ) ]$ ; confidence 0.999
+
17. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001030.png ; $\overline { d } _ { \chi } ^ { G } ( A ) : = d _ { \chi } ^ { G } ( A ) / \chi ( \text { id } ) = d _ { \chi } ^ { G } ( A ) / d _ { \chi } ^ { G } ( I _ { n } ) ,$ ; confidence 0.731
  
18. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f1202409.png ; $t \mapsto t + T$ ; confidence 0.520
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008060.png ; $( H ^ { 1 } ( \Omega ) ) ^ { \prime }$ ; confidence 0.731
  
19. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024031.png ; $h _ { i } ( t , x ( t ) )$ ; confidence 0.981
+
19. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012024.png ; $L ( \theta | Y _ { \text{com} } )$ ; confidence 0.731
  
20. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024080.png ; $t _ { 0 } \in J _ { x }$ ; confidence 0.304
+
20. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006053.png ; $P _ { R }$ ; confidence 0.730
  
21. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024046.png ; $t - h ( t ) + \infty$ ; confidence 0.940
+
21. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040054.png ; $S ^ { + }$ ; confidence 0.730
  
22. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302807.png ; $\varepsilon > 0$ ; confidence 0.998
+
22. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230157.png ; $Z_{i}$ ; confidence 0.730
  
23. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f1302806.png ; $A x \nsubseteq b$ ; confidence 0.264
+
23. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007047.png ; $H \leq N$ ; confidence 0.730
  
24. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028033.png ; $h ^ { N } \in [ 0,1 ]$ ; confidence 0.994
+
24. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200177.png ; $P _ { + }$ ; confidence 0.730
  
25. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g12001012.png ; $g _ { \alpha } ( t )$ ; confidence 0.999
+
25. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011025.png ; $\Phi ( u ) : = \sum _ { n = 1 } ^ { \infty } \pi n ^ { 2 } \left( 2 \pi n ^ { 2 } e ^ { 4 u } - 3 \right) \operatorname { exp } ( 5 u - \pi n ^ { 2 } e ^ { 4 u } ).$ ; confidence 0.730
  
26. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001078.png ; $0 \leq c \leq q - 2$ ; confidence 0.990
+
26. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009042.png ; $= ( p _ { 0 } ( \xi ) - a i ) \frac { \tau } { \xi } + ( p _ { 1 } ( \xi ) + p _ { 0 } ( \xi ) ) \frac { \tau ^ { m + 1 } } { \xi }.$ ; confidence 0.730
  
27. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001025.png ; $x \mapsto x ^ { q }$ ; confidence 0.514
+
27. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055013.png ; $d ( x , \gamma ( 0 ) )$ ; confidence 0.730
  
28. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001085.png ; $\gamma + \delta$ ; confidence 1.000
+
28. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008087.png ; $\left[ \begin{array} { l l } { E _ { 1 } } & { E _ { 2 } } \\ { E _ { 3 } } & { E _ { 4 } } \end{array} \right]$ ; confidence 0.730
  
29. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002048.png ; $\geq [ ( d + 1 ) / 2 ]$ ; confidence 0.997
+
29. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012023.png ; $Y _ { \text{mis} }$ ; confidence 0.730
  
30. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002042.png ; $\notin \{ 0,1 \}$ ; confidence 0.935
+
30. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110020/d1100204.png ; $N \leq \infty$ ; confidence 0.730
  
31. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g1300305.png ; $V ^ { \Lambda } / I$ ; confidence 0.737
+
31. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120102.png ; $\int _ { 0 } ^ { 1 } \omega ( f ^ { \prime } ; t ) _ { p } \left( \operatorname { ln } \frac { 1 } { t } \right) ^ { - 1 / p ^ { \prime } } t ^ { - 1 } d t < \infty$ ; confidence 0.729
  
32. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003015.png ; $A ( \Omega ) = B / I$ ; confidence 0.979
+
32. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006069.png ; $\Delta _ { h } F ( x ) = F ( x + h ) - F ( x ),$ ; confidence 0.729
  
33. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c025650116.png ; $E \subset R ^ { x }$ ; confidence 0.624
+
33. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120250/b1202507.png ; $\operatorname{LGL} ( n , \mathbf{C} )$ ; confidence 0.729
  
34. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004062.png ; $H ^ { m } ( P ( E ) ) = 0$ ; confidence 0.966
+
34. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011020.png ; $\operatorname { Re } s = \sigma = 1 / 2$ ; confidence 0.729
  
35. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005042.png ; $2 ^ { d - 1 } ( 2 d - 1 )$ ; confidence 0.371
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046073.png ; $P _ { n } ( x )$ ; confidence 0.729
  
36. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006096.png ; $1 \leq i , j \leq n$ ; confidence 0.996
+
36. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584087.png ; $\leq \kappa$ ; confidence 0.729
  
37. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004017.png ; $G ^ { S } ( \Omega )$ ; confidence 0.604
+
37. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300143.png ; $\Pi$ ; confidence 0.729
  
38. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005026.png ; $( k _ { c } , R _ { c } )$ ; confidence 0.571
+
38. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029025.png ; $L ^ { X } = \{ a : X \rightarrow L , a \ \text {a function } \}$ ; confidence 0.729
  
39. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007036.png ; $z _ { m + 1 } ^ { \pi }$ ; confidence 0.582
+
39. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027027.png ; $| R - n [ f ] | \leq \gamma | Q _ { l } ^ { B } [ f ] - Q _ { n } [ f ] |.$ ; confidence 0.729
  
40. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601075.png ; $\tau ( W , M _ { 1 } )$ ; confidence 0.999
+
40. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140118.png ; $p , s = 1 , \dots , n$ ; confidence 0.729
  
41. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601066.png ; $\tau ( W , M _ { 0 } )$ ; confidence 0.999
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024027.png ; $\nu$ ; confidence 0.729
  
42. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601095.png ; $\pi _ { 1 } = Z _ { 5 }$ ; confidence 0.644
+
42. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002072.png ; $\pi _ { n } ( \alpha , \beta )$ ; confidence 0.729
  
43. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601084.png ; $\tau ^ { * } = \tau$ ; confidence 0.978
+
43. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016068.png ; $f \in L _ { 1 } ( S \times T )$ ; confidence 0.729
  
44. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001026.png ; $V \rightarrow R$ ; confidence 0.989
+
44. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024011.png ; $\beta _ { r } = f _{( r )} ( x _ { 0 } )$ ; confidence 0.729
  
45. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602015.png ; $Y ( s ) = G ( s ) X ( s )$ ; confidence 0.999
+
45. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m13011015.png ; $\frac { D f } { D t } = \left( \frac { \partial f ( \mathbf{x} ^ { 0 } , t ) } { \partial t } \right) | _ { \mathbf{x}^0 },$ ; confidence 0.729
  
46. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002073.png ; $\gamma \in F ( S )$ ; confidence 0.695
+
46. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d12019014.png ; $\operatorname { Dom } \left( ( - \Delta _ { \text{Dir} } ) ^ { 1 / 2 } \right) = \operatorname { Dom } ( \tilde{E} ) = H _ { 0 } ^ { 1 } ( \Omega ).$ ; confidence 0.729
  
47. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003040.png ; $H = ( s _ { i } + j - 1 )$ ; confidence 0.719
+
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400126.png ; $w \in \operatorname{W}$ ; confidence 0.729
  
48. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020146.png ; $\Gamma _ { \phi }$ ; confidence 0.929
+
48. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013017.png ; $E _ { n + 1 } ^ { 1 }$ ; confidence 0.729
  
49. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h1200309.png ; $\tau ( \varphi )$ ; confidence 0.999
+
49. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051052.png ; $N _ { n } = \left\{ u \in V : n = \operatorname { min } m , F ( u ) \bigcap \bigcup _ { i < m } P _ { i } \neq \emptyset \right\},$ ; confidence 0.729
  
50. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005021.png ; $\lambda = k ^ { 2 }$ ; confidence 0.997
+
50. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007039.png ; $c _ { k } T N ^ { - k } \leq \left| f ^ { ( k ) } ( x ) \right| \leq c _ { k } ^ { \prime } T N ^ { - k }$ ; confidence 0.729
  
51. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h1200406.png ; $A \subset \not B$ ; confidence 0.168
+
51. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026043.png ; $f ( X _ { n } )$ ; confidence 0.729
  
52. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h1200509.png ; $u _ { \Phi } ( x ; t )$ ; confidence 0.981
+
52. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200109.png ; $c _ { m , n } = 2 ( n / ( 8 e ( m + n ) ) ) ^ { n }$ ; confidence 0.729
  
53. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h1300607.png ; $T _ { n } f \in M ( k )$ ; confidence 0.993
+
53. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008034.png ; $( K ^ { H } , v ^ { H } )$ ; confidence 0.729
  
54. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006063.png ; $0 ( X , D ) \otimes$ ; confidence 0.447
+
54. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004042.png ; $w : G \rightarrow G ^ { \prime }$ ; confidence 0.728
  
55. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046910/h04691012.png ; $K \subset A ^ { x }$ ; confidence 0.607
+
55. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002057.png ; $\{ \overline{z} \square ^ { j } \}_{j > 0}$ ; confidence 0.728
  
56. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046910/h04691037.png ; $\{ f _ { N } \} _ { N }$ ; confidence 0.142
+
56. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060102.png ; $\operatorname{ind} S ( k ) = 0$ ; confidence 0.728
  
57. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007011.png ; $0 \leq k < m \leq n$ ; confidence 0.997
+
57. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180477.png ; $s \in \mathbf{R} ^ { + }$ ; confidence 0.728
  
58. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011022.png ; $f \in C ( B ( 0 , r ) )$ ; confidence 0.995
+
58. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005050.png ; $\{ T ( n , \alpha ) \}$ ; confidence 0.728
  
59. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011034.png ; $f \in C ( \Gamma )$ ; confidence 0.986
+
59. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001049.png ; $\mathcal{D} _ { + } = \{ f \in \mathcal{D} : f \ \text { real valued, } f ( s ) = 0 \text { for } s < 0 \}.$ ; confidence 0.728
  
60. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011014.png ; $k = 0,1,2 , \dots$ ; confidence 0.444
+
60. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d1300807.png ; $F \in \operatorname { Hol } ( \Delta )$ ; confidence 0.728
  
61. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h12011016.png ; $\sigma \in M ( 2 )$ ; confidence 0.999
+
61. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020114.png ; $p ( x _ { 0 } , y _ { 0 } ) = q ( x _ { 0 } , y _ { 0 } )$ ; confidence 0.728
  
62. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120133.png ; $C \rightarrow A$ ; confidence 0.981
+
62. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014068.png ; $f _ { \rho }$ ; confidence 0.728
  
63. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012010.png ; $f \nabla = 1 _ { X }$ ; confidence 0.611
+
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020013.png ; $\langle x y z \rangle - \langle z y x \rangle = \langle z x y \rangle - \langle x z y \rangle$ ; confidence 0.728
  
64. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012049.png ; $\varphi ^ { 2 } = 0$ ; confidence 0.997
+
64. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036046.png ; $U _ { q g }$ ; confidence 0.728
  
65. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012085.png ; $\phi _ { \infty }$ ; confidence 0.985
+
65. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030118.png ; $x ^ { * * } \in X ^ { * * } \backslash X$ ; confidence 0.728
  
66. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012019.png ; $( E _ { 1 } , E _ { 2 } )$ ; confidence 0.993
+
66. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004018.png ; $\psi ( 0 )$ ; confidence 0.728
  
67. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001059.png ; $( 4 ^ { 2 } , 3 ^ { 2 } )$ ; confidence 1.000
+
67. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230105.png ; $\operatorname{dim} X \leq 2$ ; confidence 0.728
  
68. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030161.png ; $l ^ { 2 } ( \Gamma )$ ; confidence 0.627
+
68. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007088.png ; $u _ { n } v = 0$ ; confidence 0.728
  
69. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i1300307.png ; $Y \rightarrow B$ ; confidence 0.992
+
69. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013053.png ; $Q _ { \lambda } = \frac { 1 } { n ! } \sum _ { \pi \in O ( n ) } 2 ^ { ( r ( \lambda ) + r ( \pi ) + \epsilon ( \lambda ) ) / 2 } k _ { \pi } \zeta _ { \lambda } ^ { \pi } p _ { \pi },$ ; confidence 0.728
  
70. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003046.png ; $a | _ { T } * _ { A B } g$ ; confidence 0.068
+
70. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002056.png ; $m \leq 4$ ; confidence 0.728
  
71. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120030/i1200309.png ; $\epsilon ^ { - 1 }$ ; confidence 0.988
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040614.png ; $\mathfrak { N } \in \operatorname{Mod}_{\mathcal{S}_P}$ ; confidence 0.728
  
72. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006095.png ; $0 \leq x < \infty$ ; confidence 0.999
+
72. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001097.png ; $\rho _ { j k } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.727
  
73. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006041.png ; $S \Rightarrow q$ ; confidence 0.889
+
73. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005050.png ; $G _ { n } ( \mathbf{R} ^ { n } \times \mathbf{R} ^ { p } )$ ; confidence 0.727
  
74. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006081.png ; $q \Rightarrow S$ ; confidence 0.770
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012120/a01212058.png ; $R_i$ ; confidence 0.727
  
75. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006049.png ; $y \geq x \geq 0$ ; confidence 0.999
+
75. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302502.png ; $y ^ { ( n ) } = f ( x , y , y ^ { \prime } , \dots , y ^ { ( n - 1 ) } )$ ; confidence 0.727
  
76. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008058.png ; $T \rightarrow 0$ ; confidence 0.939
+
76. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018040.png ; $\mu ( x , y ) = - C _ { 1 } + C _ { 2 } - C _ { 3 } + \ldots ,$ ; confidence 0.727
  
77. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080102.png ; $H _ { eff } = H + 2 m J$ ; confidence 0.968
+
77. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003073.png ; $\varphi \in X$ ; confidence 0.727
  
78. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008068.png ; $S _ { N + 1 } = S _ { 1 }$ ; confidence 0.736
+
78. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002011.png ; $x _ { j } < x _ { k }$ ; confidence 0.727
  
79. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047270/h04727018.png ; $p \rightarrow 1$ ; confidence 0.978
+
79. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080129.png ; $( u , \varphi _ { j } ) _ { 0 } : = \int _ { D } u ( y ) \overline { \varphi _ { j } ( y ) } d y$ ; confidence 0.727
  
80. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008095.png ; $H \rightarrow 0$ ; confidence 0.957
+
80. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001039.png ; $V \otimes _ { k } V$ ; confidence 0.727
  
81. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i1201008.png ; $R ( \pi ) = R ( X , Y )$ ; confidence 0.999
+
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180128.png ; $c _ { i } ( R ) = \pi _ { i } ^ { - 1 } \pi _ { i } ( ( R ) ).$ ; confidence 0.727
  
82. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090179.png ; $L _ { p } ( s , \chi )$ ; confidence 0.987
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240524.png ; $\mathbf{Z} _ { 12 } - \mathbf{Z} _ { 13 } \Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.727
  
83. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009072.png ; $0 \leq i \leq n - 1$ ; confidence 1.000
+
83. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018062.png ; $A \subset \mathbf{R} _ { + } ^ { 2 }$ ; confidence 0.727
  
84. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090212.png ; $M ( k ^ { \prime } )$ ; confidence 0.996
+
84. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220246.png ; $J ^ { i } ( X )$ ; confidence 0.727
  
85. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090208.png ; $L ( k ^ { \prime } )$ ; confidence 0.977
+
85. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002067.png ; $\operatorname{JB}$ ; confidence 0.727
  
86. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009071.png ; $a _ { i } \in ( \pi )$ ; confidence 0.984
+
86. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015052.png ; $j = 1,2$ ; confidence 0.727
  
87. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003023.png ; $x , b , x , y , z \in E$ ; confidence 0.496
+
87. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010104.png ; $V _ { n } ^ { * } = V _ { n } \cup \ldots \cup V _ { 0 }$ ; confidence 0.727
  
88. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001040.png ; $1 \subset C ^ { 2 }$ ; confidence 0.134
+
88. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003013.png ; $( Q _ { n } ^ { G } , Q _ { 2n+1 } ^ { G K } )$ ; confidence 0.727
  
89. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205
+
89. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027010.png ; $\rho$ ; confidence 0.727
  
90. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001042.png ; $| f | = | f | - + | f | +$ ; confidence 0.884
+
90. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023067.png ; $u ( t , x ) = f _ { t } ( x )$ ; confidence 0.727
  
91. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002042.png ; $p = o ( n ^ { - 1 / 2 } )$ ; confidence 0.813
+
91. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180210.png ; $\otimes ^ { 4 } \mathcal{E}$ ; confidence 0.726
  
92. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020214.png ; $| u | \leq \alpha$ ; confidence 0.788
+
92. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007053.png ; $\mathbf{Z} A \rightarrow Z$ ; confidence 0.726
  
93. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020171.png ; $f \in H _ { 0 } ^ { p }$ ; confidence 0.718
+
93. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050130.png ; $\Sigma ^ { 2 _ \text { parabolic } } =$ ; confidence 0.726
  
94. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020104.png ; $\varphi \in BMO$ ; confidence 0.894
+
94. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016069.png ; $\operatorname{DSPACE}[s(n)]$ ; confidence 0.726
  
95. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020133.png ; $f \in H _ { 0 } ^ { 1 }$ ; confidence 0.897
+
95. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016038.png ; $\operatorname{NSPACE}[s(n)]$ ; confidence 0.726
  
96. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020203.png ; $w ( z ) \leq c ^ { 2 }$ ; confidence 0.960
+
96. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110107.png ; $\mathcal{H} ( M u , M v ) = \mathcal{H} ( u , v ) \circ \chi ^ { - 1 }.$ ; confidence 0.726
  
97. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004050.png ; $P _ { m } ( v ) \neq 0$ ; confidence 0.660
+
97. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022850/c02285078.png ; $\rho _ { m }$ ; confidence 0.726
  
98. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004051.png ; $P _ { M } ( v ) \neq 0$ ; confidence 0.496
+
98. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022930/c0229301.png ; $P ( \xi _ { 1 } , \dots , \xi _ { n } )$ ; confidence 0.726
  
99. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004073.png ; $a _ { k } ( z ) \neq 0$ ; confidence 0.518
+
99. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014066.png ; $s = t$ ; confidence 0.726
  
100. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k12011019.png ; $C \nmid \Lambda$ ; confidence 0.159
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013070.png ; $( \tau _ { l } )$ ; confidence 0.726
  
101. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004023.png ; $K _ { 1 } \# - K _ { 2 }$ ; confidence 0.749
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022046.png ; $E _ { C } ( X ) \subset \square _ { R } \operatorname { Mod } ( X , C )$ ; confidence 0.726
  
102. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005054.png ; $\lambda / r = p / q$ ; confidence 0.547
+
102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150168.png ; $f _ { i } ( \vartheta ) = \frac { \operatorname { exp } ( g ( \vartheta ) + h ( i ) ) } { 1 + \operatorname { exp } ( g ( \vartheta ) + h ( i ) ) } , \vartheta \in \Theta , i = 1 , \ldots , n .$ ; confidence 0.726
  
103. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007016.png ; $f ( \pi - t ) = f ( t )$ ; confidence 1.000
+
103. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022042.png ; $x _ { 1 } < t < x _ { m }$ ; confidence 0.726
  
104. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051950/i05195052.png ; $( x _ { k } , y _ { k } )$ ; confidence 0.995
+
104. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003022.png ; $E \times E \times E \rightarrow E , ( x , y , z ) \mapsto \{ x y z \}$ ; confidence 0.726
  
105. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002037.png ; $( X _ { 2 } , Y _ { 2 } )$ ; confidence 0.988
+
105. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020126.png ; $\overline { q } \geq v ^ { * }$ ; confidence 0.725
  
106. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002036.png ; $( X _ { 1 } , Y _ { 1 } )$ ; confidence 0.982
+
106. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m1201701.png ; $x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n - 1 } x + a _ { n } = 0$ ; confidence 0.725
  
107. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008062.png ; $\kappa _ { p } ( f )$ ; confidence 0.956
+
107. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052090.png ; $w = \prod _ { j = 0 } ^ { n - 2 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } ),$ ; confidence 0.725
  
108. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010032.png ; $( z _ { j } , t _ { j } )$ ; confidence 0.923
+
108. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012026.png ; $0 \neq A \lhd  R$ ; confidence 0.725
  
109. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010025.png ; $\{ t = t ; \} \cup K$ ; confidence 0.495
+
109. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004011.png ; $P _ { T _ { n } } ( v , z ) = \left( \frac { v ^ { - 1 } - v } { z } \right) ^ { n - 1 }.$ ; confidence 0.725
  
110. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840188.png ; $\rho ( \lambda )$ ; confidence 0.998
+
110. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032019.png ; $x \perp y$ ; confidence 0.725
  
111. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840108.png ; $( L _ { + } , L _ { - } )$ ; confidence 0.997
+
111. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080151.png ; $\operatorname {Hol}( \mathcal{D} )$ ; confidence 0.725
  
112. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840156.png ; $[ T x , T y ] = [ x , y ]$ ; confidence 0.930
+
112. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025063.png ; $\rho _ { \varepsilon } ( x ) = \varepsilon ^ { - n } \rho ( x / \varepsilon )$ ; confidence 0.725
  
113. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840357.png ; $G = ( D _ { B } ^ { 4 } )$ ; confidence 0.440
+
113. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080166.png ; $\operatorname {GL} ( N , \mathbf{C} )$ ; confidence 0.725
  
114. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840253.png ; $\sigma _ { 0 } ( A )$ ; confidence 0.981
+
114. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002045.png ; $v \in U ^ { + } \partial M$ ; confidence 0.725
  
115. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584012.png ; $K = K _ { + } + K _ { - }$ ; confidence 0.906
+
115. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160185.png ; $P ( T , l ) = \vee \left\{ \psi _ { \mathfrak{A}} ^ { l } e : \mathfrak{A} \ \text{is a model of} \ T \right\}$ ; confidence 0.725
  
116. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584018.png ; $( \kappa , - [ , ] )$ ; confidence 0.343
+
116. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027029.png ; $F ( x ) = \mathsf{P} ( X _ { 1 } \leq x )$ ; confidence 0.725
  
117. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h04739017.png ; $J = P _ { + } - P _ { - }$ ; confidence 0.988
+
117. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049031.png ; $A \cap B = \emptyset$ ; confidence 0.725
  
118. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840193.png ; $\leq 2 \kappa + 1$ ; confidence 0.970
+
118. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012023.png ; $v ^ { * } v \leq x ^ { * } x$ ; confidence 0.725
  
119. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584072.png ; $f , g \in L _ { 2 , r }$ ; confidence 0.705
+
119. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010025.png ; $L _ { \gamma , n } ^ { c } = 2 ^ { - n } \pi ^ { - n / 2 } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 + n / 2 ) }.$ ; confidence 0.725
  
120. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840141.png ; $T \subset T ^ { + }$ ; confidence 0.989
+
120. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049038.png ; $( a _ { 1 } , \sigma _ { 1 } ^ { 2 } )$ ; confidence 0.724
  
121. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840213.png ; $[ T x , T x ] > [ x , x ]$ ; confidence 0.865
+
121. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010790/a01079032.png ; $\mathfrak{m}$ ; confidence 0.724
  
122. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840138.png ; $T ^ { + } = J T ^ { * } J$ ; confidence 0.964
+
122. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026430/c02643036.png ; $f * g$ ; confidence 0.724
  
123. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584061.png ; $\| G | ^ { 1 / 2 } x \|$ ; confidence 0.747
+
123. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110820/b11082010.png ; $n_{ij}$ ; confidence 0.724
  
124. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584014.png ; $( K _ { - } , - [ , . ] )$ ; confidence 0.869
+
124. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034018.png ; $S _ { 3 } ( F \times [ 0,1 ] )$ ; confidence 0.724
  
125. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277019.png ; $L _ { 2 } ( \sigma )$ ; confidence 0.975
+
125. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009045.png ; $g_i \in B$ ; confidence 0.724
  
126. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840327.png ; $( H ( t ) = H ( T + t ) )$ ; confidence 0.999
+
126. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005052.png ; $- d ^ { 2 } / d x ^ { 2 } + q ( x )$ ; confidence 0.724
  
127. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584054.png ; $( H , ( , \ldots ) )$ ; confidence 0.268
+
127. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006023.png ; $\| . \| _ { L _ { \Phi }  ( \Omega )}$ ; confidence 0.724
  
128. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003040.png ; $E = \emptyset$ ; confidence 0.977
+
128. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110231.png ; $S ( 1 , G )$ ; confidence 0.724
  
129. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k0550709.png ; $H ^ { 2 r + 1 } ( M , C )$ ; confidence 0.635
+
129. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014065.png ; $q = r$ ; confidence 0.724
  
130. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702026.png ; $\mu _ { i } n _ { 1 } X$ ; confidence 0.063
+
130. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201408.png ; $D _ { 1 } ( x , a ) = x$ ; confidence 0.724
  
131. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100106.png ; $\{ A ; \preceq \}$ ; confidence 0.998
+
131. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007018.png ; $x \in \mathbf{Q} G$ ; confidence 0.724
  
132. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001068.png ; $P + P \subseteq P$ ; confidence 0.866
+
132. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010103.png ; $V _ { n } = \mathcal{H} _ { n } / \Gamma$ ; confidence 0.724
  
133. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001027.png ; $\{ A , \preceq \}$ ; confidence 0.999
+
133. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025065.png ; $\mathcal{M} _ { 3 } ( \mathbf{R} ^ { n } ) = \{$ ; confidence 0.724
  
134. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002012.png ; $\{ G ; \preceq \}$ ; confidence 0.999
+
134. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s1305009.png ; $\left( \begin{array} { c } { [ n ] } \\ { ( n - 1 ) / 2 } \end{array} \right)$ ; confidence 0.724
  
135. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003064.png ; $M ( E ) = L ( E ) ^ { * }$ ; confidence 0.942
+
135. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040850/f040850136.png ; $V _ { t }$ ; confidence 0.724
  
136. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003084.png ; $L ^ { \infty } ( Q )$ ; confidence 0.982
+
136. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002018.png ; $\mathsf{P} ( X = 0 ) \leq \operatorname { exp } \left( - \frac { \lambda ^ { 2 } } { \overline{\Delta} } \right).$ ; confidence 0.724
  
137. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003040.png ; $L ^ { \prime } ( E )$ ; confidence 0.988
+
137. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010182.png ; $f \mapsto \langle a , \partial \rangle f$ ; confidence 0.724
  
138. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000179.png ; $( b , \beta ) \in B$ ; confidence 0.995
+
138. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002013.png ; $\widehat { f } ( y ) = \int _ { - \infty } ^ { \infty } f ( x ) e ^ { - 2 \pi i x y } d x,$ ; confidence 0.724
  
139. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031910/d031910175.png ; $D \rightarrow D$ ; confidence 0.995
+
139. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230152.png ; $A _ { 1 } ( n \times n ) , \dots , A _ { s } ( n \times n )$ ; confidence 0.724
  
140. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l0570006.png ; $M , N \in \Lambda$ ; confidence 0.997
+
140. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023086.png ; $T ^ { - 1 } = T ^ { - \# }$ ; confidence 0.724
  
141. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700074.png ; $M ^ { 0 } N \equiv N$ ; confidence 0.712
+
141. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008066.png ; $T _ { c } = 0$ ; confidence 0.724
  
142. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000117.png ; $( \lambda x , M ) N$ ; confidence 0.413
+
142. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220212.png ; $H _ { \mathcal{D} } ^ { i + 1 } ( X_{ / \mathbf{R}} , \mathbf{R} ( j ) )$ ; confidence 0.724
  
143. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700037.png ; $( \lambda x x ) y x$ ; confidence 0.963
+
143. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004048.png ; $K _ { 1 } \# K _ { 2 } ^ { - }$ ; confidence 0.724
  
144. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003082.png ; $R ^ { * } = H ^ { * } B V$ ; confidence 0.996
+
144. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066036.png ; $\{ T _ { s } \}$ ; confidence 0.724
  
145. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003021.png ; $S q ^ { i } x _ { n } = 0$ ; confidence 0.199
+
145. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100106.png ; $z \in A$ ; confidence 0.724
  
146. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004091.png ; $0 \leq x \leq 0.3$ ; confidence 0.998
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a1300203.png ; $\mathcal{T}$ ; confidence 0.724
  
147. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004068.png ; $w _ { 2 } = ( 1 - c ) / 2$ ; confidence 0.399
+
147. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003034.png ; $\lambda _ { 7 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { - i } \\ { 0 } & { i } & { 0 } \end{array} \right) , \lambda _ { 8 } = \left( \begin{array} { c c c } { \frac { 1 } { \sqrt { 3 } } } & { 0 } & { 0 } \\ { 0 } & { \frac { 1 } { \sqrt { 3 } } } & { 0 } \\ { 0 } & { 0 } & { \frac { - 2 } { \sqrt { 3 } } } \end{array} \right).$ ; confidence 0.724
  
148. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004020.png ; $\{ u _ { i } ^ { n } \}$ ; confidence 0.415
+
148. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012010.png ; $\{ \alpha _ { k } : k = 1,2 , \ldots \}$ ; confidence 0.724
  
149. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004080.png ; $\Delta t \nmid 2$ ; confidence 0.794
+
149. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022081.png ; $| u ( x ) | \leq C \sum _ { j = 0 } ^ { 2 } \rho ^ { j - N / p } | u | _ { p , j , T }.$ ; confidence 0.723
  
150. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001042.png ; $| \delta | \leq 1$ ; confidence 0.836
+
150. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090294.png ; $\mathfrak { b } ^ { + } = \mathfrak { h } \oplus \mathfrak { n } ^ { + }$ ; confidence 0.723
  
151. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001046.png ; $< C N ^ { ( n - 1 ) / 2 }$ ; confidence 0.508
+
151. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220241.png ; $A = \mathbf{Z}$ ; confidence 0.723
  
152. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006082.png ; $g \in D \subset H$ ; confidence 0.981
+
152. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500034.png ; $\cup _ { i = 1 } ^ { n } C _ { i } = C$ ; confidence 0.723
  
153. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006071.png ; $T ( z ) = V + V G ( z ) V$ ; confidence 1.000
+
153. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e12018019.png ; $D = \pm ( * d - d *  )$ ; confidence 0.723
  
154. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l1200706.png ; $1 \leq i \leq k - 1$ ; confidence 0.996
+
154. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110245.png ; $a \in S ( h ^ { - 2 } , g )$ ; confidence 0.723
  
155. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007054.png ; $\lambda \nmid r$ ; confidence 0.742
+
155. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520442.png ; $\widetilde { \psi }_i$ ; confidence 0.723
  
156. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090116.png ; $\Gamma ( A _ { 1 } )$ ; confidence 0.982
+
156. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006014.png ; $x < _{Q} y$ ; confidence 0.723
  
157. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090117.png ; $\Gamma ( A _ { 2 } )$ ; confidence 0.990
+
157. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003018.png ; $\mathcal{C} ^ { \infty } ( \mathbf{R} ^ { n } )$ ; confidence 0.723
  
158. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037200/e037200118.png ; $\gamma \geq 0$ ; confidence 0.994
+
158. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130112.png ; $T \in K ^ { b } ( P _ { \Lambda } )$ ; confidence 0.723
  
159. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010077.png ; $L ^ { 2 } ( R ^ { n N } )$ ; confidence 0.990
+
159. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091010/s09101032.png ; $x ^ { n - 1 }$ ; confidence 0.723
  
160. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010044.png ; $\gamma \geq 3 / 2$ ; confidence 0.993
+
160. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008035.png ; $\frac { \partial \overline { u } } { \partial T } = \overline { u } \frac { \partial \overline { u } } { \partial X }.$ ; confidence 0.723
  
161. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100153.png ; $\gamma \geq 1 / 2$ ; confidence 0.995
+
161. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027037.png ; $P _ { n } x = \sum _ { i = 1 } ^ { n } ( x , \phi _ { i } ) \phi _ { i }$ ; confidence 0.723
  
162. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010045.png ; $L _ { 1 / 2,1 } = 1 / 2$ ; confidence 0.972
+
162. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045051.png ; $\rho _ { S } = 3 \mathsf{P} [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 3 } ) > 0 ] +$ ; confidence 0.723
  
163. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005031.png ; $L ( a ) = L _ { N } ( a )$ ; confidence 0.978
+
163. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024041.png ; $L_{ - 1} : = ( 0 ) \oplus U ( \varepsilon )$ ; confidence 0.723
  
164. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005011.png ; $( a _ { k } ) _ { k } > 0$ ; confidence 0.644
+
164. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050149.png ; $\sigma _ { \text{Te} } ( A , \mathcal{X} ) : = \{ \lambda \in \mathbf{C} ^ { n } : A - \lambda \ \text{is not Fredholm} \}.$ ; confidence 0.723
  
165. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006078.png ; $u _ { i } = z _ { i } / p$ ; confidence 0.968
+
165. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002049.png ; $z ^ { * _{ u v}}$ ; confidence 0.723
  
166. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l1300604.png ; $u _ { i } = z _ { i } / m$ ; confidence 0.552
+
166. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130040/n1300402.png ; $\mathcal{C}_n$ ; confidence 0.723
  
167. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008021.png ; $I _ { i } ( \omega )$ ; confidence 0.613
+
167. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003040.png ; $d _ { j k l } = \frac { 1 } { 4 } \operatorname { Tr } [ ( \gamma _ { j } \gamma _ { k } + \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ],$ ; confidence 0.723
  
168. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l1300805.png ; $| \omega | \geq 1$ ; confidence 0.999
+
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203608.png ; $\mathsf{P}_l$ ; confidence 0.722
  
169. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600405.png ; $a _ { i } / a _ { i - 1 }$ ; confidence 0.890
+
169. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050012.png ; $\widetilde{\mathbf{Z}} _ { p }$ ; confidence 0.722
  
170. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005086.png ; $- 1 / \sigma ^ { 2 }$ ; confidence 0.999
+
170. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018095.png ; $\mu ( 0,1 ) = q _ { 2 } - q _ { 3 } + q _ { 4 } - \ldots ,$ ; confidence 0.722
  
171. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012041.png ; $\hat { K } _ { p } = R$ ; confidence 0.379
+
171. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002039.png ; $\tau = \mathsf{P} [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 2 } ) > 0 ] +$ ; confidence 0.722
  
172. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012095.png ; $V ( O _ { M } ) \neq 0$ ; confidence 0.314
+
172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a1200404.png ; $x _ { 0 } \in X$ ; confidence 0.722
  
173. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012042.png ; $\hat { K } _ { p } = C$ ; confidence 0.266
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030039.png ; $( x _ { n } )$ ; confidence 0.722
  
174. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010042.png ; $b ( x , t , \alpha )$ ; confidence 0.996
+
174. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004097.png ; $\mathsf{P} _ { K } ( v , z ) = \frac { P _ { K } ( v , z ) - 1 } { ( v ^ { - 1 } - v ) ^ { 2 } - z ^ { 2 } },$ ; confidence 0.722
  
175. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010040.png ; $\tilde { f } : = F f$ ; confidence 0.592
+
175. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032260/d03226014.png ; $\leq m - 1$ ; confidence 0.722
  
176. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016037.png ; $( S ^ { 1 } ) / S ^ { 1 }$ ; confidence 0.893
+
176. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005033.png ; $E _ { q } ( \alpha , \beta ) = [ \theta _ { x } + \alpha ] _ { q } [ \partial _ { y } ] _ { q } - [ \theta _ { y } + \beta ] [ \partial _ { x } ] _ { q }$ ; confidence 0.722
  
177. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017068.png ; $1 \leq j , k \leq n$ ; confidence 0.993
+
177. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013050.png ; $\omega _ { 1 } * \omega _ { 2 } ( t ) = \left\{ \begin{array} { l l } { \omega _ { 1 } ( t ) } & { \text { for } 0 \leq t \leq 1 / 2, } \\ { \omega ( 2 t - 1 ) } & { \text { for } 1 / 2 \leq t \leq 1, } \end{array} \right.$ ; confidence 0.722
  
178. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017067.png ; $[ R _ { j } , R _ { k } ]$ ; confidence 0.989
+
178. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011078.png ; $d M _ { 2 } = \rho \frac { \Gamma  b  } { l } ( V - U ),$ ; confidence 0.722
  
179. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170259.png ; $\{ e _ { 1 } ^ { i } \}$ ; confidence 0.529
+
179. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026830/c02683022.png ; $V _ { 1 }$ ; confidence 0.722
  
180. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170261.png ; $\{ e _ { 2 } ^ { j } \}$ ; confidence 0.743
+
180. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s1202103.png ; $D _ { Z }$ ; confidence 0.722
  
181. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105085.png ; $E \in B ( \Omega )$ ; confidence 0.994
+
181. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005029.png ; $C \subset D$ ; confidence 0.722
  
182. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105038.png ; $P \subset [ a , b ]$ ; confidence 0.941
+
182. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062089.png ; $B \subseteq \mathbf{R}$ ; confidence 0.722
  
183. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105031.png ; $E \subset [ a , b ]$ ; confidence 0.967
+
183. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007016.png ; $\frac { \partial } { \partial s } U ( t , s ) + U ( t , s ) A ( s ) = 0 , \operatorname { lim } _ { t \rightarrow s } U ( t , s ) x = x \text { for } x \in \overline { D ( A ( s ) ) }.$ ; confidence 0.722
  
184. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105058.png ; $f ^ { - 1 } ( \{ x \} )$ ; confidence 1.000
+
184. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008095.png ; $d S = \sum _ { 1 } ^ { M } T _ { n } d \widehat { \Omega } _ { n } = \sum _ { 1 } ^ { M } T _ { n } d \Omega _ { n } + \sum _ { 1 } ^ { g } \alpha _ { j } d \omega _ { j },$ ; confidence 0.722
  
185. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105068.png ; $\Omega \times T$ ; confidence 0.980
+
185. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007073.png ; $\sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } \ll$ ; confidence 0.722
  
186. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019047.png ; $\dot { X } = A ( t ) X$ ; confidence 0.816
+
186. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020216.png ; $\alpha \leq \frac { 1 } { | I _ { j } | } \int _ { I _ { j } } | u ( \vartheta ) | d \vartheta < 2 \alpha,$ ; confidence 0.721
  
187. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052700/i0527005.png ; $\dot { x } = A ( t ) x$ ; confidence 0.886
+
187. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006015.png ; $\operatorname { Bel } ( A ) = \sum _ { B \subseteq A } m ( B )$ ; confidence 0.721
  
188. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019038.png ; $A ^ { * } X A - X + C = 0$ ; confidence 0.994
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103204.png ; $y ( t _ { m } )$ ; confidence 0.721
  
189. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019048.png ; $- X _ { A } ( z , z ) = I$ ; confidence 0.968
+
189. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003079.png ; $\{ ( \overset{\rightharpoonup} { x } _ { 1 } , y _ { 1 } ) , \dots , ( \overset{\rightharpoonup}{x} _ { n } , y _ { n } ) \}$ ; confidence 0.721
  
190. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l1201901.png ; $A ^ { * } X + X A + C = 0$ ; confidence 0.997
+
190. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110250.png ; $q _ { \alpha } \in S ( H ^ { - 1 } , G )$ ; confidence 0.721
  
191. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l1202007.png ; $( i = 1 , \dots , m )$ ; confidence 0.691
+
191. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002014.png ; $\alpha_{ j} = \widehat { \phi } ( j )$ ; confidence 0.721
  
192. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l12020010.png ; $R P ^ { n } \geq n + 1$ ; confidence 0.642
+
192. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200401.png ; $\overset{\rightharpoonup} { F }$ ; confidence 0.721
  
193. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001047.png ; $\overline { T G }$ ; confidence 0.498
+
193. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139010.png ; $\delta$ ; confidence 0.721
  
194. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m1200107.png ; $u \in T x , v \in T y$ ; confidence 0.800
+
194. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007010.png ; $\operatorname { codom} \alpha _ { i } = \operatorname { dom } \alpha _ { i + 1 }$ ; confidence 0.721
  
195. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009036.png ; $Q ( x ) e ^ { i \xi x }$ ; confidence 0.819
+
195. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007074.png ; $\mathbf{v} \equiv 1$ ; confidence 0.721
  
196. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010059.png ; $M \# M ^ { \prime }$ ; confidence 0.664
+
196. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004092.png ; $f ^ { * } ( t ) = \operatorname { inf } \{ \lambda > 0 : \mu _ { f } ( \lambda ) \leq t \}$ ; confidence 0.721
  
197. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m0622207.png ; $b = m + 1 , \dots , N$ ; confidence 0.607
+
197. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013010.png ; $S _ { 2 } ^ { t }$ ; confidence 0.721
  
198. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011061.png ; $F ^ { 2 } \subset M$ ; confidence 0.997
+
198. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073790/p07379048.png ; $B_{*}$ ; confidence 0.721
  
199. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m120110100.png ; $z [ \pi _ { 1 } ( M ) ]$ ; confidence 0.486
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018046.png ; $n \geq N$ ; confidence 0.720
  
200. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012095.png ; $M _ { \infty } ( F )$ ; confidence 0.996
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020083.png ; $\mathcal{X}$ ; confidence 0.720
  
201. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m1300802.png ; $\tilde { P } ^ { T }$ ; confidence 0.546
+
201. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060188.png ; $K_j$ ; confidence 0.720
  
202. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130124.png ; $L _ { 0 } \approx 0$ ; confidence 0.986
+
202. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018064.png ; $A _ { n }$ ; confidence 0.720
  
203. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013080.png ; $p \in ( 1 / 2,3 / 2 )$ ; confidence 0.999
+
203. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002027.png ; $b ( u_{ f } , v ) = ( f , v )$ ; confidence 0.720
  
204. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013081.png ; $1 \leq i \leq \nu$ ; confidence 0.950
+
204. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001052.png ; $f _ { 1 } , \dots , f _ { n } \in \mathcal{D} _ { + }$ ; confidence 0.720
  
205. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015019.png ; $f _ { X } ( X ) \geq 0$ ; confidence 0.998
+
205. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050120.png ; $K _ { x } = \operatorname { Ker } ( d f _ { x } )$ ; confidence 0.720
  
206. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016054.png ; $k ( \Phi ) = n _ { 1 }$ ; confidence 0.747
+
206. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064016.png ; $E ( a ) = \operatorname { exp } \left( \sum _ { k = 1 } ^ { \infty } k [ \operatorname { log } a ] _ { k } [ \operatorname { log } a ]_{ - k} \right).$ ; confidence 0.720
  
207. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140113.png ; $\| d _ { m } ^ { p } \|$ ; confidence 0.288
+
207. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002052.png ; $\operatorname {Fun}_q ( G ( k , n ) ) \rightarrow \mathbf C $ ; confidence 0.720
  
208. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014080.png ; $D \subset C ^ { x }$ ; confidence 0.515
+
208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029040.png ; $\mathbf R ^ { n + 1 }$ ; confidence 0.720
  
209. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014035.png ; $r = r _ { 1 } , r _ { 2 }$ ; confidence 0.692
+
209. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015950/b01595034.png ; $\chi ^ { 2 }$ ; confidence 0.720
  
210. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140119.png ; $i , l = 1 , \dots , n$ ; confidence 0.760
+
210. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150128.png ; $S \in B ( X , Y )$ ; confidence 0.720
  
211. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140114.png ; $l , m = 1 , \dots , n$ ; confidence 0.685
+
211. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270115.png ; $\mathbf Z [ G ]$ ; confidence 0.720
  
212. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140118.png ; $p , s = 1 , \dots , n$ ; confidence 0.729
+
212. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302807.png ; $V _ { n } ( f , x ) = \int _ { - \pi } ^ { \pi } f ( x + t ) \tau _ { n } ( t ) d t,$ ; confidence 0.719
  
213. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014041.png ; $r _ { 1 } + r _ { 2 } < R$ ; confidence 0.679
+
213. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211011.png ; $X ^ { 2 } \geq \chi _ { k - 1 } ^ { 2 } ( \alpha )$ ; confidence 0.719
  
214. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011039.png ; $G _ { p q } ^ { \pi x }$ ; confidence 0.117
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032053.png ; $\alpha = \mathsf{P} _ { p } ( S _ { N } = K )$ ; confidence 0.719
  
215. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021011.png ; $K \mapsto h _ { K }$ ; confidence 0.970
+
215. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c1302604.png ; $\mathcal{D} = \oplus _ { j = 0 } ^ { n } \mathcal{D} ^ { j }$ ; confidence 0.719
  
216. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019016.png ; $L ( p ^ { 2 } ( x ) ) > 0$ ; confidence 0.997
+
216. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020057.png ; $\theta ( z ) = d + c z ( I - z A ) ^ { - 1 } b$ ; confidence 0.719
  
217. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019025.png ; $n = 0,1,2 , \dots$ ; confidence 0.530
+
217. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001021.png ; $= \frac { m ! n ! } { ( m + n + 1 ) ! } \frac { 1 } { 2 \pi i } \oint _ { z = 0 } a ^ { ( m + 1 ) } ( z ) b ^ { ( n ) } ( z ) d z.$ ; confidence 0.719
  
218. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064410/m06441016.png ; $\Gamma _ { 0 } ( N )$ ; confidence 0.941
+
218. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004098.png ; $K _ { q } ( s )$ ; confidence 0.719
  
219. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022030.png ; $\Gamma _ { 0 } ( 2 )$ ; confidence 0.988
+
219. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006013.png ; $\{ A _ { 1 } , \dots , A _ { r } \}$ ; confidence 0.719
  
220. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022026.png ; $T _ { e } = j - 744$ ; confidence 0.742
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103004.png ; $C_{*} \Omega X$ ; confidence 0.719
  
221. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023097.png ; $( X ^ { + } , B ^ { + } )$ ; confidence 0.998
+
221. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024021.png ; $\operatorname { Fr}_l$ ; confidence 0.719
  
222. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023035.png ; $v = v _ { 1 } + v _ { 2 }$ ; confidence 0.934
+
222. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051051.png ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719
  
223. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025018.png ; $H ^ { s } ( \Omega )$ ; confidence 0.767
+
223. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g1200408.png ; $C = C _ { f  , K} > 0$ ; confidence 0.719
  
224. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m1302509.png ; $Vp \frac { 1 } { X }$ ; confidence 0.292
+
224. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049048.png ; $r ( p _ { 0 } ) + r ( p _ { h } ) = r ( P )$ ; confidence 0.719
  
225. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260157.png ; $b ^ { * } b = b b ^ { * }$ ; confidence 0.983
+
225. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w1100604.png ; $( \Omega , \mathcal{B} , \mathsf{P} )$ ; confidence 0.719
  
226. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m1302605.png ; $C _ { 0 } ( \Omega )$ ; confidence 0.963
+
226. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120080/e12008010.png ; $\mathcal{C} ^ { T }$ ; confidence 0.719
  
227. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180107.png ; $\mu ( 0 , x ) \neq 0$ ; confidence 0.999
+
227. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340113.png ; $t \in S ^ { 1 }$ ; confidence 0.719
  
228. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002021.png ; $k ^ { \prime } \mu$ ; confidence 0.986
+
228. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096040/v0960403.png ; $X = \sum _ { i = 1 } ^ { m } \Psi \left( \frac { s ( r_i ) } { m + n + 1 } \right),$ ; confidence 0.719
  
229. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002037.png ; $M _ { \mu } = M _ { F }$ ; confidence 0.963
+
229. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007017.png ; $\overset{\rightharpoonup} { n }$ ; confidence 0.719
  
230. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002061.png ; $X _ { n } \in M _ { F }$ ; confidence 0.562
+
230. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350357.png ; $t \in T$ ; confidence 0.719
  
231. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002035.png ; $P ( \theta , \mu )$ ; confidence 0.795
+
231. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048044.png ; $\operatorname { dim} H _ { S } ^ { i } ( D ) < \infty$ ; confidence 0.719
  
232. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003015.png ; $( A - \mu I ) ^ { - 1 }$ ; confidence 0.911
+
232. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b1106605.png ; $f \in L ^ { 1 _ {\operatorname{ loc }}} ( \mathbf{R} )$ ; confidence 0.719
  
233. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003071.png ; $- h \Delta + V ( x )$ ; confidence 0.994
+
233. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022070.png ; $j ( z ) - 744 = \sum _ { k } a _ { k } q ^ { k }$ ; confidence 0.719
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096025.png ; $A \rightarrow A$ ; confidence 0.933
+
234. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005036.png ; $\Sigma ^ { * }$ ; confidence 0.719
  
235. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186097.png ; $F \rightarrow G$ ; confidence 0.997
+
235. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011014.png ; $\left\{ \begin{array} { l } { \partial _ { i } ^ { 2 } = 0, } \\ { \partial _ { i } \partial _ { j } = \partial _ { j } \partial _ { i } \text { if } | i - j | > 1, } \\ { \partial _ { i } \partial _ { i + 1 } \partial _ { i } = \partial _ { i + 1 } \partial _ { i } \partial _ { i + 1 }. } \end{array} \right.$ ; confidence 0.719
  
236. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024330/c02433072.png ; $A \rightarrow B$ ; confidence 0.996
+
236. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b1300307.png ; $x , y \in V ^ { \mp }$ ; confidence 0.719
  
237. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005015.png ; $TD _ { \mu } [ r , s ]$ ; confidence 0.888
+
237. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009014.png ; $U _ { n } ( x )$ ; confidence 0.719
  
238. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i05023095.png ; $\Omega _ { \eta }$ ; confidence 0.999
+
238. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050158.png ; $\mathcal H = H ^ { 2 } ( S ^ { 3 } )$ ; confidence 0.719
  
239. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130070/n13007022.png ; $\emptyset \in D$ ; confidence 0.810
+
239. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003040.png ; $H = ( s _ { i  + j - 1} )$ ; confidence 0.719
  
240. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n06696010.png ; $2 ( n + 2 \lambda )$ ; confidence 0.999
+
240. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016040.png ; $\mathcal{C} ^ { m + 1 } \rightarrow \mathcal{C} ^ { m }$ ; confidence 0.719
  
241. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011062.png ; $\xi ( , \dots , . )$ ; confidence 0.226
+
241. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i1300207.png ; $I _ { A } = 1$ ; confidence 0.718
  
242. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011033.png ; $y \in K _ { j } ^ { c }$ ; confidence 0.141
+
242. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036019.png ; $p _ { x } + d p _ { x }$ ; confidence 0.718
  
243. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011028.png ; $x _ { i } ^ { x _ { i } }$ ; confidence 0.436
+
243. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005034.png ; $= \left( \frac { 2 } { \pi } \right) ^ { 5 / 2 } \int _ { 0 } ^ { \infty } \operatorname { cosh } ( \pi \tau ) \operatorname { Re } K _ { 1 / 2  + i \tau} ( x ) F ( \tau ) G ( \tau ) d \tau .$ ; confidence 0.718
  
244. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062160/m062160160.png ; $\dot { x } = A x + B u$ ; confidence 0.475
+
244. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004074.png ; $a _ { E } ( z ) \neq 0$ ; confidence 0.718
  
245. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520226.png ; $C \in GL _ { N } ( K )$ ; confidence 0.277
+
245. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076330/q076330128.png ; $\mathcal{A} _ { 0 }$ ; confidence 0.718
  
246. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520451.png ; $\lambda _ { i } < 0$ ; confidence 0.494
+
246. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c1202608.png ; $k  = T / N$ ; confidence 0.718
  
247. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520392.png ; $\dot { x } _ { j } = 0$ ; confidence 0.846
+
247. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020171.png ; $f \in H _ { 0 } ^ { p }$ ; confidence 0.718
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012340/a01234028.png ; $i = 1 , \dots , r - 1$ ; confidence 0.644
+
248. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006017.png ; $\sigma f - f _ { x } = \operatorname { lim } _ { \delta \rightarrow 0 } D ^ { \pm } f = \operatorname { lim } _ { \delta \rightarrow 0 } ( x - x q ) ^ { - 1 } D ^ { \pm } f.$ ; confidence 0.718
  
249. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520434.png ; $X \rightarrow V$ ; confidence 0.962
+
249. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001044.png ; $x,y \in S ( z ) \Rightarrow S ( x ) \bigcap S ( y ) \neq \emptyset .$ ; confidence 0.718
  
250. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520270.png ; $\overline { b } 1$ ; confidence 0.204
+
250. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180134.png ; $\mathcal{R}$ ; confidence 0.718
  
251. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001027.png ; $C ( \theta _ { r } )$ ; confidence 0.772
+
251. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010022.png ; $\left( \begin{array} { c } { n_j } \\ { 2 } \end{array} \right)$ ; confidence 0.718
  
252. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001058.png ; $\Gamma u = u _ { N }$ ; confidence 0.539
+
252. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h13013016.png ; $| \lambda _ { \mathbf{k} } | \leq N$ ; confidence 0.718
  
253. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001040.png ; $u ( x , \alpha , k )$ ; confidence 0.992
+
253. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004022.png ; $f ^ { c  ( \varphi )}$ ; confidence 0.718
  
254. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001075.png ; $f ( x ^ { \prime } )$ ; confidence 0.994
+
254. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008019.png ; $n \in \mathbf{N} _ { 0 }$ ; confidence 0.718
  
255. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o1300101.png ; $D \subset R ^ { 3 }$ ; confidence 0.996
+
255. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024023.png ; $\operatorname { varprojlim}_{k} h_{ *} ( X _ { 1 } \vee \ldots \vee X _ { k } ) \approx \prod _ { 1 } ^ { \infty } h_{ *} ( X _ { i } ).$ ; confidence 0.718
  
256. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o1300204.png ; $( r _ { 1 } , r _ { 2 } )$ ; confidence 0.842
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013069.png ; $\theta ^ { * }$ ; confidence 0.718
  
257. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005046.png ; $W _ { \Theta } ( z )$ ; confidence 0.978
+
257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027081.png ; $m \underline { \square } _ { n } ( h )$ ; confidence 0.718
  
258. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005092.png ; $v _ { x } = v / z ^ { x }$ ; confidence 0.381
+
258. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032021.png ; $\mathsf{E} ( Y ) \neq 0$ ; confidence 0.718
  
259. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005091.png ; $u _ { x } = u / z ^ { x }$ ; confidence 0.545
+
259. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i1200407.png ; $b _ { 0 } P = \{ ( \zeta _ { 1 } , \dots , \zeta _ { n } ) : | \zeta _ { j } - a _ { j } | = r _ { j } , j = 1 , \dots , n \}$ ; confidence 0.718
  
260. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005094.png ; $u \in \tilde { F }$ ; confidence 0.109
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018076.png ; $S _ { n } = \sum _ { i = 0 } ^ { n } c _ { i } t ^ { i }$ ; confidence 0.718
  
261. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005090.png ; $x _ { x } = x / z ^ { x }$ ; confidence 0.394
+
261. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034057.png ; $\omega ( A ) = \lambda c _ { 1 } ( A )$ ; confidence 0.717
  
262. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006085.png ; $\gamma _ { l } ( 1 )$ ; confidence 0.163
+
262. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014067.png ; $q \left( \begin{array} { l } { v } \\ { s } \end{array} \right) = r \left( \begin{array} { l } { v } \\ { t } \end{array} \right).$ ; confidence 0.717
  
263. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008035.png ; $C _ { \varphi }$ ; confidence 0.982
+
263. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002089.png ; $Y \rightarrow \Omega \Sigma Y$ ; confidence 0.717
  
264. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p1201206.png ; $\underline { Q }$ ; confidence 0.331
+
264. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290166.png ; $M ^ { Y }$ ; confidence 0.717
  
265. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009046.png ; $\delta _ { \eta }$ ; confidence 0.969
+
265. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d031850241.png ; $\partial / \partial x$ ; confidence 0.717
  
266. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100144.png ; $K \subset C ^ { 2 }$ ; confidence 0.671
+
266. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003018.png ; $P _ { 0 } | 1 \rangle = | 0 \rangle$ ; confidence 0.717
  
267. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015068.png ; $r _ { 1 } + r _ { 2 } < 1$ ; confidence 0.988
+
267. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032048.png ; $\sigma ^ { 2 } \mathsf{E} ( N ) = \mathsf{E} ( S _ { N } ^ { 2 } ).$ ; confidence 0.717
  
268. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013057.png ; $\dot { k } _ { \pi }$ ; confidence 0.210
+
268. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005074.png ; $\mathcal{H} ^ { \infty } ( B _ { \text{l}_p } )$ ; confidence 0.717
  
269. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548012.png ; $\Rightarrow , -$ ; confidence 0.515
+
269. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018082.png ; $- 1 < t \leq 1$ ; confidence 0.717
  
270. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040450/f04045028.png ; $U \subset R ^ { 2 }$ ; confidence 0.996
+
270. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210146.png ; $\{ P _ { \alpha _ { n } , \theta _ { \tau _ { n } } } \}$ ; confidence 0.717
  
271. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017074.png ; $1 \leq p < \infty$ ; confidence 0.999
+
271. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m1301303.png ; $\{ v _ { 1 } , \dots , v _ { \nu } \}$ ; confidence 0.717
  
272. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017011.png ; $\delta _ { A } ( X )$ ; confidence 0.996
+
272. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025036.png ; $\operatorname { dim} K \leq n$ ; confidence 0.716
  
273. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002024.png ; $1 \leq t \leq n - k$ ; confidence 0.998
+
273. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110137.png ; $\left(  f _ { \Delta _ { k } } , e ^ { - i x \zeta } \right),$ ; confidence 0.716
  
274. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001045.png ; $X _ { t } ( q ) = q ( t )$ ; confidence 0.990
+
274. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005091.png ; $\operatorname { log } \alpha _ { n } = o ( \operatorname { log } n ) \text { as } n \rightarrow \infty$ ; confidence 0.716
  
275. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003016.png ; $1 - P _ { 0 } ^ { ( 1 ) }$ ; confidence 0.949
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301306.png ; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n },$ ; confidence 0.716
  
276. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q120050103.png ; $D ^ { 2 } f ( x ^ { * } )$ ; confidence 0.994
+
276. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l05961011.png ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } \left( \frac { \partial w _ { N } } { \partial \mathbf{r} _ { i } } \frac { d \mathbf{r} _ { i } } { d t } + \frac { \partial w _ { N } } { \partial \mathbf{p} _ { i } } \frac { d \mathbf{p} _ { i } } { d t } \right) = 0.$ ; confidence 0.716
  
277. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005067.png ; $\phi = \phi ^ { k }$ ; confidence 0.999
+
277. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031790/d031790143.png ; $\mathbf{R} ^ { 2 n + 1 }$ ; confidence 0.716
  
278. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110250/p1102503.png ; $x ^ { 0 } \in R ^ { x }$ ; confidence 0.521
+
278. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011048.png ; $d \alpha_{ j } / d t$ ; confidence 0.716
  
279. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149073.png ; $f ^ { \prime } ( x )$ ; confidence 1.000
+
279. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700023.png ; $\lambda x y$ ; confidence 0.716
  
280. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004041.png ; $\varphi \circ w$ ; confidence 0.929
+
280. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120010/m12001056.png ; $\langle u - v , j \rangle$ ; confidence 0.716
  
281. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005094.png ; $QS ( T ) \subset M$ ; confidence 0.798
+
281. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013022.png ; $\frac { \partial \Psi _ { i } } { \partial x _ { n } } = ( L ^ { n _ { 1 } } ) _ { + } \Psi _ { i } , \frac { \partial \Psi _ { i } } { \partial y _ { n } } = ( L _ { 2 } ^ { n } ) _ { - } \Psi _ { i },$ ; confidence 0.716
  
282. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070115.png ; $a d - q ^ { - 1 } b c = 1$ ; confidence 0.969
+
282. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417012.png ; $\overline{X}$ ; confidence 0.715
  
283. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007054.png ; $q = e ^ { \hbar / 2 }$ ; confidence 0.545
+
283. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030029.png ; $f ( y ) = \frac { 1 } { ( 2 \pi ) ^ { N / 2 } } \int _ { \mathbf{R} ^ { N } } \widehat { f } ( \eta ) e ^ { i \eta . y } d \eta .$ ; confidence 0.715
  
284. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007036.png ; $u _ { y } ( s | _ { 2 } )$ ; confidence 0.229
+
284. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160069.png ; $\mathbf{Q} ( \zeta )$ ; confidence 0.715
  
285. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007086.png ; $H ^ { * } \otimes H$ ; confidence 0.998
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018032.png ; $S _ { n + i } = T _ { n } + \alpha \lambda ^ { n + i }$ ; confidence 0.715
  
286. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016750/b01675060.png ; $q \rightarrow 0$ ; confidence 0.973
+
286. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011010.png ; $\exists x \in \mathbf R $ ; confidence 0.715
  
287. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008092.png ; $1 \leq p \leq P - 1$ ; confidence 0.995
+
287. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030063.png ; $M _ { n } ( \mathbf C )$ ; confidence 0.715
  
288. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070102.png ; $f _ { N } \in H ^ { 0 }$ ; confidence 0.345
+
288. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006090.png ; $m _ { B } ( B ) = 1$ ; confidence 0.715
  
289. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007095.png ; $H \subset H _ { 1 }$ ; confidence 0.996
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042086.png ; $z \in G$ ; confidence 0.715
  
290. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070112.png ; $H = L ^ { 2 } ( T , d m )$ ; confidence 0.997
+
290. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270102.png ; $b ( t ) = \mathsf{ E}h  ( \{ Z ( t ) : T _ { 1 } > t \} )$ ; confidence 0.715
  
291. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008079.png ; $L ^ { 2 } ( E , d \mu )$ ; confidence 0.969
+
291. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007070.png ; $\sigma ( \mathcal{D} , \mathcal{X} ) = ( a \mathcal{D} + b \mathcal{X} ) ^ { k }$ ; confidence 0.715
  
292. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010041.png ; $z \vec { \Delta }$ ; confidence 0.414
+
292. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l1200502.png ; $\operatorname { Re } K _ { 1 / 2 + i \tau } ( x ) = \frac { K _ { 1 / 2 + i \tau } ( x ) + K _ { 1 / 2 - i \tau } ( x ) } { 2 }$ ; confidence 0.715
  
293. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012023.png ; $v ^ { * } v < x ^ { * } x$ ; confidence 0.725
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013000/a01300078.png ; $\infty$ ; confidence 0.715
  
294. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015260/b0152609.png ; $D \cup \Gamma$ ; confidence 0.999
+
294. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130140/w13014013.png ; $g ( y ) = \left\{ \begin{array} { l l } { \frac { 1 } { \pi y } \operatorname { sin } 2 \pi y , } & { y \neq 0, } \\ { 2 , } & { y = 0, } \end{array} \right.$ ; confidence 0.715
  
295. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232043.png ; $J ( 0 ) = u ( x _ { 0 } )$ ; confidence 0.951
+
295. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620137.png ; $\phi ( . , \lambda ) + m_{ + } ( \lambda ) \theta ( . , \lambda )$ ; confidence 0.715
  
296. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232071.png ; $0 \leq a \leq b + c$ ; confidence 0.974
+
296. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009015.png ; $C_{j}$ ; confidence 0.714
  
297. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232070.png ; $b \leq c \leq d , e$ ; confidence 0.759
+
297. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g1300109.png ; $\operatorname { GF} ( p )$ ; confidence 0.714
  
298. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070100/o07010010.png ; $P \cup P ^ { - 1 } = G$ ; confidence 0.999
+
298. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005099.png ; $i _ { 1 } = \ldots = i _ { r } = 1$ ; confidence 0.714
  
299. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011023.png ; $\{ X ; \preceq \}$ ; confidence 0.988
+
299. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005051.png ; $X = P U | _ { \mathfrak{H} }$ ; confidence 0.714
  
300. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002013.png ; $\partial _ { x } a$ ; confidence 0.435
+
300. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130080/v13008024.png ; $K _ { \zeta }$ ; confidence 0.714

Latest revision as of 10:46, 14 May 2020

List

1. b12005011.png ; $z \in E$ ; confidence 0.732

2. a130240122.png ; $t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.731

3. g12004063.png ; $\Omega \times ( \mathbf{R} ^ { n } \backslash \{ 0 \} )$ ; confidence 0.731

4. s13054035.png ; $h ( a ) = w ( a ) w ( 1 ) ^ { - 1 }$ ; confidence 0.731

5. b01675042.png ; $x ^ { \prime \prime }$ ; confidence 0.731

6. a13024041.png ; $\mathbf{Y} = \mathbf{X} _ { 1 } \mathbf{BX} _ { 2 } + \mathbf{E},$ ; confidence 0.731

7. n067520279.png ; $E _ { \xi }$ ; confidence 0.731

8. i130090222.png ; $g.x = \tilde{g} x \tilde{g} ^ { - 1 }$ ; confidence 0.731

9. a01318090.png ; $k > 2$ ; confidence 0.731

10. m12003057.png ; $\varepsilon ^ { * } ( \operatorname{MAD} ) = 1 / 2$ ; confidence 0.731

11. f0380708.png ; $\operatorname{III}$ ; confidence 0.731

12. w13008025.png ; $d \omega _ { 3 } ( \lambda ) = \frac { \lambda ^ { g + 1 } - \frac { 1 } { 2 } \sigma _ { 1 } \lambda ^ { g } + \beta _ { 1 } \lambda ^ { g - 1 } + \ldots + \beta _ { g } } { \sqrt { R _ { g } ( \lambda ) } } d \lambda \sim $ ; confidence 0.731

13. b11066080.png ; $= \operatorname{BMOA}= \operatorname{BMO} \cap H ^ { 2 }$ ; confidence 0.731

14. f1300105.png ; $f \in \mathbf{F} _ { q } [ x ]$ ; confidence 0.731

15. a12026021.png ; $y _ { c } \cong \widehat { y }$ ; confidence 0.731

16. d13013052.png ; $\hbar = e = 1$ ; confidence 0.731

17. i13001030.png ; $\overline { d } _ { \chi } ^ { G } ( A ) : = d _ { \chi } ^ { G } ( A ) / \chi ( \text { id } ) = d _ { \chi } ^ { G } ( A ) / d _ { \chi } ^ { G } ( I _ { n } ) ,$ ; confidence 0.731

18. a12008060.png ; $( H ^ { 1 } ( \Omega ) ) ^ { \prime }$ ; confidence 0.731

19. e12012024.png ; $L ( \theta | Y _ { \text{com} } )$ ; confidence 0.731

20. a13006053.png ; $P _ { R }$ ; confidence 0.730

21. b12040054.png ; $S ^ { + }$ ; confidence 0.730

22. d120230157.png ; $Z_{i}$ ; confidence 0.730

23. e13007047.png ; $H \leq N$ ; confidence 0.730

24. b130200177.png ; $P _ { + }$ ; confidence 0.730

25. r13011025.png ; $\Phi ( u ) : = \sum _ { n = 1 } ^ { \infty } \pi n ^ { 2 } \left( 2 \pi n ^ { 2 } e ^ { 4 u } - 3 \right) \operatorname { exp } ( 5 u - \pi n ^ { 2 } e ^ { 4 u } ).$ ; confidence 0.730

26. b12009042.png ; $= ( p _ { 0 } ( \xi ) - a i ) \frac { \tau } { \xi } + ( p _ { 1 } ( \xi ) + p _ { 0 } ( \xi ) ) \frac { \tau ^ { m + 1 } } { \xi }.$ ; confidence 0.730

27. b12055013.png ; $d ( x , \gamma ( 0 ) )$ ; confidence 0.730

28. c12008087.png ; $\left[ \begin{array} { l l } { E _ { 1 } } & { E _ { 2 } } \\ { E _ { 3 } } & { E _ { 4 } } \end{array} \right]$ ; confidence 0.730

29. e12012023.png ; $Y _ { \text{mis} }$ ; confidence 0.730

30. d1100204.png ; $N \leq \infty$ ; confidence 0.730

31. b130120102.png ; $\int _ { 0 } ^ { 1 } \omega ( f ^ { \prime } ; t ) _ { p } \left( \operatorname { ln } \frac { 1 } { t } \right) ^ { - 1 / p ^ { \prime } } t ^ { - 1 } d t < \infty$ ; confidence 0.729

32. o12006069.png ; $\Delta _ { h } F ( x ) = F ( x + h ) - F ( x ),$ ; confidence 0.729

33. b1202507.png ; $\operatorname{LGL} ( n , \mathbf{C} )$ ; confidence 0.729

34. r13011020.png ; $\operatorname { Re } s = \sigma = 1 / 2$ ; confidence 0.729

35. a01046073.png ; $P _ { n } ( x )$ ; confidence 0.729

36. k05584087.png ; $\leq \kappa$ ; confidence 0.729

37. a011300143.png ; $\Pi$ ; confidence 0.729

38. f13029025.png ; $L ^ { X } = \{ a : X \rightarrow L , a \ \text {a function } \}$ ; confidence 0.729

39. s12027027.png ; $| R - n [ f ] | \leq \gamma | Q _ { l } ^ { B } [ f ] - Q _ { n } [ f ] |.$ ; confidence 0.729

40. m130140118.png ; $p , s = 1 , \dots , n$ ; confidence 0.729

41. a01024027.png ; $\nu$ ; confidence 0.729

42. e12002072.png ; $\pi _ { n } ( \alpha , \beta )$ ; confidence 0.729

43. d12016068.png ; $f \in L _ { 1 } ( S \times T )$ ; confidence 0.729

44. d03024011.png ; $\beta _ { r } = f _{( r )} ( x _ { 0 } )$ ; confidence 0.729

45. m13011015.png ; $\frac { D f } { D t } = \left( \frac { \partial f ( \mathbf{x} ^ { 0 } , t ) } { \partial t } \right) | _ { \mathbf{x}^0 },$ ; confidence 0.729

46. d12019014.png ; $\operatorname { Dom } \left( ( - \Delta _ { \text{Dir} } ) ^ { 1 / 2 } \right) = \operatorname { Dom } ( \tilde{E} ) = H _ { 0 } ^ { 1 } ( \Omega ).$ ; confidence 0.729

47. b120400126.png ; $w \in \operatorname{W}$ ; confidence 0.729

48. k12013017.png ; $E _ { n + 1 } ^ { 1 }$ ; confidence 0.729

49. s13051052.png ; $N _ { n } = \left\{ u \in V : n = \operatorname { min } m , F ( u ) \bigcap \bigcup _ { i < m } P _ { i } \neq \emptyset \right\},$ ; confidence 0.729

50. e13007039.png ; $c _ { k } T N ^ { - k } \leq \left| f ^ { ( k ) } ( x ) \right| \leq c _ { k } ^ { \prime } T N ^ { - k }$ ; confidence 0.729

51. d12026043.png ; $f ( X _ { n } )$ ; confidence 0.729

52. t120200109.png ; $c _ { m , n } = 2 ( n / ( 8 e ( m + n ) ) ) ^ { n }$ ; confidence 0.729

53. d11008034.png ; $( K ^ { H } , v ^ { H } )$ ; confidence 0.729

54. q13004042.png ; $w : G \rightarrow G ^ { \prime }$ ; confidence 0.728

55. h12002057.png ; $\{ \overline{z} \square ^ { j } \}_{j > 0}$ ; confidence 0.728

56. i130060102.png ; $\operatorname{ind} S ( k ) = 0$ ; confidence 0.728

57. c120180477.png ; $s \in \mathbf{R} ^ { + }$ ; confidence 0.728

58. i12005050.png ; $\{ T ( n , \alpha ) \}$ ; confidence 0.728

59. q12001049.png ; $\mathcal{D} _ { + } = \{ f \in \mathcal{D} : f \ \text { real valued, } f ( s ) = 0 \text { for } s < 0 \}.$ ; confidence 0.728

60. d1300807.png ; $F \in \operatorname { Hol } ( \Delta )$ ; confidence 0.728

61. v120020114.png ; $p ( x _ { 0 } , y _ { 0 } ) = q ( x _ { 0 } , y _ { 0 } )$ ; confidence 0.728

62. p13014068.png ; $f _ { \rho }$ ; confidence 0.728

63. a13020013.png ; $\langle x y z \rangle - \langle z y x \rangle = \langle z x y \rangle - \langle x z y \rangle$ ; confidence 0.728

64. b12036046.png ; $U _ { q g }$ ; confidence 0.728

65. w120030118.png ; $x ^ { * * } \in X ^ { * * } \backslash X$ ; confidence 0.728

66. e13004018.png ; $\psi ( 0 )$ ; confidence 0.728

67. m130230105.png ; $\operatorname{dim} X \leq 2$ ; confidence 0.728

68. t12007088.png ; $u _ { n } v = 0$ ; confidence 0.728

69. p13013053.png ; $Q _ { \lambda } = \frac { 1 } { n ! } \sum _ { \pi \in O ( n ) } 2 ^ { ( r ( \lambda ) + r ( \pi ) + \epsilon ( \lambda ) ) / 2 } k _ { \pi } \zeta _ { \lambda } ^ { \pi } p _ { \pi },$ ; confidence 0.728

70. i13002056.png ; $m \leq 4$ ; confidence 0.728

71. a130040614.png ; $\mathfrak { N } \in \operatorname{Mod}_{\mathcal{S}_P}$ ; confidence 0.728

72. c12001097.png ; $\rho _ { j k } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.727

73. t12005050.png ; $G _ { n } ( \mathbf{R} ^ { n } \times \mathbf{R} ^ { p } )$ ; confidence 0.727

74. a01212058.png ; $R_i$ ; confidence 0.727

75. d0302502.png ; $y ^ { ( n ) } = f ( x , y , y ^ { \prime } , \dots , y ^ { ( n - 1 ) } )$ ; confidence 0.727

76. m13018040.png ; $\mu ( x , y ) = - C _ { 1 } + C _ { 2 } - C _ { 3 } + \ldots ,$ ; confidence 0.727

77. l11003073.png ; $\varphi \in X$ ; confidence 0.727

78. k13002011.png ; $x _ { j } < x _ { k }$ ; confidence 0.727

79. r130080129.png ; $( u , \varphi _ { j } ) _ { 0 } : = \int _ { D } u ( y ) \overline { \varphi _ { j } ( y ) } d y$ ; confidence 0.727

80. y12001039.png ; $V \otimes _ { k } V$ ; confidence 0.727

81. a130180128.png ; $c _ { i } ( R ) = \pi _ { i } ^ { - 1 } \pi _ { i } ( ( R ) ).$ ; confidence 0.727

82. a130240524.png ; $\mathbf{Z} _ { 12 } - \mathbf{Z} _ { 13 } \Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.727

83. w12018062.png ; $A \subset \mathbf{R} _ { + } ^ { 2 }$ ; confidence 0.727

84. b110220246.png ; $J ^ { i } ( X )$ ; confidence 0.727

85. b13002067.png ; $\operatorname{JB}$ ; confidence 0.727

86. b12015052.png ; $j = 1,2$ ; confidence 0.727

87. b130010104.png ; $V _ { n } ^ { * } = V _ { n } \cup \ldots \cup V _ { 0 }$ ; confidence 0.727

88. g12003013.png ; $( Q _ { n } ^ { G } , Q _ { 2n+1 } ^ { G K } )$ ; confidence 0.727

89. a12027010.png ; $\rho$ ; confidence 0.727

90. m12023067.png ; $u ( t , x ) = f _ { t } ( x )$ ; confidence 0.727

91. c120180210.png ; $\otimes ^ { 4 } \mathcal{E}$ ; confidence 0.726

92. z13007053.png ; $\mathbf{Z} A \rightarrow Z$ ; confidence 0.726

93. t120050130.png ; $\Sigma ^ { 2 _ \text { parabolic } } =$ ; confidence 0.726

94. c13016069.png ; $\operatorname{DSPACE}[s(n)]$ ; confidence 0.726

95. c13016038.png ; $\operatorname{NSPACE}[s(n)]$ ; confidence 0.726

96. w120110107.png ; $\mathcal{H} ( M u , M v ) = \mathcal{H} ( u , v ) \circ \chi ^ { - 1 }.$ ; confidence 0.726

97. c02285078.png ; $\rho _ { m }$ ; confidence 0.726

98. c0229301.png ; $P ( \xi _ { 1 } , \dots , \xi _ { n } )$ ; confidence 0.726

99. e12014066.png ; $s = t$ ; confidence 0.726

100. a13013070.png ; $( \tau _ { l } )$ ; confidence 0.726

101. a13022046.png ; $E _ { C } ( X ) \subset \square _ { R } \operatorname { Mod } ( X , C )$ ; confidence 0.726

102. b120150168.png ; $f _ { i } ( \vartheta ) = \frac { \operatorname { exp } ( g ( \vartheta ) + h ( i ) ) } { 1 + \operatorname { exp } ( g ( \vartheta ) + h ( i ) ) } , \vartheta \in \Theta , i = 1 , \ldots , n .$ ; confidence 0.726

103. d11022042.png ; $x _ { 1 } < t < x _ { m }$ ; confidence 0.726

104. j13003022.png ; $E \times E \times E \rightarrow E , ( x , y , z ) \mapsto \{ x y z \}$ ; confidence 0.726

105. d120020126.png ; $\overline { q } \geq v ^ { * }$ ; confidence 0.725

106. m1201701.png ; $x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n - 1 } x + a _ { n } = 0$ ; confidence 0.725

107. b12052090.png ; $w = \prod _ { j = 0 } ^ { n - 2 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } ),$ ; confidence 0.725

108. m12012026.png ; $0 \neq A \lhd R$ ; confidence 0.725

109. j13004011.png ; $P _ { T _ { n } } ( v , z ) = \left( \frac { v ^ { - 1 } - v } { z } \right) ^ { n - 1 }.$ ; confidence 0.725

110. b12032019.png ; $x \perp y$ ; confidence 0.725

111. d130080151.png ; $\operatorname {Hol}( \mathcal{D} )$ ; confidence 0.725

112. m13025063.png ; $\rho _ { \varepsilon } ( x ) = \varepsilon ^ { - n } \rho ( x / \varepsilon )$ ; confidence 0.725

113. w130080166.png ; $\operatorname {GL} ( N , \mathbf{C} )$ ; confidence 0.725

114. s13002045.png ; $v \in U ^ { + } \partial M$ ; confidence 0.725

115. f110160185.png ; $P ( T , l ) = \vee \left\{ \psi _ { \mathfrak{A}} ^ { l } e : \mathfrak{A} \ \text{is a model of} \ T \right\}$ ; confidence 0.725

116. b12027029.png ; $F ( x ) = \mathsf{P} ( X _ { 1 } \leq x )$ ; confidence 0.725

117. b12049031.png ; $A \cap B = \emptyset$ ; confidence 0.725

118. r13012023.png ; $v ^ { * } v \leq x ^ { * } x$ ; confidence 0.725

119. l12010025.png ; $L _ { \gamma , n } ^ { c } = 2 ^ { - n } \pi ^ { - n / 2 } \frac { \Gamma ( \gamma + 1 ) } { \Gamma ( \gamma + 1 + n / 2 ) }.$ ; confidence 0.725

120. f04049038.png ; $( a _ { 1 } , \sigma _ { 1 } ^ { 2 } )$ ; confidence 0.724

121. a01079032.png ; $\mathfrak{m}$ ; confidence 0.724

122. c02643036.png ; $f * g$ ; confidence 0.724

123. b11082010.png ; $n_{ij}$ ; confidence 0.724

124. s13034018.png ; $S _ { 3 } ( F \times [ 0,1 ] )$ ; confidence 0.724

125. h13009045.png ; $g_i \in B$ ; confidence 0.724

126. i13005052.png ; $- d ^ { 2 } / d x ^ { 2 } + q ( x )$ ; confidence 0.724

127. o12006023.png ; $\| . \| _ { L _ { \Phi } ( \Omega )}$ ; confidence 0.724

128. w120110231.png ; $S ( 1 , G )$ ; confidence 0.724

129. e12014065.png ; $q = r$ ; confidence 0.724

130. d1201408.png ; $D _ { 1 } ( x , a ) = x$ ; confidence 0.724

131. z13007018.png ; $x \in \mathbf{Q} G$ ; confidence 0.724

132. b130010103.png ; $V _ { n } = \mathcal{H} _ { n } / \Gamma$ ; confidence 0.724

133. m13025065.png ; $\mathcal{M} _ { 3 } ( \mathbf{R} ^ { n } ) = \{$ ; confidence 0.724

134. s1305009.png ; $\left( \begin{array} { c } { [ n ] } \\ { ( n - 1 ) / 2 } \end{array} \right)$ ; confidence 0.724

135. f040850136.png ; $V _ { t }$ ; confidence 0.724

136. j13002018.png ; $\mathsf{P} ( X = 0 ) \leq \operatorname { exp } \left( - \frac { \lambda ^ { 2 } } { \overline{\Delta} } \right).$ ; confidence 0.724

137. c120010182.png ; $f \mapsto \langle a , \partial \rangle f$ ; confidence 0.724

138. u13002013.png ; $\widehat { f } ( y ) = \int _ { - \infty } ^ { \infty } f ( x ) e ^ { - 2 \pi i x y } d x,$ ; confidence 0.724

139. s120230152.png ; $A _ { 1 } ( n \times n ) , \dots , A _ { s } ( n \times n )$ ; confidence 0.724

140. d12023086.png ; $T ^ { - 1 } = T ^ { - \# }$ ; confidence 0.724

141. i12008066.png ; $T _ { c } = 0$ ; confidence 0.724

142. b110220212.png ; $H _ { \mathcal{D} } ^ { i + 1 } ( X_{ / \mathbf{R}} , \mathbf{R} ( j ) )$ ; confidence 0.724

143. j13004048.png ; $K _ { 1 } \# K _ { 2 } ^ { - }$ ; confidence 0.724

144. b11066036.png ; $\{ T _ { s } \}$ ; confidence 0.724

145. f1100106.png ; $z \in A$ ; confidence 0.724

146. a1300203.png ; $\mathcal{T}$ ; confidence 0.724

147. o13003034.png ; $\lambda _ { 7 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { - i } \\ { 0 } & { i } & { 0 } \end{array} \right) , \lambda _ { 8 } = \left( \begin{array} { c c c } { \frac { 1 } { \sqrt { 3 } } } & { 0 } & { 0 } \\ { 0 } & { \frac { 1 } { \sqrt { 3 } } } & { 0 } \\ { 0 } & { 0 } & { \frac { - 2 } { \sqrt { 3 } } } \end{array} \right).$ ; confidence 0.724

148. k12012010.png ; $\{ \alpha _ { k } : k = 1,2 , \ldots \}$ ; confidence 0.724

149. b13022081.png ; $| u ( x ) | \leq C \sum _ { j = 0 } ^ { 2 } \rho ^ { j - N / p } | u | _ { p , j , T }.$ ; confidence 0.723

150. w120090294.png ; $\mathfrak { b } ^ { + } = \mathfrak { h } \oplus \mathfrak { n } ^ { + }$ ; confidence 0.723

151. b110220241.png ; $A = \mathbf{Z}$ ; confidence 0.723

152. e03500034.png ; $\cup _ { i = 1 } ^ { n } C _ { i } = C$ ; confidence 0.723

153. e12018019.png ; $D = \pm ( * d - d * )$ ; confidence 0.723

154. w120110245.png ; $a \in S ( h ^ { - 2 } , g )$ ; confidence 0.723

155. n067520442.png ; $\widetilde { \psi }_i$ ; confidence 0.723

156. i12006014.png ; $x < _{Q} y$ ; confidence 0.723

157. g13003018.png ; $\mathcal{C} ^ { \infty } ( \mathbf{R} ^ { n } )$ ; confidence 0.723

158. t130130112.png ; $T \in K ^ { b } ( P _ { \Lambda } )$ ; confidence 0.723

159. s09101032.png ; $x ^ { n - 1 }$ ; confidence 0.723

160. w13008035.png ; $\frac { \partial \overline { u } } { \partial T } = \overline { u } \frac { \partial \overline { u } } { \partial X }.$ ; confidence 0.723

161. a13027037.png ; $P _ { n } x = \sum _ { i = 1 } ^ { n } ( x , \phi _ { i } ) \phi _ { i }$ ; confidence 0.723

162. s13045051.png ; $\rho _ { S } = 3 \mathsf{P} [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 3 } ) > 0 ] +$ ; confidence 0.723

163. f13024041.png ; $L_{ - 1} : = ( 0 ) \oplus U ( \varepsilon )$ ; confidence 0.723

164. t130050149.png ; $\sigma _ { \text{Te} } ( A , \mathcal{X} ) : = \{ \lambda \in \mathbf{C} ^ { n } : A - \lambda \ \text{is not Fredholm} \}.$ ; confidence 0.723

165. q12002049.png ; $z ^ { * _{ u v}}$ ; confidence 0.723

166. n1300402.png ; $\mathcal{C}_n$ ; confidence 0.723

167. o13003040.png ; $d _ { j k l } = \frac { 1 } { 4 } \operatorname { Tr } [ ( \gamma _ { j } \gamma _ { k } + \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ],$ ; confidence 0.723

168. b1203608.png ; $\mathsf{P}_l$ ; confidence 0.722

169. a11050012.png ; $\widetilde{\mathbf{Z}} _ { p }$ ; confidence 0.722

170. m13018095.png ; $\mu ( 0,1 ) = q _ { 2 } - q _ { 3 } + q _ { 4 } - \ldots ,$ ; confidence 0.722

171. k13002039.png ; $\tau = \mathsf{P} [ ( X _ { 1 } - X _ { 2 } ) ( Y _ { 1 } - Y _ { 2 } ) > 0 ] +$ ; confidence 0.722

172. a1200404.png ; $x _ { 0 } \in X$ ; confidence 0.722

173. a13030039.png ; $( x _ { n } )$ ; confidence 0.722

174. j13004097.png ; $\mathsf{P} _ { K } ( v , z ) = \frac { P _ { K } ( v , z ) - 1 } { ( v ^ { - 1 } - v ) ^ { 2 } - z ^ { 2 } },$ ; confidence 0.722

175. d03226014.png ; $\leq m - 1$ ; confidence 0.722

176. e13005033.png ; $E _ { q } ( \alpha , \beta ) = [ \theta _ { x } + \alpha ] _ { q } [ \partial _ { y } ] _ { q } - [ \theta _ { y } + \beta ] [ \partial _ { x } ] _ { q }$ ; confidence 0.722

177. h12013050.png ; $\omega _ { 1 } * \omega _ { 2 } ( t ) = \left\{ \begin{array} { l l } { \omega _ { 1 } ( t ) } & { \text { for } 0 \leq t \leq 1 / 2, } \\ { \omega ( 2 t - 1 ) } & { \text { for } 1 / 2 \leq t \leq 1, } \end{array} \right.$ ; confidence 0.722

178. v13011078.png ; $d M _ { 2 } = \rho \frac { \Gamma b } { l } ( V - U ),$ ; confidence 0.722

179. c02683022.png ; $V _ { 1 }$ ; confidence 0.722

180. s1202103.png ; $D _ { Z }$ ; confidence 0.722

181. d12005029.png ; $C \subset D$ ; confidence 0.722

182. s13062089.png ; $B \subseteq \mathbf{R}$ ; confidence 0.722

183. a12007016.png ; $\frac { \partial } { \partial s } U ( t , s ) + U ( t , s ) A ( s ) = 0 , \operatorname { lim } _ { t \rightarrow s } U ( t , s ) x = x \text { for } x \in \overline { D ( A ( s ) ) }.$ ; confidence 0.722

184. w13008095.png ; $d S = \sum _ { 1 } ^ { M } T _ { n } d \widehat { \Omega } _ { n } = \sum _ { 1 } ^ { M } T _ { n } d \Omega _ { n } + \sum _ { 1 } ^ { g } \alpha _ { j } d \omega _ { j },$ ; confidence 0.722

185. e13007073.png ; $\sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } \ll$ ; confidence 0.722

186. j120020216.png ; $\alpha \leq \frac { 1 } { | I _ { j } | } \int _ { I _ { j } } | u ( \vartheta ) | d \vartheta < 2 \alpha,$ ; confidence 0.721

187. d13006015.png ; $\operatorname { Bel } ( A ) = \sum _ { B \subseteq A } m ( B )$ ; confidence 0.721

188. a1103204.png ; $y ( t _ { m } )$ ; confidence 0.721

189. m12003079.png ; $\{ ( \overset{\rightharpoonup} { x } _ { 1 } , y _ { 1 } ) , \dots , ( \overset{\rightharpoonup}{x} _ { n } , y _ { n } ) \}$ ; confidence 0.721

190. w120110250.png ; $q _ { \alpha } \in S ( H ^ { - 1 } , G )$ ; confidence 0.721

191. h12002014.png ; $\alpha_{ j} = \widehat { \phi } ( j )$ ; confidence 0.721

192. m1200401.png ; $\overset{\rightharpoonup} { F }$ ; confidence 0.721

193. a01139010.png ; $\delta$ ; confidence 0.721

194. c12007010.png ; $\operatorname { codom} \alpha _ { i } = \operatorname { dom } \alpha _ { i + 1 }$ ; confidence 0.721

195. e12007074.png ; $\mathbf{v} \equiv 1$ ; confidence 0.721

196. b12004092.png ; $f ^ { * } ( t ) = \operatorname { inf } \{ \lambda > 0 : \mu _ { f } ( \lambda ) \leq t \}$ ; confidence 0.721

197. t12013010.png ; $S _ { 2 } ^ { t }$ ; confidence 0.721

198. p07379048.png ; $B_{*}$ ; confidence 0.721

199. a12018046.png ; $n \geq N$ ; confidence 0.720

200. a12020083.png ; $\mathcal{X}$ ; confidence 0.720

201. f041060188.png ; $K_j$ ; confidence 0.720

202. a01018064.png ; $A _ { n }$ ; confidence 0.720

203. b11002027.png ; $b ( u_{ f } , v ) = ( f , v )$ ; confidence 0.720

204. q12001052.png ; $f _ { 1 } , \dots , f _ { n } \in \mathcal{D} _ { + }$ ; confidence 0.720

205. t120050120.png ; $K _ { x } = \operatorname { Ker } ( d f _ { x } )$ ; confidence 0.720

206. s13064016.png ; $E ( a ) = \operatorname { exp } \left( \sum _ { k = 1 } ^ { \infty } k [ \operatorname { log } a ] _ { k } [ \operatorname { log } a ]_{ - k} \right).$ ; confidence 0.720

207. q12002052.png ; $\operatorname {Fun}_q ( G ( k , n ) ) \rightarrow \mathbf C $ ; confidence 0.720

208. b12029040.png ; $\mathbf R ^ { n + 1 }$ ; confidence 0.720

209. b01595034.png ; $\chi ^ { 2 }$ ; confidence 0.720

210. f120150128.png ; $S \in B ( X , Y )$ ; confidence 0.720

211. a120270115.png ; $\mathbf Z [ G ]$ ; confidence 0.720

212. d0302807.png ; $V _ { n } ( f , x ) = \int _ { - \pi } ^ { \pi } f ( x + t ) \tau _ { n } ( t ) d t,$ ; confidence 0.719

213. c02211011.png ; $X ^ { 2 } \geq \chi _ { k - 1 } ^ { 2 } ( \alpha )$ ; confidence 0.719

214. a13032053.png ; $\alpha = \mathsf{P} _ { p } ( S _ { N } = K )$ ; confidence 0.719

215. c1302604.png ; $\mathcal{D} = \oplus _ { j = 0 } ^ { n } \mathcal{D} ^ { j }$ ; confidence 0.719

216. b12020057.png ; $\theta ( z ) = d + c z ( I - z A ) ^ { - 1 } b$ ; confidence 0.719

217. w12001021.png ; $= \frac { m ! n ! } { ( m + n + 1 ) ! } \frac { 1 } { 2 \pi i } \oint _ { z = 0 } a ^ { ( m + 1 ) } ( z ) b ^ { ( n ) } ( z ) d z.$ ; confidence 0.719

218. i12004098.png ; $K _ { q } ( s )$ ; confidence 0.719

219. c13006013.png ; $\{ A _ { 1 } , \dots , A _ { r } \}$ ; confidence 0.719

220. a1103004.png ; $C_{*} \Omega X$ ; confidence 0.719

221. e12024021.png ; $\operatorname { Fr}_l$ ; confidence 0.719

222. b12051051.png ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719

223. g1200408.png ; $C = C _ { f , K} > 0$ ; confidence 0.719

224. s13049048.png ; $r ( p _ { 0 } ) + r ( p _ { h } ) = r ( P )$ ; confidence 0.719

225. w1100604.png ; $( \Omega , \mathcal{B} , \mathsf{P} )$ ; confidence 0.719

226. e12008010.png ; $\mathcal{C} ^ { T }$ ; confidence 0.719

227. s120340113.png ; $t \in S ^ { 1 }$ ; confidence 0.719

228. v0960403.png ; $X = \sum _ { i = 1 } ^ { m } \Psi \left( \frac { s ( r_i ) } { m + n + 1 } \right),$ ; confidence 0.719

229. v13007017.png ; $\overset{\rightharpoonup} { n }$ ; confidence 0.719

230. b015350357.png ; $t \in T$ ; confidence 0.719

231. s13048044.png ; $\operatorname { dim} H _ { S } ^ { i } ( D ) < \infty$ ; confidence 0.719

232. b1106605.png ; $f \in L ^ { 1 _ {\operatorname{ loc }}} ( \mathbf{R} )$ ; confidence 0.719

233. m13022070.png ; $j ( z ) - 744 = \sum _ { k } a _ { k } q ^ { k }$ ; confidence 0.719

234. e12005036.png ; $\Sigma ^ { * }$ ; confidence 0.719

235. s13011014.png ; $\left\{ \begin{array} { l } { \partial _ { i } ^ { 2 } = 0, } \\ { \partial _ { i } \partial _ { j } = \partial _ { j } \partial _ { i } \text { if } | i - j | > 1, } \\ { \partial _ { i } \partial _ { i + 1 } \partial _ { i } = \partial _ { i + 1 } \partial _ { i } \partial _ { i + 1 }. } \end{array} \right.$ ; confidence 0.719

236. b1300307.png ; $x , y \in V ^ { \mp }$ ; confidence 0.719

237. f13009014.png ; $U _ { n } ( x )$ ; confidence 0.719

238. t130050158.png ; $\mathcal H = H ^ { 2 } ( S ^ { 3 } )$ ; confidence 0.719

239. h13003040.png ; $H = ( s _ { i + j - 1} )$ ; confidence 0.719

240. r13016040.png ; $\mathcal{C} ^ { m + 1 } \rightarrow \mathcal{C} ^ { m }$ ; confidence 0.719

241. i1300207.png ; $I _ { A } = 1$ ; confidence 0.718

242. b12036019.png ; $p _ { x } + d p _ { x }$ ; confidence 0.718

243. l12005034.png ; $= \left( \frac { 2 } { \pi } \right) ^ { 5 / 2 } \int _ { 0 } ^ { \infty } \operatorname { cosh } ( \pi \tau ) \operatorname { Re } K _ { 1 / 2 + i \tau} ( x ) F ( \tau ) G ( \tau ) d \tau .$ ; confidence 0.718

244. j13004074.png ; $a _ { E } ( z ) \neq 0$ ; confidence 0.718

245. q076330128.png ; $\mathcal{A} _ { 0 }$ ; confidence 0.718

246. c1202608.png ; $k = T / N$ ; confidence 0.718

247. j120020171.png ; $f \in H _ { 0 } ^ { p }$ ; confidence 0.718

248. d12006017.png ; $\sigma f - f _ { x } = \operatorname { lim } _ { \delta \rightarrow 0 } D ^ { \pm } f = \operatorname { lim } _ { \delta \rightarrow 0 } ( x - x q ) ^ { - 1 } D ^ { \pm } f.$ ; confidence 0.718

249. o11001044.png ; $x,y \in S ( z ) \Rightarrow S ( x ) \bigcap S ( y ) \neq \emptyset .$ ; confidence 0.718

250. c120180134.png ; $\mathcal{R}$ ; confidence 0.718

251. k12010022.png ; $\left( \begin{array} { c } { n_j } \\ { 2 } \end{array} \right)$ ; confidence 0.718

252. h13013016.png ; $| \lambda _ { \mathbf{k} } | \leq N$ ; confidence 0.718

253. f12004022.png ; $f ^ { c ( \varphi )}$ ; confidence 0.718

254. z13008019.png ; $n \in \mathbf{N} _ { 0 }$ ; confidence 0.718

255. s12024023.png ; $\operatorname { varprojlim}_{k} h_{ *} ( X _ { 1 } \vee \ldots \vee X _ { k } ) \approx \prod _ { 1 } ^ { \infty } h_{ *} ( X _ { i } ).$ ; confidence 0.718

256. a12013069.png ; $\theta ^ { * }$ ; confidence 0.718

257. b12027081.png ; $m \underline { \square } _ { n } ( h )$ ; confidence 0.718

258. a13032021.png ; $\mathsf{E} ( Y ) \neq 0$ ; confidence 0.718

259. i1200407.png ; $b _ { 0 } P = \{ ( \zeta _ { 1 } , \dots , \zeta _ { n } ) : | \zeta _ { j } - a _ { j } | = r _ { j } , j = 1 , \dots , n \}$ ; confidence 0.718

260. a12018076.png ; $S _ { n } = \sum _ { i = 0 } ^ { n } c _ { i } t ^ { i }$ ; confidence 0.718

261. s12034057.png ; $\omega ( A ) = \lambda c _ { 1 } ( A )$ ; confidence 0.717

262. e12014067.png ; $q \left( \begin{array} { l } { v } \\ { s } \end{array} \right) = r \left( \begin{array} { l } { v } \\ { t } \end{array} \right).$ ; confidence 0.717

263. e12002089.png ; $Y \rightarrow \Omega \Sigma Y$ ; confidence 0.717

264. f130290166.png ; $M ^ { Y }$ ; confidence 0.717

265. d031850241.png ; $\partial / \partial x$ ; confidence 0.717

266. q13003018.png ; $P _ { 0 } | 1 \rangle = | 0 \rangle$ ; confidence 0.717

267. a13032048.png ; $\sigma ^ { 2 } \mathsf{E} ( N ) = \mathsf{E} ( S _ { N } ^ { 2 } ).$ ; confidence 0.717

268. b12005074.png ; $\mathcal{H} ^ { \infty } ( B _ { \text{l}_p } )$ ; confidence 0.717

269. a12018082.png ; $- 1 < t \leq 1$ ; confidence 0.717

270. c120210146.png ; $\{ P _ { \alpha _ { n } , \theta _ { \tau _ { n } } } \}$ ; confidence 0.717

271. m1301303.png ; $\{ v _ { 1 } , \dots , v _ { \nu } \}$ ; confidence 0.717

272. m12025036.png ; $\operatorname { dim} K \leq n$ ; confidence 0.716

273. f120110137.png ; $\left( f _ { \Delta _ { k } } , e ^ { - i x \zeta } \right),$ ; confidence 0.716

274. i12005091.png ; $\operatorname { log } \alpha _ { n } = o ( \operatorname { log } n ) \text { as } n \rightarrow \infty$ ; confidence 0.716

275. a1301306.png ; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n },$ ; confidence 0.716

276. l05961011.png ; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } \left( \frac { \partial w _ { N } } { \partial \mathbf{r} _ { i } } \frac { d \mathbf{r} _ { i } } { d t } + \frac { \partial w _ { N } } { \partial \mathbf{p} _ { i } } \frac { d \mathbf{p} _ { i } } { d t } \right) = 0.$ ; confidence 0.716

277. d031790143.png ; $\mathbf{R} ^ { 2 n + 1 }$ ; confidence 0.716

278. v13011048.png ; $d \alpha_{ j } / d t$ ; confidence 0.716

279. l05700023.png ; $\lambda x y$ ; confidence 0.716

280. m12001056.png ; $\langle u - v , j \rangle$ ; confidence 0.716

281. t12013022.png ; $\frac { \partial \Psi _ { i } } { \partial x _ { n } } = ( L ^ { n _ { 1 } } ) _ { + } \Psi _ { i } , \frac { \partial \Psi _ { i } } { \partial y _ { n } } = ( L _ { 2 } ^ { n } ) _ { - } \Psi _ { i },$ ; confidence 0.716

282. a01417012.png ; $\overline{X}$ ; confidence 0.715

283. b12030029.png ; $f ( y ) = \frac { 1 } { ( 2 \pi ) ^ { N / 2 } } \int _ { \mathbf{R} ^ { N } } \widehat { f } ( \eta ) e ^ { i \eta . y } d \eta .$ ; confidence 0.715

284. a01160069.png ; $\mathbf{Q} ( \zeta )$ ; confidence 0.715

285. a12018032.png ; $S _ { n + i } = T _ { n } + \alpha \lambda ^ { n + i }$ ; confidence 0.715

286. n12011010.png ; $\exists x \in \mathbf R $ ; confidence 0.715

287. c12030063.png ; $M _ { n } ( \mathbf C )$ ; confidence 0.715

288. d13006090.png ; $m _ { B } ( B ) = 1$ ; confidence 0.715

289. a11042086.png ; $z \in G$ ; confidence 0.715

290. b120270102.png ; $b ( t ) = \mathsf{ E}h ( \{ Z ( t ) : T _ { 1 } > t \} )$ ; confidence 0.715

291. w12007070.png ; $\sigma ( \mathcal{D} , \mathcal{X} ) = ( a \mathcal{D} + b \mathcal{X} ) ^ { k }$ ; confidence 0.715

292. l1200502.png ; $\operatorname { Re } K _ { 1 / 2 + i \tau } ( x ) = \frac { K _ { 1 / 2 + i \tau } ( x ) + K _ { 1 / 2 - i \tau } ( x ) } { 2 }$ ; confidence 0.715

293. a01300078.png ; $\infty$ ; confidence 0.715

294. w13014013.png ; $g ( y ) = \left\{ \begin{array} { l l } { \frac { 1 } { \pi y } \operatorname { sin } 2 \pi y , } & { y \neq 0, } \\ { 2 , } & { y = 0, } \end{array} \right.$ ; confidence 0.715

295. s130620137.png ; $\phi ( . , \lambda ) + m_{ + } ( \lambda ) \theta ( . , \lambda )$ ; confidence 0.715

296. c13009015.png ; $C_{j}$ ; confidence 0.714

297. g1300109.png ; $\operatorname { GF} ( p )$ ; confidence 0.714

298. t12005099.png ; $i _ { 1 } = \ldots = i _ { r } = 1$ ; confidence 0.714

299. s12005051.png ; $X = P U | _ { \mathfrak{H} }$ ; confidence 0.714

300. v13008024.png ; $K _ { \zeta }$ ; confidence 0.714

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/45. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/45&oldid=44455