Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/41"
(AUTOMATIC EDIT of page 41 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
Rui Martins (talk | contribs) (→List) |
||
Line 2: | Line 2: | ||
1. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003066.png ; $x \in [ 0,1 ] \backslash E$ ; confidence 0.797 | 1. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003066.png ; $x \in [ 0,1 ] \backslash E$ ; confidence 0.797 | ||
− | 2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240535.png ; $ | + | 2. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240535.png ; $\operatorname{rank} (\mathbf{X} _ { 2 } ) = p$ ; confidence 0.797 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003040.png ; $B = ( C ^ { \infty } ( \Omega ) ) ^ { N }$ ; confidence 0.797 | + | 3. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003040.png ; $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$ ; confidence 0.797 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023079.png ; $u _ { t } + u u _ { | + | 4. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023079.png ; $u _ { t } + u u _ { x } = \mu u _ { xx }$ ; confidence 0.797 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015055.png ; $D _ { j k } ^ { i }$ ; confidence 0.797 | + | 5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015055.png ; $\mathcal{D} _ { j k \text{l} } ^ { i }$ ; confidence 0.797 |
6. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110203.png ; $G _ { X }$ ; confidence 0.797 | 6. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110203.png ; $G _ { X }$ ; confidence 0.797 | ||
Line 14: | Line 14: | ||
7. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010038.png ; $\operatorname { Tor } _ { 1 } ^ { B } ( T , - )$ ; confidence 0.797 | 7. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010038.png ; $\operatorname { Tor } _ { 1 } ^ { B } ( T , - )$ ; confidence 0.797 | ||
− | 8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015034.png ; $\operatorname { Cov } _ { P } ( d ^ { * } , d _ { 0 } ) = 0$ ; confidence 0.797 | + | 8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015034.png ; $\operatorname { Cov } _ { \mathsf{P} } ( d ^ { * } , d _ { 0 } ) = 0$ ; confidence 0.797 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027053.png ; $x _ { | + | 9. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027053.png ; $x _ { n_j } ^ { \prime } \rightarrow x$ ; confidence 0.796 |
10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200804.png ; $\varphi ( s ) = \operatorname { det } [ I _ { n } \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 )$ ; confidence 0.796 | 10. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200804.png ; $\varphi ( s ) = \operatorname { det } [ I _ { n } \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 )$ ; confidence 0.796 | ||
− | 11. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003011.png ; $f ( t , . ) : G \rightarrow R ^ { m }$ ; confidence 0.796 | + | 11. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003011.png ; $f ( t , . ) : G \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.796 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110137.png ; $\frac { D v } { D t } = \frac { \partial v } { \partial t } + \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } v ) \times v$ ; confidence 0.796 | + | 12. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110137.png ; $\frac { D \mathbf{v} } { D t } = \frac { \partial \mathbf{v} } { \partial t } + \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } \mathbf{v} ) \times \mathbf{v}.$ ; confidence 0.796 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013092.png ; $H | + | 13. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013092.png ; $\operatorname{End}_{\mathcal{H}} T $ ; confidence 0.796 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015081.png ; $Ad ^ { * } : G \rightarrow GL ( g ^ { * } )$ ; confidence 0.796 | + | 14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015081.png ; $\operatorname{Ad} ^ { * } : G \rightarrow \operatorname{GL} ( \mathfrak{g} ^ { * } )$ ; confidence 0.796 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027070.png ; $B \otimes K ( H )$ ; confidence 0.796 | + | 15. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027070.png ; $B \otimes \mathcal{K} ( \mathcal{H} )$ ; confidence 0.796 |
16. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796 | 16. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300307.png ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796 | ||
Line 34: | Line 34: | ||
17. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016014.png ; $E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.796 | 17. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016014.png ; $E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.796 | ||
− | 18. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110590/a1105909.png ; $n \in N$ ; confidence 0.796 | + | 18. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110590/a1105909.png ; $n \in \mathbf N$ ; confidence 0.796 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001037.png ; $x ( n ) = \frac { 1 } { 2 \pi i } \oint _ { c } x ( z ) z ^ { n - 1 } d z$ ; confidence 0.796 | + | 19. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001037.png ; $x ( n ) = \frac { 1 } { 2 \pi i } \oint _ { c } \widetilde{x} ( z ) z ^ { n - 1 } d z$ ; confidence 0.796 |
20. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051070/i05107026.png ; $\alpha _ { N }$ ; confidence 0.796 | 20. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051070/i05107026.png ; $\alpha _ { N }$ ; confidence 0.796 | ||
− | 21. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030109.png ; $\tau _ { \varepsilon } ( x ) = \frac { \varepsilon } { \pi } ( x ^ { 2 } + \varepsilon ^ { 2 } ) ^ { - 1 }$ ; confidence 0.795 | + | 21. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030109.png ; $\tau _ { \varepsilon } ( x ) = \frac { \varepsilon } { \pi } ( x ^ { 2 } + \varepsilon ^ { 2 } ) ^ { - 1 }.$ ; confidence 0.795 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010048.png ; $\phi ^ { 2 } = id$ ; confidence 0.795 | + | 22. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010048.png ; $\phi ^ { 2 } = \operatorname{id}$ ; confidence 0.795 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004050.png ; $C \ni \xi ^ { 0 }$ ; confidence 0.795 | + | 23. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004050.png ; $\mathcal{C} \ni \xi ^ { 0 }$ ; confidence 0.795 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011035.png ; $P \subset A ( X ) = \{ \varphi \in \operatorname { Aut } ( X ) : x _ { \alpha } \varphi \succeq x _ { \alpha } \}$ ; confidence 0.795 | + | 24. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011035.png ; $P \subset A ( X ) = \{ \varphi \in \operatorname { Aut } ( X ) : x _ { \alpha } \varphi \succeq x _ { \alpha } \}.$ ; confidence 0.795 |
25. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053070.png ; $2 ^ { r }$ ; confidence 0.795 | 25. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053070.png ; $2 ^ { r }$ ; confidence 0.795 | ||
Line 52: | Line 52: | ||
26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060127.png ; $[ 0 , Z + ( \text { const } ) K ]$ ; confidence 0.795 | 26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060127.png ; $[ 0 , Z + ( \text { const } ) K ]$ ; confidence 0.795 | ||
− | 27. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025051.png ; $[ Q _ { | + | 27. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025051.png ; $[ Q _ { n } ] ^ { - 1 }$ ; confidence 0.795 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070113.png ; $\alpha \in R$ ; confidence 0.795 | + | 28. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070113.png ; $\alpha \in \mathbf{R}$ ; confidence 0.795 |
29. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016043.png ; $\pi _ { k } ( T )$ ; confidence 0.795 | 29. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016043.png ; $\pi _ { k } ( T )$ ; confidence 0.795 | ||
− | 30. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005083.png ; $h : T \rightarrow C$ ; confidence 0.795 | + | 30. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005083.png ; $h : \mathbf{T} \rightarrow \mathbf{C}$ ; confidence 0.795 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002035.png ; $P ( \theta , \mu )$ ; confidence 0.795 | + | 31. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002035.png ; $\mathsf{P} ( \theta , \mu )$ ; confidence 0.795 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001034.png ; $I ( v , w )$ ; confidence 0.795 | + | 32. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001034.png ; $\mathcal{I}_{ ( v , w )}$ ; confidence 0.795 |
33. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013021.png ; $x$ ; confidence 0.795 | 33. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013021.png ; $x$ ; confidence 0.795 | ||
− | 34. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240414.png ; $f ( Z _ { 1 } )$ ; confidence 0.795 | + | 34. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240414.png ; $f ( \mathbf{Z} _ { 1 } )$ ; confidence 0.795 |
35. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180439.png ; $k = - 1 + n / 2$ ; confidence 0.795 | 35. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180439.png ; $k = - 1 + n / 2$ ; confidence 0.795 | ||
− | 36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013023.png ; $\| f \| _ { p | + | 36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013023.png ; $\| f \| _ { p , G}$ ; confidence 0.795 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007065.png ; $u ( x , | + | 37. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007065.png ; $u ( x , y_{0} , k )$ ; confidence 0.795 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150129.png ; $d ^ { * } : \Omega \rightarrow R$ ; confidence 0.795 | + | 38. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150129.png ; $d ^ { * } : \Omega \rightarrow \mathbf{R}$ ; confidence 0.795 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080217.png ; $T _ { n + \alpha } = \frac { 1 } { 2 \pi i } \oint _ { A _ { \alpha } } p d W , T _ { g + n + \alpha } = \oint _ { B _ { \alpha } } d p$ ; confidence 0.795 | + | 39. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080217.png ; $T _ { n + \alpha } = \frac { 1 } { 2 \pi i } \oint _ { A _ { \alpha } } p d W , T _ { g + n + \alpha } = \oint _ { B _ { \alpha } } d p,$ ; confidence 0.795 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005093.png ; $ | + | 40. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005093.png ; $H_{\text{new}}$ ; confidence 0.794 |
41. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020012.png ; $D ^ { k + 1 } \times D ^ { m - k }$ ; confidence 0.794 | 41. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020012.png ; $D ^ { k + 1 } \times D ^ { m - k }$ ; confidence 0.794 | ||
− | 42. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840103.png ; $L = \{ x _ { + } + K _ { L } x _ { + } : x _ { + } \in K _ { + } \}$ ; confidence 0.794 | + | 42. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840103.png ; $\mathcal{L} = \{ x _ { + } + K _ { \mathcal{L} } x _ { + } : x _ { + } \in \mathcal{K} _ { + } \}$ ; confidence 0.794 |
43. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157109.png ; $q \geq 1$ ; confidence 0.794 | 43. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b0157109.png ; $q \geq 1$ ; confidence 0.794 | ||
Line 88: | Line 88: | ||
44. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663071.png ; $f ^ { ( s ) }$ ; confidence 0.794 | 44. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663071.png ; $f ^ { ( s ) }$ ; confidence 0.794 | ||
− | 45. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950147.png ; $ | + | 45. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950147.png ; $\tau_i$ ; confidence 0.794 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021012.png ; $ | + | 46. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021012.png ; $\mathfrak n$ ; confidence 0.794 |
47. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007059.png ; $\sigma _ { 1 } = 1.17628 \ldots$ ; confidence 0.794 | 47. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007059.png ; $\sigma _ { 1 } = 1.17628 \ldots$ ; confidence 0.794 | ||
− | 48. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003046.png ; $DB _ { 1 }$ ; confidence 0.794 | + | 48. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003046.png ; $\operatorname{DB} _ { 1 }$ ; confidence 0.794 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004080.png ; $\Delta t | + | 49. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004080.png ; $\Delta t / 2$ ; confidence 0.794 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012010.png ; $b _ { | + | 50. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012010.png ; $b _ {ij }$ ; confidence 0.794 |
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007070.png ; $1 \leq m < n$ ; confidence 0.794 | 51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007070.png ; $1 \leq m < n$ ; confidence 0.794 | ||
− | 52. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019035.png ; $R = L L$ ; confidence 0.794 | + | 52. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019035.png ; $\mathcal{R} = \mathcal{L}. \mathcal{L}$ ; confidence 0.794 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090260.png ; $ | + | 53. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090260.png ; $\mathbf{l} = | \Sigma |$ ; confidence 0.794 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006042.png ; $\mu _ { k + 1 } \leq \frac { 4 \pi k } { A } , k = 0,1 , \ldots$ ; confidence 0.794 | + | 54. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006042.png ; $\mu _ { k + 1 } \leq \frac { 4 \pi k } { A } , k = 0,1 , \ldots ,$ ; confidence 0.794 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022099.png ; $f ( t _ { n } , x , \xi ) = M ( u ^ { n } ( x ) , \xi )$ ; confidence 0.794 | + | 55. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022099.png ; $f ( t _ { n } , x , \xi ) = M ( u ^ { n } ( x ) , \xi ).$ ; confidence 0.794 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004026.png ; $J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$ ; confidence 0.794 | + | 56. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004026.png ; $J _ { f } ( x ) \leq K \text{l} ( f ^ { \prime } ( x ) ) ^ { n },$ ; confidence 0.794 |
57. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794 | 57. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794 | ||
− | 58. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080164.png ; $Y ( \gamma ) = \psi ( z _ { 0 } , z _ { 0 } ) | _ { \gamma } = P \operatorname { exp } ( \oint _ { \gamma } A )$ ; confidence 0.794 | + | 58. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080164.png ; $\mathcal{Y} ( \gamma ) = \psi ( z _ { 0 } , \overline{z} _ { 0 } ) | _ { \gamma } = P \operatorname { exp } ( \oint _ { \gamma } \mathcal{A} )$ ; confidence 0.794 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p1201509.png ; $g x$ ; confidence 0.794 | + | 59. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p1201509.png ; $g.x$ ; confidence 0.794 |
60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230134.png ; $X = ( X _ { 1 } , \dots , X _ { r } )$ ; confidence 0.794 | 60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230134.png ; $X = ( X _ { 1 } , \dots , X _ { r } )$ ; confidence 0.794 | ||
− | 61. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030091.png ; $( H ) < \infty$ ; confidence 0.794 | + | 61. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030091.png ; $\dim ( \mathcal{H} ) < \infty$ ; confidence 0.794 |
− | 62. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012024.png ; $U F : U C \rightarrow U C ^ { \prime }$ ; confidence 0.794 | + | 62. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012024.png ; $U F : U \mathcal C \rightarrow U \mathcal C ^ { \prime }$ ; confidence 0.794 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350254.png ; $t = | + | 63. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350254.png ; $t = s$ ; confidence 0.794 |
64. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032014.png ; $T = 0$ ; confidence 0.794 | 64. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032014.png ; $T = 0$ ; confidence 0.794 | ||
Line 130: | Line 130: | ||
65. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003052.png ; $x \in V ^ { \pm }$ ; confidence 0.794 | 65. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003052.png ; $x \in V ^ { \pm }$ ; confidence 0.794 | ||
− | 66. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090406.png ; $ | + | 66. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090406.png ; $d_{ \lambda \mu }$ ; confidence 0.794 |
67. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020226.png ; $\Phi x = x - F x$ ; confidence 0.793 | 67. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020226.png ; $\Phi x = x - F x$ ; confidence 0.793 | ||
Line 136: | Line 136: | ||
68. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702045.png ; $F = ( F _ { n } )$ ; confidence 0.793 | 68. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702045.png ; $F = ( F _ { n } )$ ; confidence 0.793 | ||
− | 69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302809.png ; $| a _ { n } + 1 - b _ { n | + | 69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302809.png ; $| a _ { n } + 1 - b _ { n + 1} | < \frac { 1 } { 2 } | a _ { n } - b _ { n } |.$ ; confidence 0.793 |
70. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110130.png ; $\operatorname { Im } \zeta ^ { 2 } = \pm \pi$ ; confidence 0.793 | 70. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110130.png ; $\operatorname { Im } \zeta ^ { 2 } = \pm \pi$ ; confidence 0.793 | ||
− | 71. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660132.png ; $ | + | 71. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011660/a011660132.png ; $\leq$ ; confidence 0.793 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032065.png ; $= F ( s , t ) \| \frac { r } { F ( s , t ) } x + z \| =$ ; confidence 0.793 | + | 72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032065.png ; $= F ( s , t ) \left\| \frac { r } { F ( s , t ) } x + z \right\| =$ ; confidence 0.793 |
73. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110143.png ; $a \neq 1 / 2$ ; confidence 0.793 | 73. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110143.png ; $a \neq 1 / 2$ ; confidence 0.793 | ||
− | 74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240474.png ; $X _ { 1 }$ ; confidence 0.793 | + | 74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240474.png ; $\mathbf{X} _ { 1 }$ ; confidence 0.793 |
75. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004031.png ; $P _ { 4 _ { 1 } } = v ^ { - 2 } - 1 + v ^ { 2 } - z ^ { 2 }$ ; confidence 0.793 | 75. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004031.png ; $P _ { 4 _ { 1 } } = v ^ { - 2 } - 1 + v ^ { 2 } - z ^ { 2 }$ ; confidence 0.793 | ||
Line 152: | Line 152: | ||
76. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019023.png ; $C _ { S } ( t )$ ; confidence 0.793 | 76. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019023.png ; $C _ { S } ( t )$ ; confidence 0.793 | ||
− | 77. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011800/a011800100.png ; $NP$ ; confidence 0.793 | + | 77. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011800/a011800100.png ; $\operatorname{NP}$ ; confidence 0.793 |
− | 78. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021970/c02197031.png ; $C [ 0,1$ ; confidence 0.793 | + | 78. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021970/c02197031.png ; $C [ 0,1]$ ; confidence 0.793 |
79. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070146.png ; $\int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) = G ( t )$ ; confidence 0.793 | 79. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070146.png ; $\int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) = G ( t )$ ; confidence 0.793 | ||
− | 80. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015042.png ; $X \in | + | 80. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015042.png ; $X \in \mathfrak g $ ; confidence 0.793 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793 | + | 81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240238.png ; $\operatorname{MS} _ { e } = \operatorname{SS} _ { e } / ( n - r )$ ; confidence 0.793 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007063.png ; $g = 0 \Rightarrow | + | 82. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007063.png ; $g = 0 \Rightarrow C$ ; confidence 0.793 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016068.png ; $[ 2 ^ { O ( s ( n ) ) } ]$ ; confidence 0.793 | + | 83. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016068.png ; $\operatorname{DTIME}[ 2 ^ { O ( s ( n ) ) } ]$ ; confidence 0.793 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004073.png ; $V _ { | + | 84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004073.png ; $V _ { n } \subset U _ { n }$ ; confidence 0.793 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240310.png ; $\ | + | 85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240310.png ; $\eta_{ij}$ ; confidence 0.793 |
86. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027053.png ; $K _ { 1 } ( X )$ ; confidence 0.793 | 86. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027053.png ; $K _ { 1 } ( X )$ ; confidence 0.793 | ||
Line 174: | Line 174: | ||
87. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090108.png ; $\lambda _ { p } ( K / k ) \geq 0$ ; confidence 0.793 | 87. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090108.png ; $\lambda _ { p } ( K / k ) \geq 0$ ; confidence 0.793 | ||
− | 88. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003074.png ; $\Pi ( | + | 88. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003074.png ; $\Pi ( a ) = 2 \operatorname { arc} \operatorname{tan } e ^ { - a }$ ; confidence 0.793 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009067.png ; $\Theta ( f _ { 0 } , f _ { 1 } , \ldots ) = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } )$ ; confidence 0.793 | + | 89. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009067.png ; $\Theta ( f _ { 0 } , f _ { 1 } , \ldots ) = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } ).$ ; confidence 0.793 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034039.png ; $W _ { k } ( M ) = R K / C _ { k + 1 }$ ; confidence 0.793 | + | 90. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034039.png ; $W _ { k } ( M ) = R \mathcal{K} / C _ { k + 1 }.$ ; confidence 0.793 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840375.png ; $K = L _ { 2 , r }$ ; confidence 0.792 | + | 91. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840375.png ; $\mathcal{K} = L _ { 2 , r }$ ; confidence 0.792 |
92. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019042.png ; $( N / L , [ L ] )$ ; confidence 0.792 | 92. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019042.png ; $( N / L , [ L ] )$ ; confidence 0.792 | ||
Line 188: | Line 188: | ||
94. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005050.png ; $\varphi _ { + } = \varphi _ { - } - 2 i K ^ { * } x$ ; confidence 0.792 | 94. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005050.png ; $\varphi _ { + } = \varphi _ { - } - 2 i K ^ { * } x$ ; confidence 0.792 | ||
− | 95. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010020.png ; $z \in \ | + | 95. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010020.png ; $z \in \widehat { K } \leftrightarrow m _ { z },$ ; confidence 0.792 |
96. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020102.png ; $y _ { 0 } \in G ( y _ { 0 } )$ ; confidence 0.792 | 96. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020102.png ; $y _ { 0 } \in G ( y _ { 0 } )$ ; confidence 0.792 | ||
− | 97. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120100.png ; $B _ { 1,1 } ^ { 1 } \subset A ^ { * } \subset B _ { 2,1 } ^ { 1 / 2 }$ ; confidence 0.792 | + | 97. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120100.png ; $B _ { 1,1 } ^ { 1 } \subset \mathcal{A} ^ { * } \subset B _ { 2,1 } ^ { 1 / 2 }$ ; confidence 0.792 |
− | 98. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014016.png ; $CS$ ; confidence 0.792 | + | 98. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120140/c12014016.png ; $\operatorname{CS}$ ; confidence 0.792 |
99. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583072.png ; $i A _ { 0 }$ ; confidence 0.792 | 99. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583072.png ; $i A _ { 0 }$ ; confidence 0.792 | ||
− | 100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043066.png ; $S _ { y } = - y$ ; confidence 0.792 | + | 100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043066.png ; $S _ { y } = - y,$ ; confidence 0.792 |
101. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430138.png ; $Y _ { 1 }$ ; confidence 0.792 | 101. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430138.png ; $Y _ { 1 }$ ; confidence 0.792 | ||
Line 206: | Line 206: | ||
103. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010085.png ; $L _ { 1,3 } = L _ { 1,3 } ^ { c }$ ; confidence 0.791 | 103. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010085.png ; $L _ { 1,3 } = L _ { 1,3 } ^ { c }$ ; confidence 0.791 | ||
− | 104. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301306.png ; $k = ( k _ { 1 } , \dots , k _ { n } )$ ; confidence 0.791 | + | 104. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130130/h1301306.png ; $\mathbf{k} = ( k _ { 1 } , \dots , k _ { n } )$ ; confidence 0.791 |
105. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050110.png ; $| h ( a ) - h ( x ) | / | h ( b ) - h ( x ) | \leq \eta ( \rho )$ ; confidence 0.791 | 105. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050110.png ; $| h ( a ) - h ( x ) | / | h ( b ) - h ( x ) | \leq \eta ( \rho )$ ; confidence 0.791 | ||
Line 212: | Line 212: | ||
106. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009032.png ; $\langle G , t : t ^ { - 1 } A t = B , \mu \rangle$ ; confidence 0.791 | 106. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009032.png ; $\langle G , t : t ^ { - 1 } A t = B , \mu \rangle$ ; confidence 0.791 | ||
− | 107. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011021.png ; $\Xi ( t ) : = \xi ( \frac { 1 } { 2 } + i t )$ ; confidence 0.791 | + | 107. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011021.png ; $\Xi ( t ) : = \xi \left( \frac { 1 } { 2 } + i t \right).$ ; confidence 0.791 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k1201305.png ; $Q _ { 2 | + | 108. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k1201305.png ; $Q _ { 2 ^{ i - 1} ( n + 1 ) - 1 }$ ; confidence 0.791 |
− | 109. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013050.png ; $\lambda \in SP ( n )$ ; confidence 0.791 | + | 109. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013050.png ; $\lambda \in \operatorname{SP} ( n )$ ; confidence 0.791 |
110. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020038.png ; $[ h _ { i j } f _ { k } ] = - \delta _ { i j } a _ { i k } f _ { k }$ ; confidence 0.791 | 110. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020038.png ; $[ h _ { i j } f _ { k } ] = - \delta _ { i j } a _ { i k } f _ { k }$ ; confidence 0.791 | ||
− | 111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230134.png ; $\frac { ( - 1 ) ^ { k - 1 } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma L ( K ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( k + 2 ) } , \ldots ) +$ ; confidence 0.791 | + | 111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230134.png ; $+ \frac { ( - 1 ) ^ { k - 1 } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma L ( K ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( k + 2 ) } , \ldots ) +$ ; confidence 0.791 |
112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017042.png ; $\phi ( . , . )$ ; confidence 0.791 | 112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017042.png ; $\phi ( . , . )$ ; confidence 0.791 | ||
Line 226: | Line 226: | ||
113. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004086.png ; $\operatorname { lim } _ { r \rightarrow 0 } \mu ( B ( x , r ) ) / r ^ { m }$ ; confidence 0.791 | 113. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004086.png ; $\operatorname { lim } _ { r \rightarrow 0 } \mu ( B ( x , r ) ) / r ^ { m }$ ; confidence 0.791 | ||
− | 114. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png ; $\ | + | 114. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h1200207.png ; $\widehat { \phi } ( j ) = \alpha_j$ ; confidence 0.791 |
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027033.png ; $\{ \phi _ { n } \} \subset X$ ; confidence 0.791 | 115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027033.png ; $\{ \phi _ { n } \} \subset X$ ; confidence 0.791 | ||
Line 232: | Line 232: | ||
116. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033760/d03376067.png ; $D ^ { + }$ ; confidence 0.791 | 116. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033760/d03376067.png ; $D ^ { + }$ ; confidence 0.791 | ||
− | 117. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006088.png ; $g ( t ) : = - \frac { 2 } { \pi } \int _ { 0 } ^ { \infty } \delta ( k ) \operatorname { sin } ( k t ) d k$ ; confidence 0.791 | + | 117. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006088.png ; $g ( t ) : = - \frac { 2 } { \pi } \int _ { 0 } ^ { \infty } \delta ( k ) \operatorname { sin } ( k t ) d k,$ ; confidence 0.791 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018045.png ; $ | + | 118. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018045.png ; $\otimes ^ { 2 } \mathcal{E}$ ; confidence 0.791 |
119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017023.png ; $\lambda ^ { * }$ ; confidence 0.791 | 119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017023.png ; $\lambda ^ { * }$ ; confidence 0.791 | ||
− | 120. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044015.png ; $\ | + | 120. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044015.png ; $\pi_{ *} ( D X \wedge Y ) \simeq [ X , Y ]_* $ ; confidence 0.791 |
121. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090227.png ; $w \in \Omega$ ; confidence 0.791 | 121. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090227.png ; $w \in \Omega$ ; confidence 0.791 | ||
− | 122. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015010.png ; $\varphi _ { \varepsilon , x } ( y ) = \varepsilon ^ { - n } \varphi ( \frac { y - x } { \varepsilon } )$ ; confidence 0.791 | + | 122. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015010.png ; $\varphi _ { \varepsilon , x } ( y ) = \varepsilon ^ { - n } \varphi \left( \frac { y - x } { \varepsilon } \right).$ ; confidence 0.791 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420166.png ; $\Psi _ { | + | 123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420166.png ; $\Psi _ { ( V , \lambda ) , ( W , \mu ) } = \lambda _ { W }$ ; confidence 0.791 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032500/d03250046.png ; $ | + | 124. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032500/d03250046.png ; $\leq \epsilon$ ; confidence 0.790 |
125. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045030.png ; $F _ { X } ( X )$ ; confidence 0.790 | 125. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045030.png ; $F _ { X } ( X )$ ; confidence 0.790 | ||
− | 126. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232705.png ; $A \ | + | 126. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232705.png ; $A \subseteq \overline{A}$ ; confidence 0.790 |
− | 127. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180145.png ; $\theta \otimes \theta \in S ^ { 2 } E$ ; confidence 0.790 | + | 127. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180145.png ; $\theta \otimes \theta \in \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.790 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031094.png ; $\ | + | 128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031094.png ; $\operatorname{Dist} \mathcal{NP}$ ; confidence 0.790 |
129. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003021.png ; $\underline { \beta } ^ { ( 1 ) } , \ldots , \underline { \beta } ^ { ( n ) }$ ; confidence 0.790 | 129. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003021.png ; $\underline { \beta } ^ { ( 1 ) } , \ldots , \underline { \beta } ^ { ( n ) }$ ; confidence 0.790 | ||
− | 130. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100100.png ; $\sum | e | ^ { \gamma } = \gamma \int _ { 0 } ^ { \infty } N _ { E } ( V ) E ^ { \gamma - 1 } d E$ ; confidence 0.790 | + | 130. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100100.png ; $\sum | e | ^ { \gamma } = \gamma \int _ { 0 } ^ { \infty } N _ { E } ( V ) E ^ { \gamma - 1 } d E.$ ; confidence 0.790 |
131. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070196.png ; $\mathfrak { R } ( C , P )$ ; confidence 0.790 | 131. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070196.png ; $\mathfrak { R } ( C , P )$ ; confidence 0.790 | ||
− | 132. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009068.png ; $\mu ^ { * } f ( z ) = \mu ( \zeta \mapsto f ( z + \zeta ) )$ ; confidence 0.790 | + | 132. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009068.png ; $\mu ^ { * } f ( z ) = \mu ( \zeta \mapsto f ( z + \zeta ) ).$ ; confidence 0.790 |
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240453.png ; $q = 1$ ; confidence 0.790 | 133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240453.png ; $q = 1$ ; confidence 0.790 | ||
Line 276: | Line 276: | ||
138. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180142.png ; $\tau _ { 2 } g = g$ ; confidence 0.790 | 138. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180142.png ; $\tau _ { 2 } g = g$ ; confidence 0.790 | ||
− | 139. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201018.png ; $E _ { n | + | 139. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032010/d03201018.png ; $E _ { n + 1}$ ; confidence 0.790 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240155.png ; $c ^ { \prime } \beta$ ; confidence 0.790 | + | 140. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240155.png ; $\mathbf{c} ^ { \prime } \beta$ ; confidence 0.790 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510150.png ; $D = \{ u \in V : \sigma ( u ) = \infty ( K ) , 0 \notin K \} , N = \{ u \in V : 0 < \sigma ( u ) < \infty \} | + | 141. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510150.png ; $\mathcal{D} = \{ \mathbf{u} \in V : \sigma ( \mathbf{u} ) = \infty ( K ) , 0 \notin K \} , \mathcal{N} = \{ \mathbf{u} \in V : 0 < \sigma ( \mathbf{u} ) < \infty \} \bigcup$ ; confidence 0.790 |
142. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001039.png ; $\operatorname { Tr } _ { E / F } ( z ) = z + z ^ { q } + \ldots + z ^ { q ^ { n - 1 } }$ ; confidence 0.790 | 142. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001039.png ; $\operatorname { Tr } _ { E / F } ( z ) = z + z ^ { q } + \ldots + z ^ { q ^ { n - 1 } }$ ; confidence 0.790 | ||
− | 143. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201606.png ; $L _ { i } \leq \sum u _ { i } ( t ) \leq U _ { i }$ ; confidence 0.789 | + | 143. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a1201606.png ; $L _ { i } \leq \sum u _ { i } ( t ) \leq U _ { i } \text{(regional constraint)},$ ; confidence 0.789 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110180.png ; $m - 1$ ; confidence 0.789 | + | 144. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110180.png ; $a_{m - 1}$ ; confidence 0.789 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009020.png ; $( E ^ { \otimes | + | 145. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009020.png ; $\operatorname{End}_{K}( E ^ { \otimes r } )$ ; confidence 0.789 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020087.png ; $[ \mathfrak { g } ^ { \alpha } , \mathfrak { g } ^ { \beta } ] \subset \mathfrak { g } ^ { \alpha | + | 146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020087.png ; $[ \mathfrak { g } ^ { \alpha } , \mathfrak { g } ^ { \beta } ] \subset \mathfrak { g } ^ { \alpha + \beta}$ ; confidence 0.789 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024070.png ; $\overline { t } _ { 0 } : = \operatorname { inf } _ { t \geq t _ { 0 } } [ t - h ( t ) ] > - \infty$ ; confidence 0.789 | + | 147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024070.png ; $\overline { t } _ { 0 } : = \operatorname { inf } _ { t \geq t _ { 0 } } [ t - h ( t ) ] > - \infty.$ ; confidence 0.789 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024053.png ; $\ | + | 148. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024053.png ; $\varepsilon_i$ ; confidence 0.789 |
− | 149. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006068.png ; $\{ \lambda > 0 : \sum _ { | \alpha | = k - 1 } \int _ { \partial \Omega \times \partial \Omega } \Phi ( \frac { \ | + | 149. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006068.png ; $\left\{ \lambda > 0 : \sum _ { | \alpha | = k - 1 } \int _ { \partial \Omega \times \partial \Omega } \Phi \left( \frac { \Delta_{ y - x} F ( x ) } { | y - x | } \right) \eta ( x , y ) \leq 1 \right\},$ ; confidence 0.789 |
150. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007050.png ; $\forall \alpha \in S ^ { 2 }$ ; confidence 0.789 | 150. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007050.png ; $\forall \alpha \in S ^ { 2 }$ ; confidence 0.789 | ||
− | 151. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005052.png ; $\sigma _ { T } ( A , X )$ ; confidence 0.789 | + | 151. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005052.png ; $\sigma _ { \text{T} } ( A , \mathcal X )$ ; confidence 0.789 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001059.png ; $f \in Q [ x ]$ ; confidence 0.789 | + | 152. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001059.png ; $f \in \mathbf Q [ x ]$ ; confidence 0.789 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120115.png ; $p \in T$ ; confidence 0.789 | + | 153. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120115.png ; $\operatorname{p} \in T$ ; confidence 0.789 |
154. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020242.png ; $g ( \overline { u } _ { 1 } ) < v _ { M } = \overline { q }$ ; confidence 0.789 | 154. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020242.png ; $g ( \overline { u } _ { 1 } ) < v _ { M } = \overline { q }$ ; confidence 0.789 | ||
− | 155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003020.png ; $ | + | 155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003020.png ; $I \times G$ ; confidence 0.789 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510115.png ; $ | + | 156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510115.png ; $\operatorname{l} = \infty ( L )$ ; confidence 0.789 |
157. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001041.png ; $x \neq e$ ; confidence 0.789 | 157. https://www.encyclopediaofmath.org/legacyimages/o/o110/o110010/o11001041.png ; $x \neq e$ ; confidence 0.789 | ||
Line 316: | Line 316: | ||
158. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a01182064.png ; $\phi _ { i }$ ; confidence 0.789 | 158. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a01182064.png ; $\phi _ { i }$ ; confidence 0.789 | ||
− | 159. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013050.png ; $\tau _ { | + | 159. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013050.png ; $\tau _ { n } ( x - [ z ] , y )$ ; confidence 0.788 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024028.png ; $f$ ; confidence 0.788 | + | 160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024028.png ; $\operatorname{det} f$ ; confidence 0.788 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a1202505.png ; $PG ( 2 , q )$ ; confidence 0.788 | + | 161. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a1202505.png ; $\operatorname{PG} ( 2 , q )$ ; confidence 0.788 |
162. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n0666305.png ; $r = ( r _ { 1 } , \dots , r _ { n } )$ ; confidence 0.788 | 162. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n0666305.png ; $r = ( r _ { 1 } , \dots , r _ { n } )$ ; confidence 0.788 | ||
Line 326: | Line 326: | ||
163. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230134.png ; $( ( K _ { X ^ { \prime } } + B ^ { \prime } ) . C ) \geq 0$ ; confidence 0.788 | 163. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230134.png ; $( ( K _ { X ^ { \prime } } + B ^ { \prime } ) . C ) \geq 0$ ; confidence 0.788 | ||
− | 164. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000209.png ; $\rho = [ [ N ] ] _ { \rho }$ ; confidence 0.788 | + | 164. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000209.png ; $[[M]]_{\rho} = [ [ N ] ] _ { \rho }$ ; confidence 0.788 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018013.png ; $\times \operatorname { exp } \{ \gamma - u \xi ( u ) + \int _ { 0 } ^ { \xi ( | + | 165. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018013.png ; $\times \operatorname { exp } \left\{ \gamma - u \xi ( u ) + \int _ { 0 } ^ { \xi ( u ) } \frac { e ^ { s } - 1 } { s } d s \right\} \quad ( u > 1 ),$ ; confidence 0.788 |
166. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002084.png ; $s _ { j } ( T )$ ; confidence 0.788 | 166. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002084.png ; $s _ { j } ( T )$ ; confidence 0.788 | ||
− | 167. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005045.png ; $P \subset M ^ { | + | 167. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005045.png ; $P \subset M ^ { n }$ ; confidence 0.788 |
168. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232028.png ; $S _ { n } ( x _ { 0 } , \rho )$ ; confidence 0.788 | 168. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232028.png ; $S _ { n } ( x _ { 0 } , \rho )$ ; confidence 0.788 | ||
− | 169. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025038.png ; $g : K \rightarrow U ^ { \prime }$ ; confidence 0.788 | + | 169. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025038.png ; $g : K \rightarrow U ^ { \prime \prime }$ ; confidence 0.788 |
− | 170. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008053.png ; $\frac { 1 } { 2 L } \int _ { - L } ^ { L } \phi d t _ { i } = \langle \phi \rangle = ( \frac { 1 } { 2 \pi } ) ^ { 2 g } \int \ldots \int \phi d ^ { 2 g } \theta$ ; confidence 0.788 | + | 170. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008053.png ; $\frac { 1 } { 2 L } \int _ { - L } ^ { L } \phi d t _ { i } = \langle \phi \rangle = \left( \frac { 1 } { 2 \pi } \right) ^ { 2 g } \int \ldots \int \phi d ^ { 2 g } \theta .$ ; confidence 0.788 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340103.png ; $( x , u \ | + | 171. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340103.png ; $( x , u \sharp v )$ ; confidence 0.788 |
172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042041.png ; $\Psi$ ; confidence 0.788 | 172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042041.png ; $\Psi$ ; confidence 0.788 | ||
Line 348: | Line 348: | ||
174. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003036.png ; $\overline { \cup _ { \alpha < \beta } P _ { \alpha } ( X ) } = P _ { \beta } ( X )$ ; confidence 0.787 | 174. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003036.png ; $\overline { \cup _ { \alpha < \beta } P _ { \alpha } ( X ) } = P _ { \beta } ( X )$ ; confidence 0.787 | ||
− | 175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027018.png ; $T _ { | + | 175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027018.png ; $T _ { x } = f , \quad x \in X , f \in Y.$ ; confidence 0.787 |
176. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019084.png ; $r \neq s$ ; confidence 0.787 | 176. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019084.png ; $r \neq s$ ; confidence 0.787 | ||
Line 358: | Line 358: | ||
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036035.png ; $a , b , c , d$ ; confidence 0.787 | 179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036035.png ; $a , b , c , d$ ; confidence 0.787 | ||
− | 180. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040116.png ; $\sum _ { \lambda } s _ { \lambda } ( x ) s _ { \lambda ^ { \prime } } ( y ) = \prod _ { i , j = 1 } ^ { l } ( 1 + x _ { i } y _ { j } )$ ; confidence 0.787 | + | 180. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040116.png ; $\sum _ { \lambda } s _ { \lambda } ( \mathbf x ) s _ { \lambda ^ { \prime } } ( \mathbf y ) = \prod _ { i , j = 1 } ^ { l } ( 1 + x _ { i } y _ { j } ).$ ; confidence 0.787 |
181. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006049.png ; $D \alpha D$ ; confidence 0.787 | 181. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006049.png ; $D \alpha D$ ; confidence 0.787 | ||
Line 364: | Line 364: | ||
182. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050290.png ; $G ^ { \# } ( n ) > 0$ ; confidence 0.787 | 182. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050290.png ; $G ^ { \# } ( n ) > 0$ ; confidence 0.787 | ||
− | 183. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v1301103.png ; $\Gamma : = \oint \ | + | 183. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v1301103.png ; $\Gamma : = \oint \overset{\rightharpoonup} { U } , d \overset{\rightharpoonup }{ r }$ ; confidence 0.787 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014038.png ; $ | + | 184. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014038.png ; $E_r$ ; confidence 0.787 |
185. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005065.png ; $\Delta = ( \mathfrak { H } , \mathfrak { F } , \mathfrak { G } ; T , F , G , H )$ ; confidence 0.787 | 185. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005065.png ; $\Delta = ( \mathfrak { H } , \mathfrak { F } , \mathfrak { G } ; T , F , G , H )$ ; confidence 0.787 | ||
− | 186. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014054.png ; $v = ( v _ { j } ) _ { j \in Q _ { 0 } } \in N ^ { Q _ { 0 } }$ ; confidence 0.787 | + | 186. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014054.png ; $v = ( v _ { j } ) _ { j \in Q _ { 0 } } \in \mathbf{N} ^ { Q _ { 0 } }$ ; confidence 0.787 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200304.png ; $Q _ { | + | 187. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g1200304.png ; $Q _ { n } ^ { G }$ ; confidence 0.787 |
188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021045.png ; $t = 1 / ( k _ { b } - f )$ ; confidence 0.787 | 188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021045.png ; $t = 1 / ( k _ { b } - f )$ ; confidence 0.787 | ||
− | 189. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110188.png ; $G ^ { \sigma } ( T ) = \operatorname { sup } _ { G ( U ) = 1 } [ T , U ] ^ { 2 }$ ; confidence 0.787 | + | 189. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110188.png ; $G ^ { \sigma } ( T ) = \operatorname { sup } _ { G ( U ) = 1 } [ T , U ] ^ { 2 } .$ ; confidence 0.787 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180156.png ; $ | + | 190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180156.png ; $L_3$ ; confidence 0.787 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013020.png ; $\| x \| = \operatorname { dist } ( x , Z )$ ; confidence 0.787 | + | 191. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013020.png ; $\| x \| = \operatorname { dist } ( x , \mathbf{Z} )$ ; confidence 0.787 |
192. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003022.png ; $b \Delta$ ; confidence 0.786 | 192. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003022.png ; $b \Delta$ ; confidence 0.786 | ||
− | 193. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018073.png ; $E \xi ( t ) \xi ( s ) = \frac { 1 } { 2 } ( | t | + | s | - | t - s | )$ ; confidence 0.786 | + | 193. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018073.png ; $\mathsf{E} \xi ( t ) \xi ( s ) = \frac { 1 } { 2 } ( | t | + | s | - | t - s | ),$ ; confidence 0.786 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016017.png ; $j \geq | + | 194. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016017.png ; $j \geq j_0$ ; confidence 0.786 |
195. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006090.png ; $A = V \Lambda V ^ { - 1 }$ ; confidence 0.786 | 195. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006090.png ; $A = V \Lambda V ^ { - 1 }$ ; confidence 0.786 | ||
Line 392: | Line 392: | ||
196. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001013.png ; $c _ { \beta } > c _ { \alpha }$ ; confidence 0.786 | 196. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001013.png ; $c _ { \beta } > c _ { \alpha }$ ; confidence 0.786 | ||
− | 197. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201905.png ; $L _ { 2 } ( R _ { + } ; \tau \operatorname { tanh } ( \pi \tau / 2 ) )$ ; confidence 0.786 | + | 197. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201905.png ; $L _ { 2 } ( \mathbf{R} _ { + } ; \tau \operatorname { tanh } ( \pi \tau / 2 ) )$ ; confidence 0.786 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003038.png ; $\Pi ( | + | 198. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003038.png ; $\Pi ( a ) = 2 \arctan ( e ^ { - a / k } ),$ ; confidence 0.786 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { | + | 199. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013032.png ; $\lambda _ { 1 } > \ldots > \lambda _ { r(\lambda) } ( \lambda ) > 0$ ; confidence 0.786 |
200. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786 | 200. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001036.png ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786 | ||
− | 201. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759026.png ; $VC ( A , k )$ ; confidence 0.786 | + | 201. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759026.png ; $\operatorname{VC} ( A , k )$ ; confidence 0.786 |
202. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040542.png ; $i < m$ ; confidence 0.786 | 202. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040542.png ; $i < m$ ; confidence 0.786 | ||
Line 406: | Line 406: | ||
203. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840154.png ; $T ^ { + }$ ; confidence 0.786 | 203. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840154.png ; $T ^ { + }$ ; confidence 0.786 | ||
− | 204. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023051.png ; $A | + | 204. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023051.png ; $A v = \lambda v$ ; confidence 0.786 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029074.png ; $Q _ { f } \rightarrow Y _ { f }$ ; confidence 0.786 | + | 205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029074.png ; $Q _ { \widetilde{f} } \rightarrow Y _ { f }$ ; confidence 0.786 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011040.png ; $- \Delta ^ { | + | 206. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011040.png ; $- \Delta ^ { \circ }$ ; confidence 0.786 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a1202005.png ; $L _ { 0 } ( X ) = \{ A \in L ( X ) : \operatorname { dom } A = X \}$ ; confidence 0.786 | + | 207. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a1202005.png ; $L _ { 0 } ( X ) = \{ A \in L ( X ) : \operatorname { dom } A = X \}.$ ; confidence 0.786 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025049.png ; $GF ( q )$ ; confidence 0.786 | + | 208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025049.png ; $\operatorname{GF} ( q ),$ ; confidence 0.786 |
209. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051076.png ; $v _ { j } \in F ( u _ { j } )$ ; confidence 0.785 | 209. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051076.png ; $v _ { j } \in F ( u _ { j } )$ ; confidence 0.785 | ||
Line 420: | Line 420: | ||
210. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011070.png ; $K \subset L$ ; confidence 0.785 | 210. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011070.png ; $K \subset L$ ; confidence 0.785 | ||
− | 211. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030065.png ; $\{ \phi _ { m } ( ; \eta ) \} _ { m = 1 } ^ { \infty } | + | 211. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030065.png ; $\{ \phi _ { m } ( . ; \eta ) \} _ { m = 1 } ^ { \infty } $ ; confidence 0.785 |
212. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940801.png ; $( X ; A , B , x _ { 0 } )$ ; confidence 0.785 | 212. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940801.png ; $( X ; A , B , x _ { 0 } )$ ; confidence 0.785 | ||
− | 213. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008018.png ; $( 2 )$ ; confidence 0.785 | + | 213. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008018.png ; $\operatorname{ISO}( 2 )$ ; confidence 0.785 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240490.png ; $X _ { 2 }$ ; confidence 0.785 | + | 214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240490.png ; $\mathbf{X} _ { 2 }$ ; confidence 0.785 |
215. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005024.png ; $X ^ { p } - a$ ; confidence 0.785 | 215. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005024.png ; $X ^ { p } - a$ ; confidence 0.785 | ||
− | 216. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539032.png ; $d ^ { | + | 216. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539032.png ; $d ^ { * }$ ; confidence 0.785 |
217. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023062.png ; $\nabla _ { Z } R = G J G ^ { * }$ ; confidence 0.785 | 217. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023062.png ; $\nabla _ { Z } R = G J G ^ { * }$ ; confidence 0.785 | ||
− | 218. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110117.png ; $\frac { 1 } { \left( \begin{array} { c } { N - 1 } \\ { M - 1 } \end{array} \right) }$ ; confidence 0.785 | + | 218. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110117.png ; $\frac { 1 } { \left( \begin{array} { c } { N - 1 } \\ { M - 1 } \end{array} \right) },$ ; confidence 0.785 |
219. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007056.png ; $k _ { 0 } = \text { const } > 0$ ; confidence 0.785 | 219. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007056.png ; $k _ { 0 } = \text { const } > 0$ ; confidence 0.785 | ||
− | 220. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054081.png ; $b = p ^ { \alpha } r , p ^ { \beta } s$ ; confidence 0.785 | + | 220. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054081.png ; $a, b = p ^ { \alpha } r , p ^ { \beta } s$ ; confidence 0.785 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a1201808.png ; $T _ { n } = \frac { S _ { n } S _ { n + 2 } - S _ { n + 1 } ^ { 2 } } { S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n } } = S _ { n } - \frac { \Delta S _ { n } } { \Delta ^ { 2 } S _ { n } }$ ; confidence 0.785 | + | 221. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a1201808.png ; $T _ { n } = \frac { S _ { n } S _ { n + 2 } - S _ { n + 1 } ^ { 2 } } { S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n } } = S _ { n } - \frac { \Delta S _ { n } } { \Delta ^ { 2 } S _ { n } },$ ; confidence 0.785 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096095.png ; $SL _ { 2 }$ ; confidence 0.785 | + | 222. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096095.png ; $\operatorname{SL} _ { 2 }$ ; confidence 0.785 |
223. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020017.png ; $[ h _ { i } h _ { j } ] = 0$ ; confidence 0.785 | 223. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020017.png ; $[ h _ { i } h _ { j } ] = 0$ ; confidence 0.785 | ||
− | 224. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003049.png ; $N ( X ) = 0$ ; confidence 0.785 | + | 224. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003049.png ; $\mathbf{N} ( X ) = 0$ ; confidence 0.785 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002070.png ; $d x ^ { | + | 225. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002070.png ; $d x ^ { n }$ ; confidence 0.785 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001026.png ; $\int _ { \Omega } f _ { 1 } \circ X _ { t _ { 1 } } \ldots f _ { n } \circ X _ { t _ { n } } d P \geq 0$ ; confidence 0.785 | + | 226. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001026.png ; $\int _ { \Omega } f _ { 1 } \circ \mathcal{X} _ { t _ { 1 } } \ldots f _ { n } \circ \mathcal{X} _ { t _ { n } } d P \geq 0$ ; confidence 0.785 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027074.png ; $: [ 0 , \infty ) \rightarrow R$ ; confidence 0.784 | + | 227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027074.png ; $b : [ 0 , \infty ) \rightarrow \mathbf R$ ; confidence 0.784 |
228. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060122.png ; $Z \cup Y$ ; confidence 0.784 | 228. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060122.png ; $Z \cup Y$ ; confidence 0.784 | ||
Line 458: | Line 458: | ||
229. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030142.png ; $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ ; confidence 0.784 | 229. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w120030142.png ; $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ ; confidence 0.784 | ||
− | 230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030041.png ; $x _ { | + | 230. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030041.png ; $x _ { n } \rightarrow 0$ ; confidence 0.784 |
231. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784 | 231. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018088.png ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784 | ||
− | 232. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600403.png ; $= a _ { 0 } ( z - r _ { 1 } ) \ldots ( z - r _ { n } ) , \quad a _ { 0 } \neq 0$ ; confidence 0.784 | + | 232. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600403.png ; $= a _ { 0 } ( z - r _ { 1 } ) \ldots ( z - r _ { n } ) , \quad a _ { 0 } \neq 0,$ ; confidence 0.784 |
233. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008082.png ; $\lambda _ { + }$ ; confidence 0.784 | 233. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008082.png ; $\lambda _ { + }$ ; confidence 0.784 | ||
− | 234. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015065.png ; $ | + | 234. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015065.png ; $I < 0$ ; confidence 0.784 |
235. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014038.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } ^ { 4 }$ ; confidence 0.784 | 235. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014038.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } ^ { 4 }$ ; confidence 0.784 | ||
Line 472: | Line 472: | ||
236. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002058.png ; $0 \leq t \leq \lambda$ ; confidence 0.784 | 236. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002058.png ; $0 \leq t \leq \lambda$ ; confidence 0.784 | ||
− | 237. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011018.png ; $P \ | + | 237. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011018.png ; $\mathcal{P} _{*} \hookrightarrow \mathcal{S}$ ; confidence 0.783 |
238. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008049.png ; $D _ { y } ( f )$ ; confidence 0.783 | 238. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008049.png ; $D _ { y } ( f )$ ; confidence 0.783 | ||
− | 239. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014049.png ; $\operatorname { dim } : K _ { 0 } ( Q ) \rightarrow Z ^ { Q _ { 0 } }$ ; confidence 0.783 | + | 239. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014049.png ; $\underline{\operatorname { dim }} : K _ { 0 } ( Q ) \rightarrow \mathbf{Z} ^ { Q _ { 0 } }$ ; confidence 0.783 |
240. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012092.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c _ { t } = y _ { 0 }$ ; confidence 0.783 | 240. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012092.png ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c _ { t } = y _ { 0 }$ ; confidence 0.783 | ||
Line 484: | Line 484: | ||
242. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n1201108.png ; $\xi ( . )$ ; confidence 0.783 | 242. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n1201108.png ; $\xi ( . )$ ; confidence 0.783 | ||
− | 243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240367.png ; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783 | + | 243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240367.png ; $\mathbf{M} _ { \mathsf{E} } = \mathbf{Z} _ { 3 } ^ { \prime } \mathbf{Z} _ { 3 }$ ; confidence 0.783 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310159.png ; $\ | + | 244. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310159.png ; $\sigma$ ; confidence 0.783 |
245. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783 | 245. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020184.png ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783 | ||
Line 494: | Line 494: | ||
247. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030027.png ; $X = * \cup \cup _ { \alpha \in A } e ^ { n _ { \alpha } + 1 }$ ; confidence 0.783 | 247. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030027.png ; $X = * \cup \cup _ { \alpha \in A } e ^ { n _ { \alpha } + 1 }$ ; confidence 0.783 | ||
− | 248. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030550/d0305504.png ; $R | + | 248. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030550/d0305504.png ; $R / P$ ; confidence 0.783 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023080.png ; $R ^ { - \# } - Z R ^ { - \# } Z ^ { * } = H J H ^ { * }$ ; confidence 0.783 | + | 249. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023080.png ; $R ^ { - \# } - Z R ^ { - \# } Z ^ { * } = H J H ^ { * }.$ ; confidence 0.783 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023057.png ; $c _ { q } = \frac { ( | q | + n - 1 ) ! } { q _ { 1 } ! \ldots q _ { | + | 250. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023057.png ; $c _ { q } = \frac { ( | q | + n - 1 ) ! } { q _ { 1 } ! \ldots q _ { n } ! } \times$ ; confidence 0.783 |
251. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230129.png ; $S = R _ { 22 } - R _ { 21 } R _ { 11 } ^ { - 1 } R _ { 12 }$ ; confidence 0.783 | 251. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230129.png ; $S = R _ { 22 } - R _ { 21 } R _ { 11 } ^ { - 1 } R _ { 12 }$ ; confidence 0.783 | ||
− | 252. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001093.png ; $H _ { \rho } ( | + | 252. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001093.png ; $H _ { \rho } ( a ; w ) =$ ; confidence 0.783 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005012.png ; $g : R \rightarrow R$ ; confidence 0.783 | + | 253. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120050/d12005012.png ; $g : \mathbf{R} \rightarrow \mathbf{R}$ ; confidence 0.783 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007070.png ; $x = \frac { 1 - \lambda } { \pi } \operatorname { ln } \frac { 1 } { 2 } ( 1 + \operatorname { cos } \frac { \pi y } { \lambda } )$ ; confidence 0.782 | + | 254. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007070.png ; $x = \frac { 1 - \lambda } { \pi } \operatorname { ln } \frac { 1 } { 2 } \left( 1 + \operatorname { cos } \frac { \pi y } { \lambda } \right).$ ; confidence 0.782 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240180.png ; $= E ( y _ { i j k } )$ ; confidence 0.782 | + | 255. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240180.png ; $= \mathsf{E} ( y _ { i j k } )$ ; confidence 0.782 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180199.png ; $W ( g ) \in A ^ { 2 } E \otimes A ^ { 2 } E$ ; confidence 0.782 | + | 256. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180199.png ; $W ( g ) \in \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E}$ ; confidence 0.782 |
257. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782 | 257. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782 | ||
Line 516: | Line 516: | ||
258. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013036.png ; $f _ { j } ( \overline { X } )$ ; confidence 0.782 | 258. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013036.png ; $f _ { j } ( \overline { X } )$ ; confidence 0.782 | ||
− | 259. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090189.png ; $Z _ { p } [ \chi ]$ ; confidence 0.782 | + | 259. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090189.png ; $\mathbf{Z} _ { p } [ \chi ]$ ; confidence 0.782 |
260. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005018.png ; $\xi = e _ { i } \xi ^ { \prime } + \xi ^ { \prime \prime }$ ; confidence 0.782 | 260. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005018.png ; $\xi = e _ { i } \xi ^ { \prime } + \xi ^ { \prime \prime }$ ; confidence 0.782 | ||
Line 522: | Line 522: | ||
261. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130175.png ; $a = 0$ ; confidence 0.782 | 261. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130175.png ; $a = 0$ ; confidence 0.782 | ||
− | 262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270103.png ; $F ( x ) = P ( T _ { 1 } - T _ { 0 } \leq x )$ ; confidence 0.782 | + | 262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b120270103.png ; $F ( x ) = \mathsf{P} ( T _ { 1 } - T _ { 0 } \leq x )$ ; confidence 0.782 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026064.png ; $\| U ^ { n } \| _ { \infty } = \operatorname { max } _ { 1 \leq j \leq J } | U _ { j } ^ { n } |$ ; confidence 0.782 | + | 263. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026064.png ; $\| \mathbf{U} ^ { n } \| _ { \infty } = \operatorname { max } _ { 1 \leq j \leq J } | U _ { j } ^ { n } |$ ; confidence 0.782 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008039.png ; $D ( A ) = \{ u \in X : S ( . ) u \in C ^ { 2 } ( R ; X ) \}$ ; confidence 0.781 | + | 264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008039.png ; $D ( A ) = \{ u \in X : S ( . ) u \in C ^ { 2 } ( \mathbf{R} ; X ) \}$ ; confidence 0.781 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040752.png ; $\varphi _ { r } \in Fm _ { P }$ ; confidence 0.781 | + | 265. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040752.png ; $\varphi _ { r } \in \operatorname{Fm} _ { P }$ ; confidence 0.781 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005034.png ; $L _ { \infty } ( T ) \cap VMO ( T )$ ; confidence 0.781 | + | 266. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v11005034.png ; $L _ { \infty } ( T ) \cap \operatorname{VMO} ( T )$ ; confidence 0.781 |
267. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620104.png ; $q = n$ ; confidence 0.781 | 267. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c021620104.png ; $q = n$ ; confidence 0.781 | ||
− | 268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026018.png ; $u ^ { 0 } ( | + | 268. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026018.png ; $u ^ { 0 } ( x_j )$ ; confidence 0.781 |
269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005015.png ; $I ( K )$ ; confidence 0.781 | 269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w13005015.png ; $I ( K )$ ; confidence 0.781 | ||
Line 540: | Line 540: | ||
270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014082.png ; $E _ { 0 } ( x , a ) = 1$ ; confidence 0.781 | 270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014082.png ; $E _ { 0 } ( x , a ) = 1$ ; confidence 0.781 | ||
− | 271. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019016.png ; $x = - \int _ { 0 } ^ { \infty } e ^ { A ^ { * } t } C e ^ { A t } d t$ ; confidence 0.781 | + | 271. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019016.png ; $x = - \int _ { 0 } ^ { \infty } e ^ { A ^ { * } t } C e ^ { A t } d t,$ ; confidence 0.781 |
272. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023013.png ; $f ( C _ { j } )$ ; confidence 0.781 | 272. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023013.png ; $f ( C _ { j } )$ ; confidence 0.781 | ||
− | 273. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170265.png ; $H _ { 0 } ( B ) = Z$ ; confidence 0.781 | + | 273. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170265.png ; $H _ { 0 } ( B ) = \mathbf{Z}$ ; confidence 0.781 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024010.png ; $T \in R$ ; confidence 0.781 | + | 274. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024010.png ; $T \in \mathbf{R}$ ; confidence 0.781 |
275. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165040.png ; $j \in J$ ; confidence 0.781 | 275. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165040.png ; $j \in J$ ; confidence 0.781 | ||
− | 276. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015023.png ; $K$ ; confidence 0.781 | + | 276. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015023.png ; $\mathcal{K}$ ; confidence 0.781 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009016.png ; $\frac { \partial f ( z , t ) } { \partial t } = - f ( z , t ) \frac { 1 + k f ( z , t ) } { 1 - \dot { k } f ( z , t ) }$ ; confidence 0.781 | + | 277. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009016.png ; $\frac { \partial f ( z , t ) } { \partial t } = - f ( z , t ) \frac { 1 + k f ( z , t ) } { 1 - \dot { k } f ( z , t ) },$ ; confidence 0.781 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008032.png ; $\nu : = \operatorname { min } \{ \operatorname { dim } | + | 278. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008032.png ; $\nu : = \operatorname { min } \{ \operatorname { dim } I , n \}$ ; confidence 0.781 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040040.png ; $X _ { G } E G \rightarrow B G$ ; confidence 0.781 | + | 279. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040040.png ; $X _ { G } \times_{E} G \rightarrow B G$ ; confidence 0.781 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007069.png ; $\sigma ( \xi , x ) = ( | + | 280. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007069.png ; $\sigma ( \xi , x ) = ( a \xi + b x ) ^ { k }$ ; confidence 0.781 |
281. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740375.png ; $\eta _ { A }$ ; confidence 0.780 | 281. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740375.png ; $\eta _ { A }$ ; confidence 0.780 | ||
Line 568: | Line 568: | ||
284. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047017.png ; $N ( ( T - \lambda I ) ^ { \nu ( \lambda ) } )$ ; confidence 0.780 | 284. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s13047017.png ; $N ( ( T - \lambda I ) ^ { \nu ( \lambda ) } )$ ; confidence 0.780 | ||
− | 285. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014018.png ; $P _ { + }$ ; confidence 0.780 | + | 285. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014018.png ; $\mathcal{P} _ { + }$ ; confidence 0.780 |
286. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008033.png ; $K ^ { - 1 }$ ; confidence 0.780 | 286. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008033.png ; $K ^ { - 1 }$ ; confidence 0.780 | ||
Line 574: | Line 574: | ||
287. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011021.png ; $\operatorname { Tor } _ { 1 } ^ { B } ( - , T )$ ; confidence 0.780 | 287. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011021.png ; $\operatorname { Tor } _ { 1 } ^ { B } ( - , T )$ ; confidence 0.780 | ||
− | 288. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002020.png ; $n = F _ { n _ { 1 } } + \ldots + F _ { n _ { k } }$ ; confidence 0.780 | + | 288. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002020.png ; $n = F _ { n _ { 1 } } + \ldots + F _ { n _ { k } },$ ; confidence 0.780 |
289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005020.png ; $0 \leq i \leq i$ ; confidence 0.780 | 289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005020.png ; $0 \leq i \leq i$ ; confidence 0.780 | ||
− | 290. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600250.png ; $ | + | 290. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600250.png ; $f_i$ ; confidence 0.780 |
291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023019.png ; $U = \cap _ { i = 1 } ^ { n } U _ { i }$ ; confidence 0.780 | 291. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023019.png ; $U = \cap _ { i = 1 } ^ { n } U _ { i }$ ; confidence 0.780 | ||
− | 292. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008032.png ; $t \in R$ ; confidence 0.780 | + | 292. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008032.png ; $t \in \mathbf{R}$ ; confidence 0.780 |
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240147.png ; $\mu$ ; confidence 0.780 | 293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240147.png ; $\mu$ ; confidence 0.780 | ||
− | 294. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w1200609.png ; $( C ^ { \infty } ( R ^ { m } , R ) , A ) \simeq A ^ { m } = T _ { A } R ^ { m }$ ; confidence 0.780 | + | 294. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w1200609.png ; $\operatorname{Hom}( C ^ { \infty } ( \mathbf{R} ^ { m } , \mathbf{R} ) , A ) \simeq A ^ { m } = T _ { A } \mathbf{R} ^ { m }.$ ; confidence 0.780 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010024.png ; $| x _ { 1 } - x _ { 2 } \| \leq \| x _ { 1 } - x _ { 2 } + \lambda ( y _ { 1 } - y _ { 2 } ) \|$ ; confidence 0.780 | + | 295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010024.png ; $\| x _ { 1 } - x _ { 2 } \| \leq \| x _ { 1 } - x _ { 2 } + \lambda ( y _ { 1 } - y _ { 2 } ) \| ,$ ; confidence 0.780 |
296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007019.png ; $a \mapsto a$ ; confidence 0.780 | 296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007019.png ; $a \mapsto a$ ; confidence 0.780 |
Revision as of 22:28, 13 May 2020
List
1. ; $x \in [ 0,1 ] \backslash E$ ; confidence 0.797
2. ; $\operatorname{rank} (\mathbf{X} _ { 2 } ) = p$ ; confidence 0.797
3. ; $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$ ; confidence 0.797
4. ; $u _ { t } + u u _ { x } = \mu u _ { xx }$ ; confidence 0.797
5. ; $\mathcal{D} _ { j k \text{l} } ^ { i }$ ; confidence 0.797
6. ; $G _ { X }$ ; confidence 0.797
7. ; $\operatorname { Tor } _ { 1 } ^ { B } ( T , - )$ ; confidence 0.797
8. ; $\operatorname { Cov } _ { \mathsf{P} } ( d ^ { * } , d _ { 0 } ) = 0$ ; confidence 0.797
9. ; $x _ { n_j } ^ { \prime } \rightarrow x$ ; confidence 0.796
10. ; $\varphi ( s ) = \operatorname { det } [ I _ { n } \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 )$ ; confidence 0.796
11. ; $f ( t , . ) : G \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.796
12. ; $\frac { D \mathbf{v} } { D t } = \frac { \partial \mathbf{v} } { \partial t } + \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } \mathbf{v} ) \times \mathbf{v}.$ ; confidence 0.796
13. ; $\operatorname{End}_{\mathcal{H}} T $ ; confidence 0.796
14. ; $\operatorname{Ad} ^ { * } : G \rightarrow \operatorname{GL} ( \mathfrak{g} ^ { * } )$ ; confidence 0.796
15. ; $B \otimes \mathcal{K} ( \mathcal{H} )$ ; confidence 0.796
16. ; $f ( z ^ { d } ) = f ( z ) - z$ ; confidence 0.796
17. ; $E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$ ; confidence 0.796
18. ; $n \in \mathbf N$ ; confidence 0.796
19. ; $x ( n ) = \frac { 1 } { 2 \pi i } \oint _ { c } \widetilde{x} ( z ) z ^ { n - 1 } d z$ ; confidence 0.796
20. ; $\alpha _ { N }$ ; confidence 0.796
21. ; $\tau _ { \varepsilon } ( x ) = \frac { \varepsilon } { \pi } ( x ^ { 2 } + \varepsilon ^ { 2 } ) ^ { - 1 }.$ ; confidence 0.795
22. ; $\phi ^ { 2 } = \operatorname{id}$ ; confidence 0.795
23. ; $\mathcal{C} \ni \xi ^ { 0 }$ ; confidence 0.795
24. ; $P \subset A ( X ) = \{ \varphi \in \operatorname { Aut } ( X ) : x _ { \alpha } \varphi \succeq x _ { \alpha } \}.$ ; confidence 0.795
25. ; $2 ^ { r }$ ; confidence 0.795
26. ; $[ 0 , Z + ( \text { const } ) K ]$ ; confidence 0.795
27. ; $[ Q _ { n } ] ^ { - 1 }$ ; confidence 0.795
28. ; $\alpha \in \mathbf{R}$ ; confidence 0.795
29. ; $\pi _ { k } ( T )$ ; confidence 0.795
30. ; $h : \mathbf{T} \rightarrow \mathbf{C}$ ; confidence 0.795
31. ; $\mathsf{P} ( \theta , \mu )$ ; confidence 0.795
32. ; $\mathcal{I}_{ ( v , w )}$ ; confidence 0.795
33. ; $x$ ; confidence 0.795
34. ; $f ( \mathbf{Z} _ { 1 } )$ ; confidence 0.795
35. ; $k = - 1 + n / 2$ ; confidence 0.795
36. ; $\| f \| _ { p , G}$ ; confidence 0.795
37. ; $u ( x , y_{0} , k )$ ; confidence 0.795
38. ; $d ^ { * } : \Omega \rightarrow \mathbf{R}$ ; confidence 0.795
39. ; $T _ { n + \alpha } = \frac { 1 } { 2 \pi i } \oint _ { A _ { \alpha } } p d W , T _ { g + n + \alpha } = \oint _ { B _ { \alpha } } d p,$ ; confidence 0.795
40. ; $H_{\text{new}}$ ; confidence 0.794
41. ; $D ^ { k + 1 } \times D ^ { m - k }$ ; confidence 0.794
42. ; $\mathcal{L} = \{ x _ { + } + K _ { \mathcal{L} } x _ { + } : x _ { + } \in \mathcal{K} _ { + } \}$ ; confidence 0.794
43. ; $q \geq 1$ ; confidence 0.794
44. ; $f ^ { ( s ) }$ ; confidence 0.794
45. ; $\tau_i$ ; confidence 0.794
46. ; $\mathfrak n$ ; confidence 0.794
47. ; $\sigma _ { 1 } = 1.17628 \ldots$ ; confidence 0.794
48. ; $\operatorname{DB} _ { 1 }$ ; confidence 0.794
49. ; $\Delta t / 2$ ; confidence 0.794
50. ; $b _ {ij }$ ; confidence 0.794
51. ; $1 \leq m < n$ ; confidence 0.794
52. ; $\mathcal{R} = \mathcal{L}. \mathcal{L}$ ; confidence 0.794
53. ; $\mathbf{l} = | \Sigma |$ ; confidence 0.794
54. ; $\mu _ { k + 1 } \leq \frac { 4 \pi k } { A } , k = 0,1 , \ldots ,$ ; confidence 0.794
55. ; $f ( t _ { n } , x , \xi ) = M ( u ^ { n } ( x ) , \xi ).$ ; confidence 0.794
56. ; $J _ { f } ( x ) \leq K \text{l} ( f ^ { \prime } ( x ) ) ^ { n },$ ; confidence 0.794
57. ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794
58. ; $\mathcal{Y} ( \gamma ) = \psi ( z _ { 0 } , \overline{z} _ { 0 } ) | _ { \gamma } = P \operatorname { exp } ( \oint _ { \gamma } \mathcal{A} )$ ; confidence 0.794
59. ; $g.x$ ; confidence 0.794
60. ; $X = ( X _ { 1 } , \dots , X _ { r } )$ ; confidence 0.794
61. ; $\dim ( \mathcal{H} ) < \infty$ ; confidence 0.794
62. ; $U F : U \mathcal C \rightarrow U \mathcal C ^ { \prime }$ ; confidence 0.794
63. ; $t = s$ ; confidence 0.794
64. ; $T = 0$ ; confidence 0.794
65. ; $x \in V ^ { \pm }$ ; confidence 0.794
66. ; $d_{ \lambda \mu }$ ; confidence 0.794
67. ; $\Phi x = x - F x$ ; confidence 0.793
68. ; $F = ( F _ { n } )$ ; confidence 0.793
69. ; $| a _ { n } + 1 - b _ { n + 1} | < \frac { 1 } { 2 } | a _ { n } - b _ { n } |.$ ; confidence 0.793
70. ; $\operatorname { Im } \zeta ^ { 2 } = \pm \pi$ ; confidence 0.793
71. ; $\leq$ ; confidence 0.793
72. ; $= F ( s , t ) \left\| \frac { r } { F ( s , t ) } x + z \right\| =$ ; confidence 0.793
73. ; $a \neq 1 / 2$ ; confidence 0.793
74. ; $\mathbf{X} _ { 1 }$ ; confidence 0.793
75. ; $P _ { 4 _ { 1 } } = v ^ { - 2 } - 1 + v ^ { 2 } - z ^ { 2 }$ ; confidence 0.793
76. ; $C _ { S } ( t )$ ; confidence 0.793
77. ; $\operatorname{NP}$ ; confidence 0.793
78. ; $C [ 0,1]$ ; confidence 0.793
79. ; $\int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) = G ( t )$ ; confidence 0.793
80. ; $X \in \mathfrak g $ ; confidence 0.793
81. ; $\operatorname{MS} _ { e } = \operatorname{SS} _ { e } / ( n - r )$ ; confidence 0.793
82. ; $g = 0 \Rightarrow C$ ; confidence 0.793
83. ; $\operatorname{DTIME}[ 2 ^ { O ( s ( n ) ) } ]$ ; confidence 0.793
84. ; $V _ { n } \subset U _ { n }$ ; confidence 0.793
85. ; $\eta_{ij}$ ; confidence 0.793
86. ; $K _ { 1 } ( X )$ ; confidence 0.793
87. ; $\lambda _ { p } ( K / k ) \geq 0$ ; confidence 0.793
88. ; $\Pi ( a ) = 2 \operatorname { arc} \operatorname{tan } e ^ { - a }$ ; confidence 0.793
89. ; $\Theta ( f _ { 0 } , f _ { 1 } , \ldots ) = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } ).$ ; confidence 0.793
90. ; $W _ { k } ( M ) = R \mathcal{K} / C _ { k + 1 }.$ ; confidence 0.793
91. ; $\mathcal{K} = L _ { 2 , r }$ ; confidence 0.792
92. ; $( N / L , [ L ] )$ ; confidence 0.792
93. ; $g ( a , b )$ ; confidence 0.792
94. ; $\varphi _ { + } = \varphi _ { - } - 2 i K ^ { * } x$ ; confidence 0.792
95. ; $z \in \widehat { K } \leftrightarrow m _ { z },$ ; confidence 0.792
96. ; $y _ { 0 } \in G ( y _ { 0 } )$ ; confidence 0.792
97. ; $B _ { 1,1 } ^ { 1 } \subset \mathcal{A} ^ { * } \subset B _ { 2,1 } ^ { 1 / 2 }$ ; confidence 0.792
98. ; $\operatorname{CS}$ ; confidence 0.792
99. ; $i A _ { 0 }$ ; confidence 0.792
100. ; $S _ { y } = - y,$ ; confidence 0.792
101. ; $Y _ { 1 }$ ; confidence 0.792
102. ; $q < r$ ; confidence 0.792
103. ; $L _ { 1,3 } = L _ { 1,3 } ^ { c }$ ; confidence 0.791
104. ; $\mathbf{k} = ( k _ { 1 } , \dots , k _ { n } )$ ; confidence 0.791
105. ; $| h ( a ) - h ( x ) | / | h ( b ) - h ( x ) | \leq \eta ( \rho )$ ; confidence 0.791
106. ; $\langle G , t : t ^ { - 1 } A t = B , \mu \rangle$ ; confidence 0.791
107. ; $\Xi ( t ) : = \xi \left( \frac { 1 } { 2 } + i t \right).$ ; confidence 0.791
108. ; $Q _ { 2 ^{ i - 1} ( n + 1 ) - 1 }$ ; confidence 0.791
109. ; $\lambda \in \operatorname{SP} ( n )$ ; confidence 0.791
110. ; $[ h _ { i j } f _ { k } ] = - \delta _ { i j } a _ { i k } f _ { k }$ ; confidence 0.791
111. ; $+ \frac { ( - 1 ) ^ { k - 1 } } { ( k - 1 ) ! ( 1 - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma L ( K ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( k + 2 ) } , \ldots ) +$ ; confidence 0.791
112. ; $\phi ( . , . )$ ; confidence 0.791
113. ; $\operatorname { lim } _ { r \rightarrow 0 } \mu ( B ( x , r ) ) / r ^ { m }$ ; confidence 0.791
114. ; $\widehat { \phi } ( j ) = \alpha_j$ ; confidence 0.791
115. ; $\{ \phi _ { n } \} \subset X$ ; confidence 0.791
116. ; $D ^ { + }$ ; confidence 0.791
117. ; $g ( t ) : = - \frac { 2 } { \pi } \int _ { 0 } ^ { \infty } \delta ( k ) \operatorname { sin } ( k t ) d k,$ ; confidence 0.791
118. ; $\otimes ^ { 2 } \mathcal{E}$ ; confidence 0.791
119. ; $\lambda ^ { * }$ ; confidence 0.791
120. ; $\pi_{ *} ( D X \wedge Y ) \simeq [ X , Y ]_* $ ; confidence 0.791
121. ; $w \in \Omega$ ; confidence 0.791
122. ; $\varphi _ { \varepsilon , x } ( y ) = \varepsilon ^ { - n } \varphi \left( \frac { y - x } { \varepsilon } \right).$ ; confidence 0.791
123. ; $\Psi _ { ( V , \lambda ) , ( W , \mu ) } = \lambda _ { W }$ ; confidence 0.791
124. ; $\leq \epsilon$ ; confidence 0.790
125. ; $F _ { X } ( X )$ ; confidence 0.790
126. ; $A \subseteq \overline{A}$ ; confidence 0.790
127. ; $\theta \otimes \theta \in \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.790
128. ; $\operatorname{Dist} \mathcal{NP}$ ; confidence 0.790
129. ; $\underline { \beta } ^ { ( 1 ) } , \ldots , \underline { \beta } ^ { ( n ) }$ ; confidence 0.790
130. ; $\sum | e | ^ { \gamma } = \gamma \int _ { 0 } ^ { \infty } N _ { E } ( V ) E ^ { \gamma - 1 } d E.$ ; confidence 0.790
131. ; $\mathfrak { R } ( C , P )$ ; confidence 0.790
132. ; $\mu ^ { * } f ( z ) = \mu ( \zeta \mapsto f ( z + \zeta ) ).$ ; confidence 0.790
133. ; $q = 1$ ; confidence 0.790
134. ; $\tau x ^ { n }$ ; confidence 0.790
135. ; $x = x _ { 0 } < x _ { 1 } < \ldots < x _ { i - 1 } < x _ { i } = y$ ; confidence 0.790
136. ; $B = \operatorname { End } _ { A } ( T )$ ; confidence 0.790
137. ; $p B _ { 2 n } \equiv - 1 ( \operatorname { mod } p )$ ; confidence 0.790
138. ; $\tau _ { 2 } g = g$ ; confidence 0.790
139. ; $E _ { n + 1}$ ; confidence 0.790
140. ; $\mathbf{c} ^ { \prime } \beta$ ; confidence 0.790
141. ; $\mathcal{D} = \{ \mathbf{u} \in V : \sigma ( \mathbf{u} ) = \infty ( K ) , 0 \notin K \} , \mathcal{N} = \{ \mathbf{u} \in V : 0 < \sigma ( \mathbf{u} ) < \infty \} \bigcup$ ; confidence 0.790
142. ; $\operatorname { Tr } _ { E / F } ( z ) = z + z ^ { q } + \ldots + z ^ { q ^ { n - 1 } }$ ; confidence 0.790
143. ; $L _ { i } \leq \sum u _ { i } ( t ) \leq U _ { i } \text{(regional constraint)},$ ; confidence 0.789
144. ; $a_{m - 1}$ ; confidence 0.789
145. ; $\operatorname{End}_{K}( E ^ { \otimes r } )$ ; confidence 0.789
146. ; $[ \mathfrak { g } ^ { \alpha } , \mathfrak { g } ^ { \beta } ] \subset \mathfrak { g } ^ { \alpha + \beta}$ ; confidence 0.789
147. ; $\overline { t } _ { 0 } : = \operatorname { inf } _ { t \geq t _ { 0 } } [ t - h ( t ) ] > - \infty.$ ; confidence 0.789
148. ; $\varepsilon_i$ ; confidence 0.789
149. ; $\left\{ \lambda > 0 : \sum _ { | \alpha | = k - 1 } \int _ { \partial \Omega \times \partial \Omega } \Phi \left( \frac { \Delta_{ y - x} F ( x ) } { | y - x | } \right) \eta ( x , y ) \leq 1 \right\},$ ; confidence 0.789
150. ; $\forall \alpha \in S ^ { 2 }$ ; confidence 0.789
151. ; $\sigma _ { \text{T} } ( A , \mathcal X )$ ; confidence 0.789
152. ; $f \in \mathbf Q [ x ]$ ; confidence 0.789
153. ; $\operatorname{p} \in T$ ; confidence 0.789
154. ; $g ( \overline { u } _ { 1 } ) < v _ { M } = \overline { q }$ ; confidence 0.789
155. ; $I \times G$ ; confidence 0.789
156. ; $\operatorname{l} = \infty ( L )$ ; confidence 0.789
157. ; $x \neq e$ ; confidence 0.789
158. ; $\phi _ { i }$ ; confidence 0.789
159. ; $\tau _ { n } ( x - [ z ] , y )$ ; confidence 0.788
160. ; $\operatorname{det} f$ ; confidence 0.788
161. ; $\operatorname{PG} ( 2 , q )$ ; confidence 0.788
162. ; $r = ( r _ { 1 } , \dots , r _ { n } )$ ; confidence 0.788
163. ; $( ( K _ { X ^ { \prime } } + B ^ { \prime } ) . C ) \geq 0$ ; confidence 0.788
164. ; $[[M]]_{\rho} = [ [ N ] ] _ { \rho }$ ; confidence 0.788
165. ; $\times \operatorname { exp } \left\{ \gamma - u \xi ( u ) + \int _ { 0 } ^ { \xi ( u ) } \frac { e ^ { s } - 1 } { s } d s \right\} \quad ( u > 1 ),$ ; confidence 0.788
166. ; $s _ { j } ( T )$ ; confidence 0.788
167. ; $P \subset M ^ { n }$ ; confidence 0.788
168. ; $S _ { n } ( x _ { 0 } , \rho )$ ; confidence 0.788
169. ; $g : K \rightarrow U ^ { \prime \prime }$ ; confidence 0.788
170. ; $\frac { 1 } { 2 L } \int _ { - L } ^ { L } \phi d t _ { i } = \langle \phi \rangle = \left( \frac { 1 } { 2 \pi } \right) ^ { 2 g } \int \ldots \int \phi d ^ { 2 g } \theta .$ ; confidence 0.788
171. ; $( x , u \sharp v )$ ; confidence 0.788
172. ; $\Psi$ ; confidence 0.788
173. ; $| u | \leq \alpha$ ; confidence 0.788
174. ; $\overline { \cup _ { \alpha < \beta } P _ { \alpha } ( X ) } = P _ { \beta } ( X )$ ; confidence 0.787
175. ; $T _ { x } = f , \quad x \in X , f \in Y.$ ; confidence 0.787
176. ; $r \neq s$ ; confidence 0.787
177. ; $\operatorname { dist } _ { L } \infty ( \overline { u } , H ^ { \infty } ) < 1$ ; confidence 0.787
178. ; $T _ { j }$ ; confidence 0.787
179. ; $a , b , c , d$ ; confidence 0.787
180. ; $\sum _ { \lambda } s _ { \lambda } ( \mathbf x ) s _ { \lambda ^ { \prime } } ( \mathbf y ) = \prod _ { i , j = 1 } ^ { l } ( 1 + x _ { i } y _ { j } ).$ ; confidence 0.787
181. ; $D \alpha D$ ; confidence 0.787
182. ; $G ^ { \# } ( n ) > 0$ ; confidence 0.787
183. ; $\Gamma : = \oint \overset{\rightharpoonup} { U } , d \overset{\rightharpoonup }{ r }$ ; confidence 0.787
184. ; $E_r$ ; confidence 0.787
185. ; $\Delta = ( \mathfrak { H } , \mathfrak { F } , \mathfrak { G } ; T , F , G , H )$ ; confidence 0.787
186. ; $v = ( v _ { j } ) _ { j \in Q _ { 0 } } \in \mathbf{N} ^ { Q _ { 0 } }$ ; confidence 0.787
187. ; $Q _ { n } ^ { G }$ ; confidence 0.787
188. ; $t = 1 / ( k _ { b } - f )$ ; confidence 0.787
189. ; $G ^ { \sigma } ( T ) = \operatorname { sup } _ { G ( U ) = 1 } [ T , U ] ^ { 2 } .$ ; confidence 0.787
190. ; $L_3$ ; confidence 0.787
191. ; $\| x \| = \operatorname { dist } ( x , \mathbf{Z} )$ ; confidence 0.787
192. ; $b \Delta$ ; confidence 0.786
193. ; $\mathsf{E} \xi ( t ) \xi ( s ) = \frac { 1 } { 2 } ( | t | + | s | - | t - s | ),$ ; confidence 0.786
194. ; $j \geq j_0$ ; confidence 0.786
195. ; $A = V \Lambda V ^ { - 1 }$ ; confidence 0.786
196. ; $c _ { \beta } > c _ { \alpha }$ ; confidence 0.786
197. ; $L _ { 2 } ( \mathbf{R} _ { + } ; \tau \operatorname { tanh } ( \pi \tau / 2 ) )$ ; confidence 0.786
198. ; $\Pi ( a ) = 2 \arctan ( e ^ { - a / k } ),$ ; confidence 0.786
199. ; $\lambda _ { 1 } > \ldots > \lambda _ { r(\lambda) } ( \lambda ) > 0$ ; confidence 0.786
200. ; $R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$ ; confidence 0.786
201. ; $\operatorname{VC} ( A , k )$ ; confidence 0.786
202. ; $i < m$ ; confidence 0.786
203. ; $T ^ { + }$ ; confidence 0.786
204. ; $A v = \lambda v$ ; confidence 0.786
205. ; $Q _ { \widetilde{f} } \rightarrow Y _ { f }$ ; confidence 0.786
206. ; $- \Delta ^ { \circ }$ ; confidence 0.786
207. ; $L _ { 0 } ( X ) = \{ A \in L ( X ) : \operatorname { dom } A = X \}.$ ; confidence 0.786
208. ; $\operatorname{GF} ( q ),$ ; confidence 0.786
209. ; $v _ { j } \in F ( u _ { j } )$ ; confidence 0.785
210. ; $K \subset L$ ; confidence 0.785
211. ; $\{ \phi _ { m } ( . ; \eta ) \} _ { m = 1 } ^ { \infty } $ ; confidence 0.785
212. ; $( X ; A , B , x _ { 0 } )$ ; confidence 0.785
213. ; $\operatorname{ISO}( 2 )$ ; confidence 0.785
214. ; $\mathbf{X} _ { 2 }$ ; confidence 0.785
215. ; $X ^ { p } - a$ ; confidence 0.785
216. ; $d ^ { * }$ ; confidence 0.785
217. ; $\nabla _ { Z } R = G J G ^ { * }$ ; confidence 0.785
218. ; $\frac { 1 } { \left( \begin{array} { c } { N - 1 } \\ { M - 1 } \end{array} \right) },$ ; confidence 0.785
219. ; $k _ { 0 } = \text { const } > 0$ ; confidence 0.785
220. ; $a, b = p ^ { \alpha } r , p ^ { \beta } s$ ; confidence 0.785
221. ; $T _ { n } = \frac { S _ { n } S _ { n + 2 } - S _ { n + 1 } ^ { 2 } } { S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n } } = S _ { n } - \frac { \Delta S _ { n } } { \Delta ^ { 2 } S _ { n } },$ ; confidence 0.785
222. ; $\operatorname{SL} _ { 2 }$ ; confidence 0.785
223. ; $[ h _ { i } h _ { j } ] = 0$ ; confidence 0.785
224. ; $\mathbf{N} ( X ) = 0$ ; confidence 0.785
225. ; $d x ^ { n }$ ; confidence 0.785
226. ; $\int _ { \Omega } f _ { 1 } \circ \mathcal{X} _ { t _ { 1 } } \ldots f _ { n } \circ \mathcal{X} _ { t _ { n } } d P \geq 0$ ; confidence 0.785
227. ; $b : [ 0 , \infty ) \rightarrow \mathbf R$ ; confidence 0.784
228. ; $Z \cup Y$ ; confidence 0.784
229. ; $\Gamma _ { 1 } , \Gamma _ { 2 } , \ldots \subset \Gamma$ ; confidence 0.784
230. ; $x _ { n } \rightarrow 0$ ; confidence 0.784
231. ; $\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$ ; confidence 0.784
232. ; $= a _ { 0 } ( z - r _ { 1 } ) \ldots ( z - r _ { n } ) , \quad a _ { 0 } \neq 0,$ ; confidence 0.784
233. ; $\lambda _ { + }$ ; confidence 0.784
234. ; $I < 0$ ; confidence 0.784
235. ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } ^ { 4 }$ ; confidence 0.784
236. ; $0 \leq t \leq \lambda$ ; confidence 0.784
237. ; $\mathcal{P} _{*} \hookrightarrow \mathcal{S}$ ; confidence 0.783
238. ; $D _ { y } ( f )$ ; confidence 0.783
239. ; $\underline{\operatorname { dim }} : K _ { 0 } ( Q ) \rightarrow \mathbf{Z} ^ { Q _ { 0 } }$ ; confidence 0.783
240. ; $\sum _ { t = 0 } ^ { \infty } A ^ { t } c _ { t } = y _ { 0 }$ ; confidence 0.783
241. ; $S ( m , \rho )$ ; confidence 0.783
242. ; $\xi ( . )$ ; confidence 0.783
243. ; $\mathbf{M} _ { \mathsf{E} } = \mathbf{Z} _ { 3 } ^ { \prime } \mathbf{Z} _ { 3 }$ ; confidence 0.783
244. ; $\sigma$ ; confidence 0.783
245. ; $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$ ; confidence 0.783
246. ; $Q _ { ( s , r ) } = - Q _ { ( r , s ) }$ ; confidence 0.783
247. ; $X = * \cup \cup _ { \alpha \in A } e ^ { n _ { \alpha } + 1 }$ ; confidence 0.783
248. ; $R / P$ ; confidence 0.783
249. ; $R ^ { - \# } - Z R ^ { - \# } Z ^ { * } = H J H ^ { * }.$ ; confidence 0.783
250. ; $c _ { q } = \frac { ( | q | + n - 1 ) ! } { q _ { 1 } ! \ldots q _ { n } ! } \times$ ; confidence 0.783
251. ; $S = R _ { 22 } - R _ { 21 } R _ { 11 } ^ { - 1 } R _ { 12 }$ ; confidence 0.783
252. ; $H _ { \rho } ( a ; w ) =$ ; confidence 0.783
253. ; $g : \mathbf{R} \rightarrow \mathbf{R}$ ; confidence 0.783
254. ; $x = \frac { 1 - \lambda } { \pi } \operatorname { ln } \frac { 1 } { 2 } \left( 1 + \operatorname { cos } \frac { \pi y } { \lambda } \right).$ ; confidence 0.782
255. ; $= \mathsf{E} ( y _ { i j k } )$ ; confidence 0.782
256. ; $W ( g ) \in \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E}$ ; confidence 0.782
257. ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782
258. ; $f _ { j } ( \overline { X } )$ ; confidence 0.782
259. ; $\mathbf{Z} _ { p } [ \chi ]$ ; confidence 0.782
260. ; $\xi = e _ { i } \xi ^ { \prime } + \xi ^ { \prime \prime }$ ; confidence 0.782
261. ; $a = 0$ ; confidence 0.782
262. ; $F ( x ) = \mathsf{P} ( T _ { 1 } - T _ { 0 } \leq x )$ ; confidence 0.782
263. ; $\| \mathbf{U} ^ { n } \| _ { \infty } = \operatorname { max } _ { 1 \leq j \leq J } | U _ { j } ^ { n } |$ ; confidence 0.782
264. ; $D ( A ) = \{ u \in X : S ( . ) u \in C ^ { 2 } ( \mathbf{R} ; X ) \}$ ; confidence 0.781
265. ; $\varphi _ { r } \in \operatorname{Fm} _ { P }$ ; confidence 0.781
266. ; $L _ { \infty } ( T ) \cap \operatorname{VMO} ( T )$ ; confidence 0.781
267. ; $q = n$ ; confidence 0.781
268. ; $u ^ { 0 } ( x_j )$ ; confidence 0.781
269. ; $I ( K )$ ; confidence 0.781
270. ; $E _ { 0 } ( x , a ) = 1$ ; confidence 0.781
271. ; $x = - \int _ { 0 } ^ { \infty } e ^ { A ^ { * } t } C e ^ { A t } d t,$ ; confidence 0.781
272. ; $f ( C _ { j } )$ ; confidence 0.781
273. ; $H _ { 0 } ( B ) = \mathbf{Z}$ ; confidence 0.781
274. ; $T \in \mathbf{R}$ ; confidence 0.781
275. ; $j \in J$ ; confidence 0.781
276. ; $\mathcal{K}$ ; confidence 0.781
277. ; $\frac { \partial f ( z , t ) } { \partial t } = - f ( z , t ) \frac { 1 + k f ( z , t ) } { 1 - \dot { k } f ( z , t ) },$ ; confidence 0.781
278. ; $\nu : = \operatorname { min } \{ \operatorname { dim } I , n \}$ ; confidence 0.781
279. ; $X _ { G } \times_{E} G \rightarrow B G$ ; confidence 0.781
280. ; $\sigma ( \xi , x ) = ( a \xi + b x ) ^ { k }$ ; confidence 0.781
281. ; $\eta _ { A }$ ; confidence 0.780
282. ; $k [ X , Y ]$ ; confidence 0.780
283. ; $o ( g ) \operatorname { gcd } ( 24 , o ( g ) )$ ; confidence 0.780
284. ; $N ( ( T - \lambda I ) ^ { \nu ( \lambda ) } )$ ; confidence 0.780
285. ; $\mathcal{P} _ { + }$ ; confidence 0.780
286. ; $K ^ { - 1 }$ ; confidence 0.780
287. ; $\operatorname { Tor } _ { 1 } ^ { B } ( - , T )$ ; confidence 0.780
288. ; $n = F _ { n _ { 1 } } + \ldots + F _ { n _ { k } },$ ; confidence 0.780
289. ; $0 \leq i \leq i$ ; confidence 0.780
290. ; $f_i$ ; confidence 0.780
291. ; $U = \cap _ { i = 1 } ^ { n } U _ { i }$ ; confidence 0.780
292. ; $t \in \mathbf{R}$ ; confidence 0.780
293. ; $\mu$ ; confidence 0.780
294. ; $\operatorname{Hom}( C ^ { \infty } ( \mathbf{R} ^ { m } , \mathbf{R} ) , A ) \simeq A ^ { m } = T _ { A } \mathbf{R} ^ { m }.$ ; confidence 0.780
295. ; $\| x _ { 1 } - x _ { 2 } \| \leq \| x _ { 1 } - x _ { 2 } + \lambda ( y _ { 1 } - y _ { 2 } ) \| ,$ ; confidence 0.780
296. ; $a \mapsto a$ ; confidence 0.780
297. ; $d _ { \lambda \lambda } = 1$ ; confidence 0.780
298. ; $d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) = \delta ( w _ { i } | v )$ ; confidence 0.780
299. ; $x _ { j } = 2 i \operatorname { cos } ( j \pi / n )$ ; confidence 0.780
300. ; $F _ { \alpha } ^ { p , q }$ ; confidence 0.780
Maximilian Janisch/latexlist/latex/NoNroff/41. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/41&oldid=44529