Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/50"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 50 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007042.png ; $\xi \in R ^ { 3 }$ ; confidence 0.999
+
1. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002031.png ; $f , g \in C [ \mathbf{R} ]$ ; confidence 0.643
  
2. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007058.png ; $L _ { 100 } ^ { 2 }$ ; confidence 0.366
+
2. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n1200303.png ; $o : 1 \rightarrow N$ ; confidence 0.643
  
3. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i120080135.png ; $J _ { i j } = \pm J$ ; confidence 0.545
+
3. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005017.png ; $r ( K _ { X } + B )$ ; confidence 0.643
  
4. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008082.png ; $\lambda _ { + }$ ; confidence 0.784
+
4. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015160/b0151607.png ; $\mathbf{1}$ ; confidence 0.643
  
5. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010048.png ; $\phi ^ { 2 } = id$ ; confidence 0.795
+
5. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080180.png ; $\widetilde { F B }$ ; confidence 0.643
  
6. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009069.png ; $P ( T ) \in O [ T ]$ ; confidence 0.997
+
6. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180469.png ; $\pi _ { 0 } : N _ { 0 } \rightarrow N$ ; confidence 0.643
  
7. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090196.png ; $g _ { \chi } ( T )$ ; confidence 0.984
+
7. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c0215409.png ; $x \in A ^ { + }$ ; confidence 0.643
  
8. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090199.png ; $u _ { \chi } ( T )$ ; confidence 0.992
+
8. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021023.png ; $\{ A _ { i } \} _ { i = 1 } ^ { k }$ ; confidence 0.642
  
9. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090189.png ; $Z _ { p } [ \chi ]$ ; confidence 0.782
+
9. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120200/l12020010.png ; $\operatorname{cat}_{\mathbf{R} P ^ { n }} \mathbf{R}P^n \geq n + 1$ ; confidence 0.642
  
10. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090222.png ; $g x = g x g ^ { - 1 }$ ; confidence 0.731
+
10. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d1200704.png ; $\sigma _ { 1 } , \ldots , \sigma _ { t }$ ; confidence 0.642
  
11. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002025.png ; $- E X ( 1 + o ( 1 ) )$ ; confidence 0.223
+
11. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d1201606.png ; $C ( S \times T )$ ; confidence 0.642
  
12. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002027.png ; $\varphi _ { 1 }$ ; confidence 0.905
+
12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t1200806.png ; $F ( x , y ) = a p _ { 1 } ^ { z _ { 1 } } \dots p _ { s } ^ { z _ { s } }$ ; confidence 0.642
  
13. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004067.png ; $D _ { 1 } * D _ { 2 }$ ; confidence 0.994
+
13. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025030.png ; $\sqrt { 1 - x ^ { 2 } } w ( x ) > 0$ ; confidence 0.642
  
14. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007070.png ; $\omega = \eta$ ; confidence 0.954
+
14. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807042.png ; $S = \frac { 1 } { n - 1 } \sum _ { i = 1 } ^ { n } ( X _ { i } - \overline{X} ) ( X _ { i } - \overline{X} ) ^ { \prime },$ ; confidence 0.642
  
15. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007037.png ; $E ( k , \omega )$ ; confidence 0.841
+
15. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017380/b01738052.png ; $\phi_j$ ; confidence 0.642
  
16. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007050.png ; $d ( \omega ) > 0$ ; confidence 0.999
+
16. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026030.png ; $\langle [ A ] , \phi \rangle = \int _ { \operatorname { reg } A } \phi.$ ; confidence 0.642
  
17. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001010.png ; $\alpha ( Z ) = 1$ ; confidence 0.991
+
17. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024048.png ; $s \times p$ ; confidence 0.642
  
18. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110300/c11030034.png ; $\sigma = \pm 1$ ; confidence 0.958
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058065.png ; $l_2$ ; confidence 0.642
  
19. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001022.png ; $| s | \lambda |$ ; confidence 0.251
+
19. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011090.png ; $F _ { \sigma } \in \widetilde { \mathcal{O} } ( ( \Omega + \Gamma _ { \sigma } ) \cap U ).$ ; confidence 0.642
  
20. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005057.png ; $q \leq r ( d + 1 )$ ; confidence 0.999
+
20. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500038.png ; $N _ { \epsilon } ( C )$ ; confidence 0.642
  
21. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k1200705.png ; $R ( t ) \in L ( V )$ ; confidence 0.999
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002028.png ; $X \times Y$ ; confidence 0.642
  
22. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120070/k12007012.png ; $t \in ( 0 , \pi )$ ; confidence 0.999
+
22. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029013.png ; $Q \in [ a , b ]$ ; confidence 0.642
  
23. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002011.png ; $x _ { j } < x _ { k }$ ; confidence 0.727
+
23. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130060/m1300601.png ; $f _ { 1 } : = x _ { 1 } ^ { d },$ ; confidence 0.642
  
24. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002014.png ; $y _ { j } < y _ { k }$ ; confidence 0.627
+
24. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022037.png ; $t \searrow 0$ ; confidence 0.641
  
25. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002013.png ; $x _ { j } > x _ { k }$ ; confidence 0.459
+
25. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006026.png ; $E ^ { \text{TF} } ( N ) = \operatorname { inf } \{ \mathcal{E} ( \rho ) : \rho \in L ^ { 5 / 3 } , \int \rho = N , \rho \geq 0 \},$ ; confidence 0.641
  
26. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002012.png ; $y _ { j } > y _ { k }$ ; confidence 0.578
+
26. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010058.png ; $L _ { \text{C} } ^ { p } ( G )$ ; confidence 0.641
  
27. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015940/b01594030.png ; $i = 0 , \dots , m$ ; confidence 0.506
+
27. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408036.png ; $\pi _ { n } ( X ; A , B , * ) = \pi _ { n - 1 } ( \Omega ( X ; A , B ) , * ).$ ; confidence 0.641
  
28. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584048.png ; $0 \in \rho ( G )$ ; confidence 0.994
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021045.png ; $\mathfrak{p} \subset \mathfrak{a}$ ; confidence 0.641
  
29. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558405.png ; $[ x , y ] = [ y , x ]$ ; confidence 0.815
+
29. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566019.png ; $h = 1$ ; confidence 0.641
  
30. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840239.png ; $x \in D ( p ( A ) )$ ; confidence 0.622
+
30. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120050/c12005017.png ; $f \rightarrow \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } \operatorname { Re } \frac { e ^ { i t } + z } { e ^ { t t } - z } f ( e ^ { i t } ) d t,$ ; confidence 0.641
  
31. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840107.png ; $( K _ { - } , I , J )$ ; confidence 0.416
+
31. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001056.png ; $e \leq x$ ; confidence 0.641
  
32. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047390/h047390136.png ; $P _ { + } T P _ { - }$ ; confidence 0.503
+
32. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l0570009.png ; $x \in \Lambda$ ; confidence 0.641
  
33. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840283.png ; $[ N x , x ] \geq 0$ ; confidence 0.973
+
33. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002029.png ; $\| u_f \| \leq \| f \| / c$ ; confidence 0.641
  
34. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840167.png ; $E _ { \lambda }$ ; confidence 0.997
+
34. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023089.png ; $E ^ { k } = M \times F \times F ^ { ( 1 ) } \times \ldots F ^ { ( k ) }$ ; confidence 0.641
  
35. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840341.png ; $x , y \in H ^ { n }$ ; confidence 0.408
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032042.png ; $\mathsf{E} _ { \theta } ( N ) = \frac { \mathsf{P} _ { \theta } ( S _ { N } = K ) K - \mathsf{P} _ { \theta } ( S _ { N } = - J ) J } { 2 \theta - 1 }.$ ; confidence 0.641
  
36. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840166.png ; $E _ { \lambda }$ ; confidence 0.610
+
36. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906703.png ; $U : \mathcal{C} \rightarrow \operatorname{Set}$ ; confidence 0.641
  
37. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840276.png ; $[ A x , x ] \geq 0$ ; confidence 0.964
+
37. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007034.png ; $s = 1 + p _ { 1 } / r + \ldots + p _ { 1 } \ldots p _ { k - 1 } / r ^ { k - 1 }$ ; confidence 0.641
  
38. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584013.png ; $( K _ { + } , [ , ] )$ ; confidence 0.846
+
38. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020100.png ; $y _ { 0 } = g ( x _ { 0 } )$ ; confidence 0.641
  
39. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840403.png ; $21 , \dots , 2 x$ ; confidence 0.196
+
39. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019048.png ; $A = \operatorname { diag } ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.641
  
40. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013017.png ; $E _ { x } ^ { 1 } + 1$ ; confidence 0.729
+
40. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170281.png ; $d _ { 2 } ( e _ { 2 } ^ { j } )$ ; confidence 0.640
  
41. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013020.png ; $P _ { N } = U _ { N }$ ; confidence 0.544
+
41. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130050/m1300501.png ; $a \leftrightarrow b a b ^ { - 1 }$ ; confidence 0.640
  
42. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006058.png ; $k \leq x \leq n$ ; confidence 0.555
+
42. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057069.png ; $\phi _ { p }$ ; confidence 0.640
  
43. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015710/b01571021.png ; $k = 0 , \dots , n$ ; confidence 0.516
+
43. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004047.png ; $( \mathbf{R} _ { + } \backslash \{ 0 \} , \times , \leq )$ ; confidence 0.640
  
44. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007016.png ; $| \hat { k } | < 1$ ; confidence 0.679
+
44. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180277.png ; $\in \bigotimes \square ^ { p + q + 1 } \mathcal{E}$ ; confidence 0.640
  
45. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007018.png ; $| \hat { k } | > 1$ ; confidence 0.617
+
45. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002064.png ; $R \subseteq A ^ { n }$ ; confidence 0.640
  
46. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100104.png ; $\{ A ; P , + , . \}$ ; confidence 0.536
+
46. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015037.png ; $\text{E} _ { \mathsf{P} } ( d _ { 0 } ) = 0$ ; confidence 0.640
  
47. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002086.png ; $y x ^ { - 1 } \in P$ ; confidence 0.936
+
47. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010027.png ; $( C ) \int _ { A } f d m = ( C ) \int f . \chi _ { A } d m$ ; confidence 0.640
  
48. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l1100208.png ; $\{ G ; , e , - 1 \}$ ; confidence 0.409
+
48. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009020.png ; $0 \leq t < \infty$ ; confidence 0.640
  
49. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002085.png ; $x \preceq y$ ; confidence 0.956
+
49. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017037.png ; $\widehat { B^* }  $ ; confidence 0.640
  
50. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003073.png ; $\varphi \in X$ ; confidence 0.727
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a1303205.png ; $\mathsf{E} _ { \theta } ( X _ { i } ) = \mathsf{P} _ { \theta } ( X _ { i } = 1 ) = \theta = 1 - \mathsf{P} _ { \theta } ( X _ { i } = 0 )$ ; confidence 0.640
  
51. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003030.png ; $\mu _ { i } \in D$ ; confidence 0.966
+
51. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010015.png ; $\mathbf{f} ^ { \text{em} } = q _ { f } \mathbf{E} + \frac { 1 } { c } \mathbf{J} \times \mathbf{B} + ( \nabla \mathbf{E} ). \mathbf{P} + ( \nabla \mathbf{B} ). \mathbf{M} +$ ; confidence 0.640
  
52. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003027.png ; $( \Omega , F ) +$ ; confidence 0.479
+
52. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004048.png ; $\operatorname{II}( W , V ) = - \operatorname { Re } ( \eta ( W ) d g ( V ) ).$ ; confidence 0.640
  
53. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003019.png ; $\mu \perp \nu$ ; confidence 0.992
+
53. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r1300508.png ; $a , b \in \Omega$ ; confidence 0.640
  
54. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004095.png ; $X \subseteq V$ ; confidence 0.866
+
54. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013020.png ; $x \in \widetilde{\mathbf{Z}}$ ; confidence 0.640
  
55. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004020.png ; $\{ G , , e , - 1 \}$ ; confidence 0.428
+
55. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023062.png ; $f _ { t , s }$ ; confidence 0.640
  
56. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000189.png ; $d , e \in D _ { A }$ ; confidence 0.598
+
56. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001030.png ; $R = \sum _ { s = 1 } ^ { n } a _ { s } \otimes b _ { s } \in A \otimes _ { k } A$ ; confidence 0.640
  
57. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000196.png ; $M \in \Lambda$ ; confidence 0.988
+
57. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023016.png ; $\overline { m } = \{ m _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.639
  
58. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000107.png ; $F = \lambda k x$ ; confidence 0.991
+
58. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s120200101.png ; $S ^ { \lambda }$ ; confidence 0.639
  
59. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l0570009.png ; $x \in \Lambda$ ; confidence 0.641
+
59. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016023.png ; $\operatorname{SAT}$ ; confidence 0.639
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137073.png ; $\{ U _ { i } \}$ ; confidence 0.984
+
60. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034016.png ; $K_n$ ; confidence 0.639
  
61. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003091.png ; $\tau ( R ^ { * } )$ ; confidence 0.999
+
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040338.png ; $\lambda \in \Lambda$ ; confidence 0.639
  
62. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003067.png ; $\{ H ^ { * } B V \}$ ; confidence 0.993
+
62. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020064.png ; $\pi \in S _ { n }$ ; confidence 0.639
  
63. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004026.png ; $\Delta t ^ { R }$ ; confidence 0.643
+
63. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840149.png ; $T^+ T = I = T T^+$ ; confidence 0.639
  
64. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004031.png ; $u _ { i } ^ { n + 1 }$ ; confidence 0.811
+
64. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009011.png ; $U _ { n + 1 } ( x ) = \sum _ { j = 0 } ^ { [ n / 2 ] } \frac { ( n - j ) ! } { j ! ( n - 2 j ) ! } x ^ { n - 2 j } , n = 0,1, \dots ,$ ; confidence 0.639
  
65. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120090/k12009033.png ; $( f ^ { * } g ) ( x )$ ; confidence 0.978
+
65. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009062.png ; $\operatorname { Re } h ( z ) > 0$ ; confidence 0.639
  
66. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001033.png ; $C _ { 1 } < C _ { 2 }$ ; confidence 0.987
+
66. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008037.png ; $\langle A \rangle _ { T } = Z ^ { - 1 } \operatorname { Tr } \left[ \operatorname { exp } ( - \frac { \mathcal{H} } { k _ { B } T } ) A \right].$ ; confidence 0.639
  
67. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001072.png ; $N ^ { ( n - 1 ) / 2 }$ ; confidence 0.836
+
67. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062000/m0620002.png ; $( X _ { n } ) _ { n \in \mathbf{Z} }$ ; confidence 0.639
  
68. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001051.png ; $v ^ { ( n - 1 ) / 2 }$ ; confidence 0.760
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024027.png ; $Z ( \mathbf{C} )$ ; confidence 0.639
  
69. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110080/e11008055.png ; $n = 2,3 , \dots$ ; confidence 0.659
+
69. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002023.png ; $f _ { 1 } , \ldots , f _ { d }$ ; confidence 0.639
  
70. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006083.png ; $( \lambda | g )$ ; confidence 0.806
+
70. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005078.png ; $\operatorname {dim} V _ { ( n ) } < \infty$ ; confidence 0.639
  
71. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006078.png ; $z f ( z ) = H f ( z )$ ; confidence 0.997
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024018.png ; $z_1$ ; confidence 0.638
  
72. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018058.png ; $1 \leq j \leq k$ ; confidence 0.999
+
72. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440129.png ; $RN_G(D)$ ; confidence 0.638
  
73. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007065.png ; $v _ { t } / r ^ { t }$ ; confidence 0.341
+
73. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029036.png ; $\operatorname { gcd } ( p _ { 1 } \ldots p _ { k } , q ) = 1$ ; confidence 0.638
  
74. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009069.png ; $11 VI \times g$ ; confidence 0.242
+
74. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020178.png ; $U _ { t } ^ { j } = u _ { j } ( B _ { \operatorname { min }( t , \tau ) }  )$ ; confidence 0.638
  
75. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090126.png ; $( T M , T ^ { * } M )$ ; confidence 0.995
+
75. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130110/t13011019.png ; $\mathcal{Y} ( T _ { A } ) = \left\{ N _ { B } : \operatorname { Tor } _ { 1 } ^ { B } ( N , T ) = 0 \right\},$ ; confidence 0.638
  
76. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010063.png ; $L _ { 0 , n } ^ { 1 }$ ; confidence 0.399
+
76. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021070.png ; $\{ 0 , \pm x _ { 1 } , \ldots , \pm x _ { k } \}$ ; confidence 0.638
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013380/a0133806.png ; $\lambda \in R$ ; confidence 0.999
+
77. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009056.png ; $f _ { n } \in H ^ { \widehat{ \otimes } n }$ ; confidence 0.638
  
78. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023051.png ; $A y = \lambda y$ ; confidence 0.786
+
78. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014092.png ; $K Q$ ; confidence 0.638
  
79. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l13005029.png ; $L ( a ) = \infty$ ; confidence 0.925
+
79. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017041.png ; $H _ { z } ( t )$ ; confidence 0.638
  
80. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003022.png ; $A A ^ { \prime }$ ; confidence 0.995
+
80. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007014.png ; $v ( x , \alpha , k ) = A ( \alpha ^ { \prime } , \alpha , k ) \frac { e ^ { i k r} } { r } + o \left( \frac { 1 } { r } \right),$ ; confidence 0.638
  
81. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l0600302.png ; $A ^ { \prime } A$ ; confidence 0.999
+
81. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020046.png ; $k S _ { n }$ ; confidence 0.638
  
82. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003017.png ; $T ^ { \prime } T$ ; confidence 0.938
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013050/a01305019.png ; $i,j = 1 , \ldots , n$ ; confidence 0.638
  
83. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l0600303.png ; $B ^ { \prime } B$ ; confidence 1.000
+
83. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020032.png ; $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } \leq 2$ ; confidence 0.637
  
84. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003020.png ; $U U ^ { \prime }$ ; confidence 0.997
+
84. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021043.png ; $c_j ( \lambda )$ ; confidence 0.637
  
85. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012020.png ; $\hat { Q } _ { p }$ ; confidence 0.735
+
85. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008024.png ; $S = \{ p _ { 1 } , \dots , p _ { s } \} \cup \{ p : p \text{ is prime and divides } a\}$ ; confidence 0.637
  
86. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012033.png ; $\hat { K } _ { p }$ ; confidence 0.389
+
86. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m1202707.png ; $w = ( w _ { 1 } , \dots , w _ { n } )$ ; confidence 0.637
  
87. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120126.png ; $\phi ( x ) \in O$ ; confidence 0.274
+
87. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029082.png ; $\sum _ { n = 1 } ^ { \infty } y _ { n }$ ; confidence 0.637
  
88. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l12016038.png ; $L _ { 3 / 2 } ^ { 2 }$ ; confidence 0.684
+
88. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028018.png ; $\overline{ \mathbf{E}}_p ( X ) \approx \overline { \mathbf{E} } \square ^ { q } ( S ^ { n } \backslash X ) , p + q = n - 1,$ ; confidence 0.637
  
89. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120160/l1201605.png ; $L _ { 1 / 2 } ^ { 2 }$ ; confidence 0.977
+
89. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110148.png ; $N ( s )$ ; confidence 0.637
  
90. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l1201702.png ; $\hat { K } ^ { 2 }$ ; confidence 0.563
+
90. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004017.png ; $X ( p ) = \operatorname { Re } \int _ { p _ { 0 } } ^ { p } ( \omega _ { 1 } , \ldots , \omega _ { n } ).$ ; confidence 0.637
  
91. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170190.png ; $Wh ^ { * } ( \pi )$ ; confidence 0.872
+
91. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230173.png ; $G _ { i+1 } $ ; confidence 0.637
  
92. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019021.png ; $A ^ { * } P + P A = 0$ ; confidence 0.996
+
92. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008056.png ; $q_2 ( x )$ ; confidence 0.637
  
93. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003090.png ; $\vec { x } _ { j }$ ; confidence 0.206
+
93. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020026.png ; $\operatorname { ker } ( \gamma \circ \alpha ^ { \prime } ) \subset \mathfrak { g }$ ; confidence 0.637
  
94. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003077.png ; $( \vec { x } , y )$ ; confidence 0.980
+
94. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001045.png ; $d \circ e = f$ ; confidence 0.637
  
95. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001025.png ; $\hat { f } \in H$ ; confidence 0.359
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100206.png ; $\mathcal{A}$ ; confidence 0.637
  
96. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002064.png ; $\hat { M } _ { k }$ ; confidence 0.709
+
96. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006023.png ; $z _ { i } = 1 , \dots , p - 1$ ; confidence 0.637
  
97. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120060/m12006011.png ; $P = P ( \rho , T )$ ; confidence 1.000
+
97. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057710/l05771014.png ; $e _ { 1 } , \dots , e _ { s }$ ; confidence 0.637
  
98. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007033.png ; $L ( s , \chi - 3 )$ ; confidence 0.945
+
98. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200132.png ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq$ ; confidence 0.637
  
99. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007038.png ; $L ( s , E _ { 15 } )$ ; confidence 0.651
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025063.png ; $q + 2$ ; confidence 0.637
  
100. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222048.png ; $( h , h , n ) ^ { 2 }$ ; confidence 0.999
+
100. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006050.png ; $h ^ { i } \left( K _ { X } + j L - \sum _ { k = 1 } ^ { r } \left[ \frac { j a _ { k } } { N } \right] D _ { k } \right) = 0,$ ; confidence 0.637
  
101. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222038.png ; $( h , m , n ) ^ { 2 }$ ; confidence 0.999
+
101. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007028.png ; $a , b \in A _ { k }$ ; confidence 0.636
  
102. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222052.png ; $( n , n , n ) ^ { 2 }$ ; confidence 1.000
+
102. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002022.png ; $S _ { k } = \left( \begin{array} { c } { n } \\ { k } \end{array} \right) \frac { ( n - k ) ! } { n ! }$ ; confidence 0.636
  
103. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222054.png ; $P _ { 0 } ^ { x + 1 }$ ; confidence 0.814
+
103. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020084.png ; $\alpha \in \mathbf{Z} \alpha _ { 1 } + \mathbf{Z} \alpha _ { 2 } + \dots$ ; confidence 0.636
  
104. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222040.png ; $( h , h , 3 ) ^ { 2 }$ ; confidence 0.998
+
104. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037074.png ; $C _ { B _ { 2 } } ( L _ { n } )$ ; confidence 0.636
  
105. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222071.png ; $( h , m , n ) ^ { k }$ ; confidence 0.995
+
105. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005016.png ; $\beta ( \phi , \rho ) ( t ) = \int _ { M } u _ { \Phi } \rho.$ ; confidence 0.636
  
106. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044270/g044270181.png ; $J = 1 , \dots , N$ ; confidence 0.597
+
106. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007014.png ; $u ^ { n } = 1$ ; confidence 0.636
  
107. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011033.png ; $\partial F = K$ ; confidence 0.965
+
107. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023029.png ; $\nabla _ { Z } R$ ; confidence 0.636
  
108. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050030/i05003091.png ; $q \in \varrho$ ; confidence 0.307
+
108. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120108.png ; $V _ { \text { simp } } ( K _ { p } )$ ; confidence 0.636
  
109. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012085.png ; $g b = q \dot { b }$ ; confidence 0.514
+
109. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022048.png ; $Z ( g ^ { a } h ^ { c } , g ^ { b } h ^ { d } ; z ) = \alpha Z \left( g ,h ; \frac { a z + b } { c z + d } \right)$ ; confidence 0.636
  
110. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007017.png ; $p ^ { 2 } = m ^ { 2 }$ ; confidence 1.000
+
110. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170110.png ; $M _ { z }$ ; confidence 0.636
  
111. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008026.png ; $E [ 0 , \sigma ]$ ; confidence 0.980
+
111. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f1202109.png ; $a ^ { [ N ] } ( z ) \equiv 1$ ; confidence 0.636
  
112. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m120130121.png ; $\delta \neq 0$ ; confidence 0.940
+
112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009016.png ; $v \notin [ 0,1]$ ; confidence 0.636
  
113. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013081.png ; $\gamma F ^ { p }$ ; confidence 0.459
+
113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032077.png ; $a _ { 2 } = 1$ ; confidence 0.636
  
114. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015055.png ; $Y ( r \times s )$ ; confidence 0.978
+
114. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960301.png ; $\ddot { x } - \mu ( 1 - x ^ { 2 } ) \dot { x } + x = 0 , \quad \mu = \text { const } > 0 , \quad \dot { x } ( t ) \equiv \frac { d x } { d t },$ ; confidence 0.636
  
115. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m1201504.png ; $X ( p \times n )$ ; confidence 0.998
+
115. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012078.png ; $Z \sim N _ { p } ( 0 , I )$ ; confidence 0.636
  
116. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015048.png ; $Z ( p \times n )$ ; confidence 0.995
+
116. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032068.png ; $x , y , z \in E _ { + }$ ; confidence 0.636
  
117. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016011.png ; $\Sigma \geq 0$ ; confidence 0.969
+
117. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028070.png ; $\mathcal{L} _ { W } ( \mathcal{X} , \mathcal{Y} )$ ; confidence 0.636
  
118. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020140/c02014012.png ; $\Sigma _ { 11 }$ ; confidence 0.960
+
118. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002019.png ; $D _ { 1 }$ ; confidence 0.636
  
119. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016021.png ; $A ( q \times p )$ ; confidence 0.997
+
119. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130080/l13008036.png ; $c - 2 \operatorname { deg } I$ ; confidence 0.636
  
120. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016058.png ; $R ^ { p } 1 ^ { N } 1$ ; confidence 0.350
+
120. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040176.png ; $i = 1 , \ldots , 4$ ; confidence 0.636
  
121. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016020.png ; $C ( q \times n )$ ; confidence 0.986
+
121. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001021.png ; $S _ { f } ( a _ { 0 } )$ ; confidence 0.636
  
122. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016022.png ; $B ( n \times m )$ ; confidence 0.999
+
122. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016023.png ; $f | _ { K }$ ; confidence 0.635
  
123. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014027.png ; $H _ { 3 } = \{ 1 \}$ ; confidence 0.998
+
123. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002047.png ; $( \alpha _ { 1 } \cup \gamma , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.635
  
124. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014010.png ; $0 < r < \rho ( x )$ ; confidence 0.996
+
124. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008070.png ; $\mathsf{E} [ C ]$ ; confidence 0.635
  
125. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014092.png ; $b _ { j } ^ { l } > 0$ ; confidence 0.622
+
125. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017083.png ; $\mathcal{C} _ { 1 }$ ; confidence 0.635
  
126. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140127.png ; $p = 1 , \dots , n$ ; confidence 0.668
+
126. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120190.png ; $V ( M )$ ; confidence 0.635
  
127. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301405.png ; $a \sigma _ { y }$ ; confidence 0.110
+
127. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020036.png ; $\left( \begin{array} { c c c c } { 1 } & { 2 } & { 3 } & { 4 } \\ { 5 } & { 6 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 4 } & { 2 } & { 1 } & { 3 } \\ { 6 } & { 5 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) \neq$ ; confidence 0.635
  
128. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101106.png ; $0 \leq n \leq q$ ; confidence 0.952
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013260/a01326011.png ; $E _ { 0 }$ ; confidence 0.635
  
129. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101105.png ; $0 \leq m \leq p$ ; confidence 0.999
+
129. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028021.png ; $A \mathbf{x}$ ; confidence 0.635
  
130. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021017.png ; $K , L \in K ^ { n }$ ; confidence 0.204
+
130. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023099.png ; $X = G \Lambda H$ ; confidence 0.635
  
131. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025044.png ; $F ( \varphi u )$ ; confidence 0.997
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150086.png ; $X \times X$ ; confidence 0.635
  
132. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025045.png ; $F ( \varphi v )$ ; confidence 0.862
+
132. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018029.png ; $A ( \mathbf{D} )$ ; confidence 0.635
  
133. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260202.png ; $0 \leq e \leq 1$ ; confidence 0.682
+
133. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010041.png ; $\mathbf{f} ^ { \text{em} } = \operatorname { div } \mathbf{t} ^ { \text{em} } - \frac { \partial \mathbf{G} ^ { \text{em} } } { \partial t },$ ; confidence 0.635
  
134. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260109.png ; $Q ( A ) = M ( A ) / A$ ; confidence 0.690
+
134. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220053.png ; $z \in D$ ; confidence 0.635
  
135. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002045.png ; $C _ { F } = M _ { F }$ ; confidence 0.999
+
135. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k0550709.png ; $\dim H ^ { 2 r + 1 } ( M , \mathbf{C}) \qquad \text{is even},$ ; confidence 0.635
  
136. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003016.png ; $\mu = \lambda$ ; confidence 0.999
+
136. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002019.png ; $\overline { \delta }_{\operatorname{BRST}}$ ; confidence 0.635
  
137. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n1200405.png ; $A _ { i \psi }$ ; confidence 0.179
+
137. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008076.png ; $\mathcal{P} \equiv \left( \begin{array} { c c } { \operatorname { exp } \left( \frac { J + H } { k _ { B } T } \right) } & { \operatorname { exp } \left( \frac { - J } { k _ { B } T } \right) } \\ { \operatorname { exp } \left( \frac { - J } { k _ { B } T } \right) } & { \operatorname { exp } \left( \frac { J - H } { k _ { B } T } \right) } \end{array} \right).$ ; confidence 0.635
  
138. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005024.png ; $( s , s \mu ; \mu$ ; confidence 0.987
+
138. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024780/c024780257.png ; $V _ { \alpha }$ ; confidence 0.635
  
139. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016730/b0167303.png ; $s = 1,2 , \dots$ ; confidence 0.755
+
139. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210127.png ; $\int _ { A } \operatorname { exp } ( h ^ { \prime } \Delta _ { n } ^ { * } ( \theta ) ) d P _ { n , \theta }$ ; confidence 0.635
  
140. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016970/b01697020.png ; $i = 1 , \dots , s$ ; confidence 0.282
+
140. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110010/k11001048.png ; $T ^ { k }$ ; confidence 0.635
  
141. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010051.png ; $\sigma ( 1 ) = 1$ ; confidence 0.999
+
141. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040101.png ; $\mathsf{P} _ { K } ( 1,0 ) = a _ { 2 }$ ; confidence 0.635
  
142. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011059.png ; $\psi ( x ^ { * } )$ ; confidence 0.833
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040321.png ; $\mathcal{D}$ ; confidence 0.635
  
143. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011073.png ; $\psi _ { x } ( . )$ ; confidence 0.526
+
143. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200211.png ; $\operatorname { max } _ { k = 1 , \ldots , n } \left( \frac { 1 } { n } | s _ { k } | \right) ^ { 1 / k } > \frac { 1 } { 5 } > \frac { 1 } { 2 + \sqrt { 8 } },$ ; confidence 0.635
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680145.png ; $\alpha _ { i j }$ ; confidence 0.938
+
144. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100128.png ; $\rho ( x ) = \sum _ { j = 1 } ^ { N } | u _ { j } ( x ) | ^ { 2 }.$ ; confidence 0.635
  
145. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n06752052.png ; $1 \leq j \leq r$ ; confidence 0.667
+
145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015091.png ; $\mathsf{P} _ { 0 } \in \mathcal{P}$ ; confidence 0.635
  
146. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147035.png ; $j = 1 , \dots , r$ ; confidence 0.610
+
146. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300307.png ; $\mathcal{M} _ { n } = \{ P ( X , Y ) = \sum _ { \nu = 0 } ^ { n } a _ { \nu } X ^ { \nu } Y ^ { n - \nu } : a _ { \nu } \in \mathbf{Q} \},$ ; confidence 0.635
  
147. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520440.png ; $\tilde { \xi }$ ; confidence 0.586
+
147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010019.png ; $\sigma _ { k - 1 } ( n ) = \sum _ { 0 < d | n } d ^ { k - 1 }.$ ; confidence 0.635
  
148. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010133.png ; $[ 2 , \lambda ]$ ; confidence 0.110
+
148. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064072.png ; $\operatorname { lim } _ { \tau \rightarrow \infty } \frac { \operatorname { det } ( I + W _ { \tau } ( k ) ) } { G ( a ) ^ { \tau } } = E ( a ),$ ; confidence 0.634
  
149. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o130010124.png ; $c ^ { \infty } 0$ ; confidence 0.163
+
149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240187.png ; $\| \mathbf{y} - \mathbf{Xb} \| ^ { 2 }$ ; confidence 0.634
  
150. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003036.png ; $j = 1 , \dots , 8$ ; confidence 0.570
+
150. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007072.png ; $\operatorname { Cap } ( E ) = \operatorname { exp } \left( - \operatorname { sup } _ { z \in \text{C} ^ { n } } \rho _ { L _ { E } } ( z ) \right).$ ; confidence 0.634
  
151. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005086.png ; $u _ { X } \in \Im$ ; confidence 0.116
+
151. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111013.png ; $\rightarrow H ^ { n + 1 } ( X , A ; G ) \rightarrow \dots $ ; confidence 0.634
  
152. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005087.png ; $v _ { n } \in G$ ; confidence 0.357
+
152. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006080.png ; $E ^ { \text{TF} } ( N )$ ; confidence 0.634
  
153. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042070/f042070137.png ; $\lambda _ { 2 }$ ; confidence 0.910
+
153. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015067.png ; $\frac { 1 } { \beta _ { p } ( a , b ) } | V | ^ { a - ( p + 1 ) / 2 } | I _ { p } + V | ^ { - ( a + b ) },$ ; confidence 0.634
  
154. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060160.png ; $V _ { \lambda }$ ; confidence 0.948
+
154. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130123.png ; $\mod \Gamma$ ; confidence 0.634
  
155. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008037.png ; $h ( x ) \equiv 0$ ; confidence 0.507
+
155. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017017.png ; $F ( t ) = \int _ { t } ^ { + \infty } p _ { 0 } ( a - t ) \frac { \Pi ( a ) } { \Pi ( a - t ) } d a,$ ; confidence 0.634
  
156. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008069.png ; $p ( x ) \equiv 0$ ; confidence 0.980
+
156. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015067.png ; $B _ { r _ { 1 } } , B _ { r _ { 2 } }$ ; confidence 0.634
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013570/a01357015.png ; $f ( x ) \equiv 0$ ; confidence 0.999
+
157. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m1302008.png ; $Y \in \mathfrak { X } ( M )$ ; confidence 0.634
  
158. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008021.png ; $h ( x ) \equiv 0$ ; confidence 0.998
+
158. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120130/c1201307.png ; $\operatorname{diam}M \leq d,$ ; confidence 0.634
  
159. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005023.png ; $w ( t ) \equiv 1$ ; confidence 0.999
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310114.png ; $G_1$ ; confidence 0.634
  
160. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005078.png ; $\varphi ^ { * }$ ; confidence 0.969
+
160. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019059.png ; $k = 1 / 2$ ; confidence 0.633
  
161. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006027.png ; $\alpha \leq k$ ; confidence 0.873
+
161. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022075.png ; $\operatorname { spec } ( M , \Delta ^ { ( 0 ) } ) , \ldots , \operatorname { spec } ( M , \Delta ^ { ( \dim M ) } )$ ; confidence 0.633
  
162. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459013.png ; $[ 0 , + \infty )$ ; confidence 1.000
+
162. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005064.png ; $\operatorname{QS} ( \mathbf{T} ) = \cup _ { M \geq 1 } M$ ; confidence 0.633
  
163. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810196.png ; $D ^ { \alpha } f$ ; confidence 0.946
+
163. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010037.png ; $\mathbf{E} _ { n }$ ; confidence 0.633
  
164. https://www.encyclopediaofmath.org/legacyimages/p/p071/p071010/p07101038.png ; $p _ { i } \in \pi$ ; confidence 0.960
+
164. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012046.png ; $z \in ( 1 , \dots , M )$ ; confidence 0.633
  
165. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014054.png ; $E ( 7,49 m + 15 )$ ; confidence 0.996
+
165. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014058.png ; $\psi ( \gamma ) = \frac { 2 } { \pi ^ { 2 } \gamma } + O \left( \frac { 1 } { \gamma ^ { 3 } } \right) \text { as } \gamma \rightarrow + \infty.$ ; confidence 0.633
  
166. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070120.png ; $\delta ( z , w )$ ; confidence 1.000
+
166. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001060.png ; $S ^ { 3 } / \Gamma$ ; confidence 0.633
  
167. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057670/l05767026.png ; $x , y , z , t \in G$ ; confidence 0.988
+
167. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004016.png ; $\{ I _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.633
  
168. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c11040011.png ; $H x \preceq H y$ ; confidence 0.949
+
168. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027026.png ; $Q_l ^ { B }$ ; confidence 0.633
  
169. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010027.png ; $z \in \hat { K }$ ; confidence 0.316
+
169. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007071.png ; $\text{Ab} ^ { \text{ZC} }$ ; confidence 0.633
  
170. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015021.png ; $\hat { \chi } K$ ; confidence 0.512
+
170. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004018.png ; $\mathbf{Z} [ v ^ { \pm 1 } , z ^ { \pm 1 } ]$ ; confidence 0.633
  
171. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013028.png ; $\vec { A } _ { 7 }$ ; confidence 0.259
+
171. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017031.png ; $y _ { t } ^ { ( i ) }$ ; confidence 0.633
  
172. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013072.png ; $T _ { \lambda }$ ; confidence 0.960
+
172. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014031.png ; $H$ ; confidence 0.632
  
173. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013020.png ; $T ( z ) = - I _ { n }$ ; confidence 0.554
+
173. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001052.png ; $\alpha \wedge \beta ^ { n } \neq 0$ ; confidence 0.632
  
174. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013066.png ; $\hat { A } _ { y }$ ; confidence 0.167
+
174. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010052.png ; $R _ { 1414 } = a _ { 1 } , R _ { 2323 } = a _ { 1 } , R _ { 3434 } = a _ { 2 } , R _ { 1234 } = a _ { 1 } , R _ { 1324 } = - a _ { 1 } , R _ { 1423 } = a _ { 2 },$ ; confidence 0.632
  
175. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013084.png ; $\hat { S } _ { n }$ ; confidence 0.186
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040232.png ; $E ( \varphi , \psi ) = \{ \epsilon _ { i } ( \varphi , \psi ) : i \in I \}$ ; confidence 0.632
  
176. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041780/f04178016.png ; $T _ { \lambda }$ ; confidence 0.464
+
176. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027013.png ; $R _ { n } = I - Q _ { n }$ ; confidence 0.632
  
177. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013024.png ; $\hat { S } _ { Y }$ ; confidence 0.072
+
177. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017015.png ; $K \subseteq \mathbf{C}$ ; confidence 0.632
  
178. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014028.png ; $f _ { \rho } ( x )$ ; confidence 0.976
+
178. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017470/b017470280.png ; $m_{ij}$ ; confidence 0.632
  
179. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014041.png ; $f \pm ( x _ { 0 } )$ ; confidence 0.973
+
179. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003060.png ; $g ( z ) = r ( z ) + \sum _ { i = 1 } ^ { \infty } s _ { 2 m + i } z ^ { - ( 2 m + i ) }$ ; confidence 0.632
  
180. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014050.png ; $\gamma \neq 0$ ; confidence 0.968
+
180. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024170/c02417020.png ; $V _ { \pm }$ ; confidence 0.632
  
181. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017084.png ; $A = \alpha + i b$ ; confidence 0.488
+
181. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012041.png ; $f = ( f _ { 1 } , \ldots , f _ { M } )$ ; confidence 0.632
  
182. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017037.png ; $\hat { B } ^ { k }$ ; confidence 0.640
+
182. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230110.png ; $C_l$ ; confidence 0.632
  
183. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002023.png ; $1 \leq s \leq k$ ; confidence 0.532
+
183. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010055.png ; $\bigwedge _ { j = 1 } ^ { m } \frac { d z _ { j } - d z _ { j } ^ { \prime } } { z _ { j } - z _ { j } ^ { \prime } }$ ; confidence 0.632
  
184. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001018.png ; $\varphi ; ( f )$ ; confidence 0.495
+
184. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015160/b01516022.png ; $x _ { 0 } > 0$ ; confidence 0.632
  
185. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001086.png ; $( \pi , C , H , J )$ ; confidence 0.993
+
185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150107.png ; $\mathsf{P} _ { n }$ ; confidence 0.632
  
186. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001069.png ; $\tau ^ { 2 } = id$ ; confidence 0.797
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040797.png ; $\mathbf{C} \in \mathsf{K}_0$ ; confidence 0.632
  
187. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050107.png ; $h \in QS ( T , C )$ ; confidence 0.573
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110250/a11025019.png ; $T _ { 0 }$ ; confidence 0.632
  
188. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005055.png ; $T = \partial D$ ; confidence 0.998
+
188. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004083.png ; $\Sigma _ { P } = \{ ( x , \xi ) \in \Omega \times ( \mathbf{R} ^ { n } \backslash \{ 0 \} ) : p _ { m } ( x , \xi ) = 0 \},$ ; confidence 0.632
  
189. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070120.png ; $\{ a , b , c , d \}$ ; confidence 0.944
+
189. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004073.png ; $D _ { x } ^ { \alpha } = D _ { x _ { 1 } } ^ { \alpha _ { 1 } } \ldots D _ { x _ { n } } ^ { \alpha _ { n } }$ ; confidence 0.632
  
190. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007060.png ; $R _ { q ^ { 2 } }$ ; confidence 0.811
+
190. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003041.png ; $f _ { j k l } = \frac { - i } { 4 } \operatorname { Tr } [ ( \lambda _ { j } \lambda _ { k } - \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ].$ ; confidence 0.632
  
191. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070124.png ; $a d - q ^ { - 1 } b c$ ; confidence 0.941
+
191. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017320/b0173204.png ; $W ^ { n }$ ; confidence 0.632
  
192. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q1200807.png ; $b _ { p } ^ { ( 2 ) }$ ; confidence 0.916
+
192. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023068.png ; $\frac { \partial u ( t , x ) } { \partial t } + \frac { 1 } { 2 } \| d _ { x } u ( t , x ) \| ^ { 2 } = 0 , \quad ( t , x ) \in ( 0 , T ) \times H,$ ; confidence 0.632
  
193. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065010/m065010211.png ; $\lambda _ { y }$ ; confidence 0.683
+
193. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018051.png ; $\mathcal{A} ( X )$ ; confidence 0.632
  
194. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008041.png ; $q \leq p \leq P$ ; confidence 0.994
+
194. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200708.png ; $( \alpha _ { 1 } , \dots , \alpha _ { n } )$ ; confidence 0.632
  
195. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q1200802.png ; $p = 1 , \dots , P$ ; confidence 0.528
+
195. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015014.png ; $( A , [. ,. ] )$ ; confidence 0.632
  
196. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008031.png ; $1 \leq p \leq P$ ; confidence 0.995
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018050.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { T _ { n } - S } { S _ { n } - S } = 0.$ ; confidence 0.632
  
197. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319031.png ; $\Lambda _ { 1 }$ ; confidence 0.940
+
197. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026053.png ; $\partial _ { s }$ ; confidence 0.631
  
198. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005040.png ; $( | G | , | A | ) = 1$ ; confidence 0.999
+
198. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011094.png ; $T \in \operatorname{GL} ( n , \mathbf{R} )$ ; confidence 0.631
  
199. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070121.png ; $m ( T ) < \infty$ ; confidence 0.999
+
199. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017020.png ; $\mathsf{E} \varepsilon _ { t } \varepsilon _ { s } ^ { \prime } = \delta _ { s t } \Sigma$ ; confidence 0.631
  
200. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007094.png ; $f , g \in H ^ { 0 }$ ; confidence 0.998
+
200. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p1300906.png ; $B ( x _ { 0 } , r ) = \{ x \in \mathbf{R} ^ { n } : | x - x _ { 0 } | < r \}$ ; confidence 0.631
  
201. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070178.png ; $f ( x ) \in R ( L )$ ; confidence 1.000
+
201. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003036.png ; $F _ { K } \circ \Phi$ ; confidence 0.631
  
202. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008071.png ; $L ^ { 2 } ( T , d m )$ ; confidence 0.998
+
202. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004080.png ; $| x | | y | \bigwedge | y | ^ { 2 } | x | ^ { 2 } = | x | | y |$ ; confidence 0.631
  
203. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008098.png ; $\delta _ { j m }$ ; confidence 0.990
+
203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120080/b12008011.png ; $\mathcal{E} _ { \text{avg} } ( \mu , m ) = \int | \epsilon ( p , m ) | d \mu ( p )$ ; confidence 0.631
  
204. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024120/c0241203.png ; $s = \sigma + i t$ ; confidence 0.999
+
204. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280172.png ; $\pi ( a ) M ^ { U } ( [ t , \infty ) ) \subseteq M ^ { U } ( [ t + s , \infty ) )$ ; confidence 0.631
  
205. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r13011016.png ; $\xi ( \rho ) = 0$ ; confidence 0.999
+
205. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300806.png ; $( \text{l} _ { m } - k ^ { 2 } ) f _ { m } = 0,$ ; confidence 0.631
  
206. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110210/b11021028.png ; $x , y \in R ^ { x }$ ; confidence 0.703
+
206. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009092.png ; $g _ { j } \in L ^ { 2 } ( [ 0,1 ] )$ ; confidence 0.631
  
207. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002034.png ; $N = \partial M$ ; confidence 0.999
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240353.png ; $\mathsf{E} ( \mathbf{Z} _ { 3 } ) = 0$ ; confidence 0.631
  
208. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002039.png ; $l ( u ) = \infty$ ; confidence 0.992
+
208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002054.png ; $+ O \left( \frac { ( \operatorname { log } n ) ^ { 1 / 2 } ( \operatorname { log } \operatorname { log } n ) ^ { 1 / 4 } } { n ^ { 3 / 4 } } \right) \text{ a.s..}$ ; confidence 0.631
  
209. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040125.png ; $\pi \Gamma$ ; confidence 0.616
+
209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022040.png ; $\gamma_j = 0$ ; confidence 0.631
  
210. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004041.png ; $1 \leq i \leq l$ ; confidence 0.881
+
210. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009019.png ; $\{ F _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.631
  
211. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004065.png ; $| \lambda | = n$ ; confidence 0.970
+
211. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043095.png ; $B U _ { q } ( \mathfrak{g} )$ ; confidence 0.631
  
212. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064970/m0649709.png ; $m _ { \lambda }$ ; confidence 0.930
+
212. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010015.png ; $t _ { \operatorname { min } } < t _ { 1 } < \ldots < t _ { m } < t _ { \operatorname { max } }$ ; confidence 0.631
  
213. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s1200502.png ; $| S ( z ) | \leq 1$ ; confidence 0.945
+
213. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050114.png ; $\sigma _ { \pi } ( A , \mathcal{X} ) = \sigma _ { \delta } ( A , \mathcal{X} ) = \sigma _ { \text{T} } ( A , \mathcal{X} )$ ; confidence 0.631
  
214. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034024.png ; $L _ { + } = L _ { - }$ ; confidence 0.895
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015033.png ; $\operatorname{ad}( \mathfrak{g} ) = \operatorname { Der } (\mathfrak{g} )$ ; confidence 0.631
  
215. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150139.png ; $\varphi H G$ ; confidence 0.652
+
215. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036020.png ; $p_y$ ; confidence 0.630
  
216. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015045.png ; $G = SL _ { 2 } ( C )$ ; confidence 0.850
+
216. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003044.png ; $\mathbf{N} ( X )$ ; confidence 0.630
  
217. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040019.png ; $X \cong S ^ { m }$ ; confidence 0.830
+
217. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022400/c0224009.png ; $1 , \dots , n$ ; confidence 0.630
  
218. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s1201607.png ; $\hat { I } _ { B }$ ; confidence 0.051
+
218. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009036.png ; $P _ { \Omega } ( . , \xi )$ ; confidence 0.630
  
219. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041036.png ; $b _ { x , x } + 1 = 1$ ; confidence 0.171
+
219. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b1200603.png ; $D _ { 1 } \subset \mathbf{R} ^ { 2 }$ ; confidence 0.630
  
220. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017400/b017400123.png ; $\Phi ^ { + } ( t )$ ; confidence 0.996
+
220. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013054.png ; $\zeta _ { \lambda } ^ { \pi }$ ; confidence 0.630
  
221. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017400/b017400124.png ; $\Phi ^ { - } ( t )$ ; confidence 0.998
+
221. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002061.png ; $\overline{A} \in \mathcal{S}$ ; confidence 0.630
  
222. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602051.png ; $\Phi ^ { - } ( z )$ ; confidence 0.998
+
222. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023023.png ; $L _ { i } \in \Omega ^ { l } ( N ; T N )$ ; confidence 0.630
  
223. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602050.png ; $\Phi ^ { + } ( z )$ ; confidence 0.997
+
223. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001035.png ; $C _ { 1 } N ^ { ( n - 1 ) / 2 } \leq \| S _ { N } \| \leq C _ { 2 } N ^ { ( n - 1 ) / 2 }.$ ; confidence 0.630
  
224. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074860/p07486026.png ; $0 \leq s \leq l$ ; confidence 0.897
+
224. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f1100107.png ; $ax \leq ay$ ; confidence 0.630
  
225. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045045.png ; $y _ { 1 } < y _ { 2 }$ ; confidence 0.982
+
225. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060112.png ; $\{ r _ { i } ( A ) \} _ { i = 1 } ^ { n }$ ; confidence 0.630
  
226. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045043.png ; $y _ { 1 } > y _ { 2 }$ ; confidence 0.981
+
226. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008048.png ; $m _ { s } = \operatorname { lim } _ { H \rightarrow 0 } m ( T , H ) > 0.$ ; confidence 0.630
  
227. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045039.png ; $x _ { 1 } > x _ { 2 }$ ; confidence 0.971
+
227. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140145.png ; $K I = K ( I , \preceq )$ ; confidence 0.630
  
228. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045071.png ; $\Pi ( u , v ) = u v$ ; confidence 0.990
+
228. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010165.png ; $\sum | c_k| < \infty$ ; confidence 0.630
  
229. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045037.png ; $x _ { 1 } < x _ { 2 }$ ; confidence 0.973
+
229. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230123.png ; $( \mathcal{L} _ { K } \omega ) ( X _ { 1 } , \dots , X _ { k + 1 } ) =$ ; confidence 0.630
  
230. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020060.png ; $M ^ { \lambda }$ ; confidence 0.829
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011050/a01105038.png ; $A _ { \alpha }$ ; confidence 0.630
  
231. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s120200101.png ; $S ^ { \lambda }$ ; confidence 0.639
+
231. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240438.png ; $\mathbf{N}$ ; confidence 0.630
  
232. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020064.png ; $\pi \in S _ { y }$ ; confidence 0.639
+
232. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074520/p07452022.png ; $a + b \in F$ ; confidence 0.629
  
233. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120200/s12020092.png ; $D ^ { \lambda }$ ; confidence 0.982
+
233. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014051.png ; $r ( 1 + 2.78 / \lambda )$ ; confidence 0.629
  
234. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304907.png ; $r ( q ) = r ( p ) + 1$ ; confidence 0.998
+
234. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e12005027.png ; $( u = v ) \in S$ ; confidence 0.629
  
235. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023074.png ; $Q ( q \times p )$ ; confidence 0.994
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a01018013.png ; $R$ ; confidence 0.629
  
236. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230146.png ; $A ( n \times n )$ ; confidence 0.964
+
236. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304509.png ; $\overline { R } = \sum _ { i = 1 } ^ { n } R _ { i } / n = ( n + 1 ) / 2 = \sum _ { i = 1 } ^ { n } S _ { i } / n = \overline { S }$ ; confidence 0.629
  
237. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023059.png ; $K ^ { \prime } K$ ; confidence 0.996
+
237. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002033.png ; $\overline { H } \square ^ { * }$ ; confidence 0.629
  
238. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023027.png ; $T ( q \times n )$ ; confidence 0.999
+
238. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015037.png ; $G \subset \operatorname { GL } ( V )$ ; confidence 0.629
  
239. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023017.png ; $T ( p \times n )$ ; confidence 0.999
+
239. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020197.png ; $H ^ { n } ( S ^ { n } )$ ; confidence 0.629
  
240. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023078.png ; $A ( p \times p )$ ; confidence 0.996
+
240. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006030.png ; $\widetilde { D } = \{ \alpha \in G : \alpha D \alpha ^ { - 1 } \text { is commensurable with} \ D\}$ ; confidence 0.629
  
241. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230151.png ; $k ( A ) = k \geq p$ ; confidence 0.457
+
241. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021041.png ; $p _ { m } ( z ) = m ! \sum _ { 0 \leq n \leq m - 1 } b _ { m } ( n + 1 ) z ^ { n } , \quad z \in \mathbf{C},$ ; confidence 0.629
  
242. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230108.png ; $X : = U \wedge V$ ; confidence 0.499
+
242. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003023.png ; $c _ { 1 } ( M ) _ { \mathbf{R} } > 0$ ; confidence 0.629
  
243. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023037.png ; $X X ^ { \prime }$ ; confidence 0.734
+
243. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t1200807.png ; $x , y , z _ { 1 } , \dots , z _ { s } \in \mathbf{Z}$ ; confidence 0.629
  
244. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023056.png ; $K ( n \times m )$ ; confidence 0.972
+
244. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012049.png ; $X ^ { 2 n + 1 }$ ; confidence 0.629
  
245. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230158.png ; $j = 1 , \dots , s$ ; confidence 0.667
+
245. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005046.png ; $k = i k_j$ ; confidence 0.629
  
246. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510115.png ; $1 = \infty ( L )$ ; confidence 0.789
+
246. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330266.png ; $H _ { p }$ ; confidence 0.629
  
247. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510114.png ; $k = \infty ( K )$ ; confidence 0.989
+
247. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090116.png ; $\Gamma = \operatorname { Gal } ( K / k )$ ; confidence 0.628
  
248. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510111.png ; $\gamma ( v ) = 1$ ; confidence 0.993
+
248. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009094.png ; $\mathbf{x} = ( x , \ldots , x )$ ; confidence 0.628
  
249. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024053.png ; $\varepsilon$ ; confidence 0.789
+
249. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140138.png ; $q_l : \mathbf{Z} ^ { l } \rightarrow \mathbf{Z}$ ; confidence 0.628
  
250. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024054.png ; $x _ { x } ^ { x + 1 }$ ; confidence 0.425
+
250. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002010.png ; $\operatorname { su } ( 2 )$ ; confidence 0.628
  
251. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024057.png ; $x _ { i } ^ { n + 1 }$ ; confidence 0.866
+
251. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029081.png ; $y _ { n } \geq 0$ ; confidence 0.628
  
252. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024031.png ; $h * ( . ) = E * ( . )$ ; confidence 0.805
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240516.png ; $\mathbf{R} = \mathbf{V} _ { 33 } ^ { - 1 } \mathbf{V} _ { 32 }$ ; confidence 0.628
  
253. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053093.png ; $( r - r _ { P } - 1 )$ ; confidence 0.816
+
253. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210104.png ; $\rho = ( 1 / 2 ) \sum _ { \alpha \in \Delta ^ { + } } \alpha$ ; confidence 0.628
  
254. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053085.png ; $1 \leq s \leq n$ ; confidence 0.999
+
254. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130050/n13005044.png ; $\operatorname{TD} [ r , s ]$ ; confidence 0.628
  
255. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054065.png ; $\Delta ^ { 2 } F$ ; confidence 0.577
+
255. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014026.png ; $\| W _ { k } \| = \| \mathcal{F} k \| _ { L^\infty } $ ; confidence 0.628
  
256. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202501.png ; $\{ E _ { n } + 1 \}$ ; confidence 0.653
+
256. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340123.png ; $u_-$ ; confidence 0.628
  
257. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026047.png ; $( L ^ { 2 } ) ^ { + }$ ; confidence 0.959
+
257. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020135.png ; $f \in X \text{ implies } \bar{f} \in X \text{ and } \mathcal{P}_-f \in X,$ ; confidence 0.628
  
258. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202608.png ; $L ^ { 2 } ( R , d t )$ ; confidence 0.977
+
258. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005020.png ; $n ^ { \text { th } }$ ; confidence 0.628
  
259. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026037.png ; $( L ^ { 2 } ) ^ { - }$ ; confidence 0.993
+
259. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016023.png ; $A X B + C \sim E _ { q , n } ( A M B + C , ( A \Sigma A ^ { \prime } ) \otimes ( B ^ { \prime } \Phi B ) , \psi )$ ; confidence 0.628
  
260. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055700/k05570017.png ; $A _ { t } ^ { * }$ ; confidence 0.985
+
260. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011010.png ; $x . D _ { x }$ ; confidence 0.628
  
261. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058029.png ; $\xi _ { i } ^ { 0 }$ ; confidence 0.278
+
261. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011044.png ; $x \notin - \Delta ^ { \circ }$ ; confidence 0.628
  
262. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058013.png ; $\xi _ { i } ^ { 0 }$ ; confidence 0.745
+
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022072.png ; $\partial _ { t } \eta ( u ) + \operatorname { div } _ { x } G ( u ) \leq 0,$ ; confidence 0.627
  
263. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027020.png ; $b _ { v , m } \in R$ ; confidence 0.692
+
263. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023047.png ; $\operatorname { St } _ { G } ( u )$ ; confidence 0.627
  
264. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059023.png ; $L ( z ) \equiv 0$ ; confidence 0.678
+
264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023044.png ; $\frac { 1 } { ( 2 \pi ) ^ { n p / 2 } } | \Sigma | ^ { - n / 2 } \operatorname { etr } \left\{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } X X ^ { \prime } \right\} , X \in \mathbf{R} ^ { p \times n },$ ; confidence 0.627
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a012980100.png ; $n = 1,2 , \dots$ ; confidence 0.585
+
265. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052030.png ; $3 / 2$ ; confidence 0.627
  
266. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059033.png ; $n = 1,2 , \dots$ ; confidence 0.599
+
266. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200305.png ; $P \subset X$ ; confidence 0.627
  
267. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059020.png ; $L \in \Lambda$ ; confidence 0.596
+
267. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020115.png ; $x _ { 0 } \in F ( x _ { 0 } )$ ; confidence 0.627
  
268. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d0319508.png ; $\mathscr { D }$ ; confidence 0.258
+
268. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100137.png ; $K \subset \mathbf{C} ^ { n + 1 }$ ; confidence 0.627
  
269. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s1202802.png ; $X = ( X , x _ { 0 } )$ ; confidence 0.995
+
269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080215.png ; $W = p ^ { n + 1 } - q _ { 1 } p ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.627
  
270. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067096.png ; $V _ { ( 2 ) } ^ { 1 }$ ; confidence 0.769
+
270. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m1302507.png ; $0 = ( \delta ( x ) x ) \operatorname { vp } \frac { 1 } { x } \neq \delta ( x ) \left( x \operatorname{vp} \frac { 1 } { x } \right) = \delta ( x )$ ; confidence 0.627
  
271. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067037.png ; $x = u ^ { - 1 } ( 0 )$ ; confidence 0.991
+
271. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005082.png ; $\sigma _ { \delta }$ ; confidence 0.627
  
272. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620112.png ; $m + ( \lambda )$ ; confidence 0.810
+
272. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015570/b01557030.png ; $D _ { j }$ ; confidence 0.627
  
273. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620131.png ; $v ( , \lambda )$ ; confidence 0.608
+
273. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001053.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { s } , \dots , \lambda _ { t } )$ ; confidence 0.627
  
274. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620171.png ; $q ( x + L ) = q ( x )$ ; confidence 0.998
+
274. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004067.png ; $\Gamma \subset \Omega \times ( \mathbf{R} ^ { n } \backslash \{ 0 \} )$ ; confidence 0.627
  
275. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015450/b0154509.png ; $\{ x _ { 1 } , x \}$ ; confidence 0.268
+
275. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012086.png ; $c _ { t } ^ { \prime } > c _ { t }$ ; confidence 0.627
  
276. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090820/s09082025.png ; $\sigma ( X , Y )$ ; confidence 1.000
+
276. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032088.png ; $a _ { n^i }  = ( a _ { n } )^i$ ; confidence 0.627
  
277. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202906.png ; $\{ x _ { n } , j \}$ ; confidence 0.290
+
277. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150127.png ; $G /G_x$ ; confidence 0.627
  
278. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911905.png ; $V _ { \square }$ ; confidence 0.528
+
278. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030161.png ; $l ^ { 2 } ( \Gamma )$ ; confidence 0.627
  
279. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033052.png ; $( 176,50,14 )$ ; confidence 0.998
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032027.png ; $u_{m + 1}$ ; confidence 0.627
  
280. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034047.png ; $g ( \omega , J )$ ; confidence 0.998
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028071.png ; $\rho \otimes x$ ; confidence 0.627
  
281. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064062.png ; $W _ { \tau } ( k )$ ; confidence 0.583
+
281. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230143.png ; $S _ { i } > 0 , i = 1 , \dots , r.$ ; confidence 0.627
  
282. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065012.png ; $\| H \| _ { \mu }$ ; confidence 0.968
+
282. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002014.png ; $y _ { j } < y _ { k }$ ; confidence 0.627
  
283. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004014.png ; $\tau x ^ { n }$ ; confidence 0.790
+
283. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019030.png ; $= \pi ^ { 2 } \sqrt { \frac { \pi } { 2 } } \int _ { 0 } ^ { \infty } \tau \frac { \operatorname { sinh } ( \pi \tau ) } { \operatorname { cosh } ^ { 3 } ( \pi \tau ) } P _ { i \tau - 1 / 2 } ( x ) F ( \tau ) G ( \tau ) d \tau,$ ; confidence 0.627
  
284. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t1300408.png ; $j = 1,2 , \dots$ ; confidence 0.516
+
284. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019021.png ; $n/ ( k - 1 )$ ; confidence 0.627
  
285. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050184.png ; $( L , A , R _ { B } )$ ; confidence 0.536
+
285. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211030.png ; $p _ { i } ( \theta ) = \mathsf{P} \{ X _ { i } \in ( x _ { i  - 1} , x _ { i } ] \} > 0,$ ; confidence 0.626
  
286. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007030.png ; $a 0 , a 1 , \dots$ ; confidence 0.371
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240206.png ; $\operatorname{rank} ( \mathbf{X} ) = r$ ; confidence 0.626
  
287. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044270/g04427053.png ; $s = 1 , \dots , r$ ; confidence 0.769
+
287. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300303.png ; $\rho : G / \mathbf{Q} \rightarrow \operatorname{GL} (\mathcal{M} )$ ; confidence 0.626
  
288. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005020.png ; $0 \leq i \leq i$ ; confidence 0.780
+
288. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060108.png ; $\rho _ { \text{atom} } ^ { \text{TF} } ( x , N = Z , Z ) \sim \gamma ^ { 3 } \left( \frac { 3 } { \pi } \right) ^ { 3 } | x | ^ { - 6 },$ ; confidence 0.626
  
289. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050101.png ; $\imath 1 = n - p$ ; confidence 0.433
+
289. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010037.png ; $\forall x \forall y \exists z \forall v ( v \in z \leftrightarrow ( v = x \vee v = y ) ).$ ; confidence 0.626
  
290. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t13009023.png ; $f ^ { - 1 } ( S )$ ; confidence 0.998
+
290. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003030.png ; $\operatorname{Ch} ( [ a ] ) \mathcal{T} ( M )$ ; confidence 0.626
  
291. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060141.png ; $B \ll Z ^ { 4 / 3 }$ ; confidence 0.988
+
291. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005047.png ; $i = 1 , \ldots , k$ ; confidence 0.626
  
292. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007081.png ; $\vec { E } _ { B }$ ; confidence 0.367
+
292. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w1301203.png ; $\operatorname{CL} ( X )$ ; confidence 0.626
  
293. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007024.png ; $z \mapsto z + k$ ; confidence 0.905
+
293. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180427.png ; $( q _ { 1 } , \dots , q _ { m } )$ ; confidence 0.626
  
294. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430142.png ; $E _ { 8 } ^ { ( 1 ) }$ ; confidence 0.974
+
294. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313056.png ; $B / A$ ; confidence 0.626
  
295. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008015.png ; $O _ { S } ^ { * }$ ; confidence 0.936
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240433.png ; $\mathbf{A} \Theta \mathbf{B}$ ; confidence 0.626
  
296. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013084.png ; $Ext ^ { 2 } ( . . )$ ; confidence 0.282
+
296. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004044.png ; $s = ( s _ { 1 } , \dots , s _ { n } ) : \partial D \times D \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.626
  
297. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130108.png ; $P _ { \Lambda }$ ; confidence 0.733
+
297. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110197.png ; $G _ { X } ( X - Y) \leq \rho ^ { 2 } \Rightarrow G _ { Y } \leq C G _ { X };$ ; confidence 0.626
  
298. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140146.png ; $( I , \preceq )$ ; confidence 0.923
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013044.png ; $F _ { j k } =$ ; confidence 0.626
  
299. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140177.png ; $Z ^ { ( l _ { C } ) }$ ; confidence 0.693
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008024.png ; $\mathcal{M}$ ; confidence 0.626
  
300. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014091.png ; $R \simeq K Q / I$ ; confidence 0.889
+
300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420115.png ; $U _ { q } ( \mathfrak { g } )$ ; confidence 0.626

Latest revision as of 15:12, 10 May 2020

List

1. l11002031.png ; $f , g \in C [ \mathbf{R} ]$ ; confidence 0.643

2. n1200303.png ; $o : 1 \rightarrow N$ ; confidence 0.643

3. k12005017.png ; $r ( K _ { X } + B )$ ; confidence 0.643

4. b0151607.png ; $\mathbf{1}$ ; confidence 0.643

5. w130080180.png ; $\widetilde { F B }$ ; confidence 0.643

6. c120180469.png ; $\pi _ { 0 } : N _ { 0 } \rightarrow N$ ; confidence 0.643

7. c0215409.png ; $x \in A ^ { + }$ ; confidence 0.643

8. w12021023.png ; $\{ A _ { i } \} _ { i = 1 } ^ { k }$ ; confidence 0.642

9. l12020010.png ; $\operatorname{cat}_{\mathbf{R} P ^ { n }} \mathbf{R}P^n \geq n + 1$ ; confidence 0.642

10. d1200704.png ; $\sigma _ { 1 } , \ldots , \sigma _ { t }$ ; confidence 0.642

11. d1201606.png ; $C ( S \times T )$ ; confidence 0.642

12. t1200806.png ; $F ( x , y ) = a p _ { 1 } ^ { z _ { 1 } } \dots p _ { s } ^ { z _ { s } }$ ; confidence 0.642

13. s12025030.png ; $\sqrt { 1 - x ^ { 2 } } w ( x ) > 0$ ; confidence 0.642

14. h04807042.png ; $S = \frac { 1 } { n - 1 } \sum _ { i = 1 } ^ { n } ( X _ { i } - \overline{X} ) ( X _ { i } - \overline{X} ) ^ { \prime },$ ; confidence 0.642

15. b01738052.png ; $\phi_j$ ; confidence 0.642

16. c13026030.png ; $\langle [ A ] , \phi \rangle = \int _ { \operatorname { reg } A } \phi.$ ; confidence 0.642

17. a13024048.png ; $s \times p$ ; confidence 0.642

18. a11058065.png ; $l_2$ ; confidence 0.642

19. f12011090.png ; $F _ { \sigma } \in \widetilde { \mathcal{O} } ( ( \Omega + \Gamma _ { \sigma } ) \cap U ).$ ; confidence 0.642

20. e03500038.png ; $N _ { \epsilon } ( C )$ ; confidence 0.642

21. a12002028.png ; $X \times Y$ ; confidence 0.642

22. d03029013.png ; $Q \in [ a , b ]$ ; confidence 0.642

23. m1300601.png ; $f _ { 1 } : = x _ { 1 } ^ { d },$ ; confidence 0.642

24. s12022037.png ; $t \searrow 0$ ; confidence 0.641

25. t12006026.png ; $E ^ { \text{TF} } ( N ) = \operatorname { inf } \{ \mathcal{E} ( \rho ) : \rho \in L ^ { 5 / 3 } , \int \rho = N , \rho \geq 0 \},$ ; confidence 0.641

26. f13010058.png ; $L _ { \text{C} } ^ { p } ( G )$ ; confidence 0.641

27. t09408036.png ; $\pi _ { n } ( X ; A , B , * ) = \pi _ { n - 1 } ( \Omega ( X ; A , B ) , * ).$ ; confidence 0.641

28. b12021045.png ; $\mathfrak{p} \subset \mathfrak{a}$ ; confidence 0.641

29. b01566019.png ; $h = 1$ ; confidence 0.641

30. c12005017.png ; $f \rightarrow \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } \operatorname { Re } \frac { e ^ { i t } + z } { e ^ { t t } - z } f ( e ^ { i t } ) d t,$ ; confidence 0.641

31. f11001056.png ; $e \leq x$ ; confidence 0.641

32. l0570009.png ; $x \in \Lambda$ ; confidence 0.641

33. b11002029.png ; $\| u_f \| \leq \| f \| / c$ ; confidence 0.641

34. e12023089.png ; $E ^ { k } = M \times F \times F ^ { ( 1 ) } \times \ldots F ^ { ( k ) }$ ; confidence 0.641

35. a13032042.png ; $\mathsf{E} _ { \theta } ( N ) = \frac { \mathsf{P} _ { \theta } ( S _ { N } = K ) K - \mathsf{P} _ { \theta } ( S _ { N } = - J ) J } { 2 \theta - 1 }.$ ; confidence 0.641

36. s0906703.png ; $U : \mathcal{C} \rightarrow \operatorname{Set}$ ; confidence 0.641

37. l12007034.png ; $s = 1 + p _ { 1 } / r + \ldots + p _ { 1 } \ldots p _ { k - 1 } / r ^ { k - 1 }$ ; confidence 0.641

38. v120020100.png ; $y _ { 0 } = g ( x _ { 0 } )$ ; confidence 0.641

39. c13019048.png ; $A = \operatorname { diag } ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.641

40. l120170281.png ; $d _ { 2 } ( e _ { 2 } ^ { j } )$ ; confidence 0.640

41. m1300501.png ; $a \leftrightarrow b a b ^ { - 1 }$ ; confidence 0.640

42. c02057069.png ; $\phi _ { p }$ ; confidence 0.640

43. f12004047.png ; $( \mathbf{R} _ { + } \backslash \{ 0 \} , \times , \leq )$ ; confidence 0.640

44. c120180277.png ; $\in \bigotimes \square ^ { p + q + 1 } \mathcal{E}$ ; confidence 0.640

45. h13002064.png ; $R \subseteq A ^ { n }$ ; confidence 0.640

46. b12015037.png ; $\text{E} _ { \mathsf{P} } ( d _ { 0 } ) = 0$ ; confidence 0.640

47. c13010027.png ; $( C ) \int _ { A } f d m = ( C ) \int f . \chi _ { A } d m$ ; confidence 0.640

48. b12009020.png ; $0 \leq t < \infty$ ; confidence 0.640

49. p12017037.png ; $\widehat { B^* } $ ; confidence 0.640

50. a1303205.png ; $\mathsf{E} _ { \theta } ( X _ { i } ) = \mathsf{P} _ { \theta } ( X _ { i } = 1 ) = \theta = 1 - \mathsf{P} _ { \theta } ( X _ { i } = 0 )$ ; confidence 0.640

51. e12010015.png ; $\mathbf{f} ^ { \text{em} } = q _ { f } \mathbf{E} + \frac { 1 } { c } \mathbf{J} \times \mathbf{B} + ( \nabla \mathbf{E} ). \mathbf{P} + ( \nabla \mathbf{B} ). \mathbf{M} +$ ; confidence 0.640

52. w13004048.png ; $\operatorname{II}( W , V ) = - \operatorname { Re } ( \eta ( W ) d g ( V ) ).$ ; confidence 0.640

53. r1300508.png ; $a , b \in \Omega$ ; confidence 0.640

54. l12013020.png ; $x \in \widetilde{\mathbf{Z}}$ ; confidence 0.640

55. m12023062.png ; $f _ { t , s }$ ; confidence 0.640

56. y12001030.png ; $R = \sum _ { s = 1 } ^ { n } a _ { s } \otimes b _ { s } \in A \otimes _ { k } A$ ; confidence 0.640

57. b13023016.png ; $\overline { m } = \{ m _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.639

58. s120200101.png ; $S ^ { \lambda }$ ; confidence 0.639

59. c13016023.png ; $\operatorname{SAT}$ ; confidence 0.639

60. b12034016.png ; $K_n$ ; confidence 0.639

61. a130040338.png ; $\lambda \in \Lambda$ ; confidence 0.639

62. s12020064.png ; $\pi \in S _ { n }$ ; confidence 0.639

63. k055840149.png ; $T^+ T = I = T T^+$ ; confidence 0.639

64. f13009011.png ; $U _ { n + 1 } ( x ) = \sum _ { j = 0 } ^ { [ n / 2 ] } \frac { ( n - j ) ! } { j ! ( n - 2 j ) ! } x ^ { n - 2 j } , n = 0,1, \dots ,$ ; confidence 0.639

65. b12009062.png ; $\operatorname { Re } h ( z ) > 0$ ; confidence 0.639

66. i12008037.png ; $\langle A \rangle _ { T } = Z ^ { - 1 } \operatorname { Tr } \left[ \operatorname { exp } ( - \frac { \mathcal{H} } { k _ { B } T } ) A \right].$ ; confidence 0.639

67. m0620002.png ; $( X _ { n } ) _ { n \in \mathbf{Z} }$ ; confidence 0.639

68. a12024027.png ; $Z ( \mathbf{C} )$ ; confidence 0.639

69. g13002023.png ; $f _ { 1 } , \ldots , f _ { d }$ ; confidence 0.639

70. v13005078.png ; $\operatorname {dim} V _ { ( n ) } < \infty$ ; confidence 0.639

71. a01024018.png ; $z_1$ ; confidence 0.638

72. b120440129.png ; $RN_G(D)$ ; confidence 0.638

73. d12029036.png ; $\operatorname { gcd } ( p _ { 1 } \ldots p _ { k } , q ) = 1$ ; confidence 0.638

74. j120020178.png ; $U _ { t } ^ { j } = u _ { j } ( B _ { \operatorname { min }( t , \tau ) } )$ ; confidence 0.638

75. t13011019.png ; $\mathcal{Y} ( T _ { A } ) = \left\{ N _ { B } : \operatorname { Tor } _ { 1 } ^ { B } ( N , T ) = 0 \right\},$ ; confidence 0.638

76. w12021070.png ; $\{ 0 , \pm x _ { 1 } , \ldots , \pm x _ { k } \}$ ; confidence 0.638

77. w13009056.png ; $f _ { n } \in H ^ { \widehat{ \otimes } n }$ ; confidence 0.638

78. t13014092.png ; $K Q$ ; confidence 0.638

79. w13017041.png ; $H _ { z } ( t )$ ; confidence 0.638

80. i13007014.png ; $v ( x , \alpha , k ) = A ( \alpha ^ { \prime } , \alpha , k ) \frac { e ^ { i k r} } { r } + o \left( \frac { 1 } { r } \right),$ ; confidence 0.638

81. s12020046.png ; $k S _ { n }$ ; confidence 0.638

82. a01305019.png ; $i,j = 1 , \ldots , n$ ; confidence 0.638

83. w12020032.png ; $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } \leq 2$ ; confidence 0.637

84. f12021043.png ; $c_j ( \lambda )$ ; confidence 0.637

85. t12008024.png ; $S = \{ p _ { 1 } , \dots , p _ { s } \} \cup \{ p : p \text{ is prime and divides } a\}$ ; confidence 0.637

86. m1202707.png ; $w = ( w _ { 1 } , \dots , w _ { n } )$ ; confidence 0.637

87. d12029082.png ; $\sum _ { n = 1 } ^ { \infty } y _ { n }$ ; confidence 0.637

88. s12028018.png ; $\overline{ \mathbf{E}}_p ( X ) \approx \overline { \mathbf{E} } \square ^ { q } ( S ^ { n } \backslash X ) , p + q = n - 1,$ ; confidence 0.637

89. z130110148.png ; $N ( s )$ ; confidence 0.637

90. w13004017.png ; $X ( p ) = \operatorname { Re } \int _ { p _ { 0 } } ^ { p } ( \omega _ { 1 } , \ldots , \omega _ { n } ).$ ; confidence 0.637

91. d120230173.png ; $G _ { i+1 } $ ; confidence 0.637

92. o13008056.png ; $q_2 ( x )$ ; confidence 0.637

93. m13020026.png ; $\operatorname { ker } ( \gamma \circ \alpha ^ { \prime } ) \subset \mathfrak { g }$ ; confidence 0.637

94. e12001045.png ; $d \circ e = f$ ; confidence 0.637

95. a0100206.png ; $\mathcal{A}$ ; confidence 0.637

96. l13006023.png ; $z _ { i } = 1 , \dots , p - 1$ ; confidence 0.637

97. l05771014.png ; $e _ { 1 } , \dots , e _ { s }$ ; confidence 0.637

98. t120200132.png ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq$ ; confidence 0.637

99. a12025063.png ; $q + 2$ ; confidence 0.637

100. k12006050.png ; $h ^ { i } \left( K _ { X } + j L - \sum _ { k = 1 } ^ { r } \left[ \frac { j a _ { k } } { N } \right] D _ { k } \right) = 0,$ ; confidence 0.637

101. h12007028.png ; $a , b \in A _ { k }$ ; confidence 0.636

102. i13002022.png ; $S _ { k } = \left( \begin{array} { c } { n } \\ { k } \end{array} \right) \frac { ( n - k ) ! } { n ! }$ ; confidence 0.636

103. b13020084.png ; $\alpha \in \mathbf{Z} \alpha _ { 1 } + \mathbf{Z} \alpha _ { 2 } + \dots$ ; confidence 0.636

104. b12037074.png ; $C _ { B _ { 2 } } ( L _ { n } )$ ; confidence 0.636

105. h12005016.png ; $\beta ( \phi , \rho ) ( t ) = \int _ { M } u _ { \Phi } \rho.$ ; confidence 0.636

106. z13007014.png ; $u ^ { n } = 1$ ; confidence 0.636

107. d12023029.png ; $\nabla _ { Z } R$ ; confidence 0.636

108. l120120108.png ; $V _ { \text { simp } } ( K _ { p } )$ ; confidence 0.636

109. m13022048.png ; $Z ( g ^ { a } h ^ { c } , g ^ { b } h ^ { d } ; z ) = \alpha Z \left( g ,h ; \frac { a z + b } { c z + d } \right)$ ; confidence 0.636

110. c120170110.png ; $M _ { z }$ ; confidence 0.636

111. f1202109.png ; $a ^ { [ N ] } ( z ) \equiv 1$ ; confidence 0.636

112. b13009016.png ; $v \notin [ 0,1]$ ; confidence 0.636

113. b12032077.png ; $a _ { 2 } = 1$ ; confidence 0.636

114. v0960301.png ; $\ddot { x } - \mu ( 1 - x ^ { 2 } ) \dot { x } + x = 0 , \quad \mu = \text { const } > 0 , \quad \dot { x } ( t ) \equiv \frac { d x } { d t },$ ; confidence 0.636

115. e12012078.png ; $Z \sim N _ { p } ( 0 , I )$ ; confidence 0.636

116. b12032068.png ; $x , y , z \in E _ { + }$ ; confidence 0.636

117. a12028070.png ; $\mathcal{L} _ { W } ( \mathcal{X} , \mathcal{Y} )$ ; confidence 0.636

118. a11002019.png ; $D _ { 1 }$ ; confidence 0.636

119. l13008036.png ; $c - 2 \operatorname { deg } I$ ; confidence 0.636

120. a110040176.png ; $i = 1 , \ldots , 4$ ; confidence 0.636

121. h11001021.png ; $S _ { f } ( a _ { 0 } )$ ; confidence 0.636

122. b13016023.png ; $f | _ { K }$ ; confidence 0.635

123. h13002047.png ; $( \alpha _ { 1 } \cup \gamma , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.635

124. q12008070.png ; $\mathsf{E} [ C ]$ ; confidence 0.635

125. p12017083.png ; $\mathcal{C} _ { 1 }$ ; confidence 0.635

126. l120120190.png ; $V ( M )$ ; confidence 0.635

127. s12020036.png ; $\left( \begin{array} { c c c c } { 1 } & { 2 } & { 3 } & { 4 } \\ { 5 } & { 6 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 4 } & { 2 } & { 1 } & { 3 } \\ { 6 } & { 5 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) \neq$ ; confidence 0.635

128. a01326011.png ; $E _ { 0 }$ ; confidence 0.635

129. f13028021.png ; $A \mathbf{x}$ ; confidence 0.635

130. s12023099.png ; $X = G \Lambda H$ ; confidence 0.635

131. a01150086.png ; $X \times X$ ; confidence 0.635

132. d12018029.png ; $A ( \mathbf{D} )$ ; confidence 0.635

133. e12010041.png ; $\mathbf{f} ^ { \text{em} } = \operatorname { div } \mathbf{t} ^ { \text{em} } - \frac { \partial \mathbf{G} ^ { \text{em} } } { \partial t },$ ; confidence 0.635

134. a01220053.png ; $z \in D$ ; confidence 0.635

135. k0550709.png ; $\dim H ^ { 2 r + 1 } ( M , \mathbf{C}) \qquad \text{is even},$ ; confidence 0.635

136. f13002019.png ; $\overline { \delta }_{\operatorname{BRST}}$ ; confidence 0.635

137. i12008076.png ; $\mathcal{P} \equiv \left( \begin{array} { c c } { \operatorname { exp } \left( \frac { J + H } { k _ { B } T } \right) } & { \operatorname { exp } \left( \frac { - J } { k _ { B } T } \right) } \\ { \operatorname { exp } \left( \frac { - J } { k _ { B } T } \right) } & { \operatorname { exp } \left( \frac { J - H } { k _ { B } T } \right) } \end{array} \right).$ ; confidence 0.635

138. c024780257.png ; $V _ { \alpha }$ ; confidence 0.635

139. c120210127.png ; $\int _ { A } \operatorname { exp } ( h ^ { \prime } \Delta _ { n } ^ { * } ( \theta ) ) d P _ { n , \theta }$ ; confidence 0.635

140. k11001048.png ; $T ^ { k }$ ; confidence 0.635

141. j130040101.png ; $\mathsf{P} _ { K } ( 1,0 ) = a _ { 2 }$ ; confidence 0.635

142. a130040321.png ; $\mathcal{D}$ ; confidence 0.635

143. t120200211.png ; $\operatorname { max } _ { k = 1 , \ldots , n } \left( \frac { 1 } { n } | s _ { k } | \right) ^ { 1 / k } > \frac { 1 } { 5 } > \frac { 1 } { 2 + \sqrt { 8 } },$ ; confidence 0.635

144. l120100128.png ; $\rho ( x ) = \sum _ { j = 1 } ^ { N } | u _ { j } ( x ) | ^ { 2 }.$ ; confidence 0.635

145. b12015091.png ; $\mathsf{P} _ { 0 } \in \mathcal{P}$ ; confidence 0.635

146. e1300307.png ; $\mathcal{M} _ { n } = \{ P ( X , Y ) = \sum _ { \nu = 0 } ^ { n } a _ { \nu } X ^ { \nu } Y ^ { n - \nu } : a _ { \nu } \in \mathbf{Q} \},$ ; confidence 0.635

147. f12010019.png ; $\sigma _ { k - 1 } ( n ) = \sum _ { 0 < d | n } d ^ { k - 1 }.$ ; confidence 0.635

148. s13064072.png ; $\operatorname { lim } _ { \tau \rightarrow \infty } \frac { \operatorname { det } ( I + W _ { \tau } ( k ) ) } { G ( a ) ^ { \tau } } = E ( a ),$ ; confidence 0.634

149. a130240187.png ; $\| \mathbf{y} - \mathbf{Xb} \| ^ { 2 }$ ; confidence 0.634

150. p13007072.png ; $\operatorname { Cap } ( E ) = \operatorname { exp } \left( - \operatorname { sup } _ { z \in \text{C} ^ { n } } \rho _ { L _ { E } } ( z ) \right).$ ; confidence 0.634

151. c02111013.png ; $\rightarrow H ^ { n + 1 } ( X , A ; G ) \rightarrow \dots $ ; confidence 0.634

152. t12006080.png ; $E ^ { \text{TF} } ( N )$ ; confidence 0.634

153. m12015067.png ; $\frac { 1 } { \beta _ { p } ( a , b ) } | V | ^ { a - ( p + 1 ) / 2 } | I _ { p } + V | ^ { - ( a + b ) },$ ; confidence 0.634

154. t130130123.png ; $\mod \Gamma$ ; confidence 0.634

155. a12017017.png ; $F ( t ) = \int _ { t } ^ { + \infty } p _ { 0 } ( a - t ) \frac { \Pi ( a ) } { \Pi ( a - t ) } d a,$ ; confidence 0.634

156. p12015067.png ; $B _ { r _ { 1 } } , B _ { r _ { 2 } }$ ; confidence 0.634

157. m1302008.png ; $Y \in \mathfrak { X } ( M )$ ; confidence 0.634

158. c1201307.png ; $\operatorname{diam}M \leq d,$ ; confidence 0.634

159. a120310114.png ; $G_1$ ; confidence 0.634

160. b13019059.png ; $k = 1 / 2$ ; confidence 0.633

161. s12022075.png ; $\operatorname { spec } ( M , \Delta ^ { ( 0 ) } ) , \ldots , \operatorname { spec } ( M , \Delta ^ { ( \dim M ) } )$ ; confidence 0.633

162. q13005064.png ; $\operatorname{QS} ( \mathbf{T} ) = \cup _ { M \geq 1 } M$ ; confidence 0.633

163. r13010037.png ; $\mathbf{E} _ { n }$ ; confidence 0.633

164. e12012046.png ; $z \in ( 1 , \dots , M )$ ; confidence 0.633

165. p13014058.png ; $\psi ( \gamma ) = \frac { 2 } { \pi ^ { 2 } \gamma } + O \left( \frac { 1 } { \gamma ^ { 3 } } \right) \text { as } \gamma \rightarrow + \infty.$ ; confidence 0.633

166. t12001060.png ; $S ^ { 3 } / \Gamma$ ; confidence 0.633

167. b13004016.png ; $\{ I _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.633

168. s12027026.png ; $Q_l ^ { B }$ ; confidence 0.633

169. c12007071.png ; $\text{Ab} ^ { \text{ZC} }$ ; confidence 0.633

170. j13004018.png ; $\mathbf{Z} [ v ^ { \pm 1 } , z ^ { \pm 1 } ]$ ; confidence 0.633

171. w13017031.png ; $y _ { t } ^ { ( i ) }$ ; confidence 0.633

172. p12014031.png ; $H$ ; confidence 0.632

173. h12001052.png ; $\alpha \wedge \beta ^ { n } \neq 0$ ; confidence 0.632

174. i12010052.png ; $R _ { 1414 } = a _ { 1 } , R _ { 2323 } = a _ { 1 } , R _ { 3434 } = a _ { 2 } , R _ { 1234 } = a _ { 1 } , R _ { 1324 } = - a _ { 1 } , R _ { 1423 } = a _ { 2 },$ ; confidence 0.632

175. a130040232.png ; $E ( \varphi , \psi ) = \{ \epsilon _ { i } ( \varphi , \psi ) : i \in I \}$ ; confidence 0.632

176. s12027013.png ; $R _ { n } = I - Q _ { n }$ ; confidence 0.632

177. c12017015.png ; $K \subseteq \mathbf{C}$ ; confidence 0.632

178. b017470280.png ; $m_{ij}$ ; confidence 0.632

179. h13003060.png ; $g ( z ) = r ( z ) + \sum _ { i = 1 } ^ { \infty } s _ { 2 m + i } z ^ { - ( 2 m + i ) }$ ; confidence 0.632

180. c02417020.png ; $V _ { \pm }$ ; confidence 0.632

181. e12012041.png ; $f = ( f _ { 1 } , \ldots , f _ { M } )$ ; confidence 0.632

182. d120230110.png ; $C_l$ ; confidence 0.632

183. k12010055.png ; $\bigwedge _ { j = 1 } ^ { m } \frac { d z _ { j } - d z _ { j } ^ { \prime } } { z _ { j } - z _ { j } ^ { \prime } }$ ; confidence 0.632

184. b01516022.png ; $x _ { 0 } > 0$ ; confidence 0.632

185. b120150107.png ; $\mathsf{P} _ { n }$ ; confidence 0.632

186. a130040797.png ; $\mathbf{C} \in \mathsf{K}_0$ ; confidence 0.632

187. a11025019.png ; $T _ { 0 }$ ; confidence 0.632

188. g12004083.png ; $\Sigma _ { P } = \{ ( x , \xi ) \in \Omega \times ( \mathbf{R} ^ { n } \backslash \{ 0 \} ) : p _ { m } ( x , \xi ) = 0 \},$ ; confidence 0.632

189. g12004073.png ; $D _ { x } ^ { \alpha } = D _ { x _ { 1 } } ^ { \alpha _ { 1 } } \ldots D _ { x _ { n } } ^ { \alpha _ { n } }$ ; confidence 0.632

190. o13003041.png ; $f _ { j k l } = \frac { - i } { 4 } \operatorname { Tr } [ ( \lambda _ { j } \lambda _ { k } - \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ].$ ; confidence 0.632

191. b0173204.png ; $W ^ { n }$ ; confidence 0.632

192. m12023068.png ; $\frac { \partial u ( t , x ) } { \partial t } + \frac { 1 } { 2 } \| d _ { x } u ( t , x ) \| ^ { 2 } = 0 , \quad ( t , x ) \in ( 0 , T ) \times H,$ ; confidence 0.632

193. d13018051.png ; $\mathcal{A} ( X )$ ; confidence 0.632

194. c1200708.png ; $( \alpha _ { 1 } , \dots , \alpha _ { n } )$ ; confidence 0.632

195. l12015014.png ; $( A , [. ,. ] )$ ; confidence 0.632

196. a12018050.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { T _ { n } - S } { S _ { n } - S } = 0.$ ; confidence 0.632

197. s12026053.png ; $\partial _ { s }$ ; confidence 0.631

198. w12011094.png ; $T \in \operatorname{GL} ( n , \mathbf{R} )$ ; confidence 0.631

199. w13017020.png ; $\mathsf{E} \varepsilon _ { t } \varepsilon _ { s } ^ { \prime } = \delta _ { s t } \Sigma$ ; confidence 0.631

200. p1300906.png ; $B ( x _ { 0 } , r ) = \{ x \in \mathbf{R} ^ { n } : | x - x _ { 0 } | < r \}$ ; confidence 0.631

201. t12003036.png ; $F _ { K } \circ \Phi$ ; confidence 0.631

202. l11004080.png ; $| x | | y | \bigwedge | y | ^ { 2 } | x | ^ { 2 } = | x | | y |$ ; confidence 0.631

203. b12008011.png ; $\mathcal{E} _ { \text{avg} } ( \mu , m ) = \int | \epsilon ( p , m ) | d \mu ( p )$ ; confidence 0.631

204. a120280172.png ; $\pi ( a ) M ^ { U } ( [ t , \infty ) ) \subseteq M ^ { U } ( [ t + s , \infty ) )$ ; confidence 0.631

205. o1300806.png ; $( \text{l} _ { m } - k ^ { 2 } ) f _ { m } = 0,$ ; confidence 0.631

206. w13009092.png ; $g _ { j } \in L ^ { 2 } ( [ 0,1 ] )$ ; confidence 0.631

207. a130240353.png ; $\mathsf{E} ( \mathbf{Z} _ { 3 } ) = 0$ ; confidence 0.631

208. b12002054.png ; $+ O \left( \frac { ( \operatorname { log } n ) ^ { 1 / 2 } ( \operatorname { log } \operatorname { log } n ) ^ { 1 / 4 } } { n ^ { 3 / 4 } } \right) \text{ a.s..}$ ; confidence 0.631

209. b13022040.png ; $\gamma_j = 0$ ; confidence 0.631

210. w13009019.png ; $\{ F _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.631

211. b12043095.png ; $B U _ { q } ( \mathfrak{g} )$ ; confidence 0.631

212. k12010015.png ; $t _ { \operatorname { min } } < t _ { 1 } < \ldots < t _ { m } < t _ { \operatorname { max } }$ ; confidence 0.631

213. t130050114.png ; $\sigma _ { \pi } ( A , \mathcal{X} ) = \sigma _ { \delta } ( A , \mathcal{X} ) = \sigma _ { \text{T} } ( A , \mathcal{X} )$ ; confidence 0.631

214. a12015033.png ; $\operatorname{ad}( \mathfrak{g} ) = \operatorname { Der } (\mathfrak{g} )$ ; confidence 0.631

215. b12036020.png ; $p_y$ ; confidence 0.630

216. o13003044.png ; $\mathbf{N} ( X )$ ; confidence 0.630

217. c0224009.png ; $1 , \dots , n$ ; confidence 0.630

218. p13009036.png ; $P _ { \Omega } ( . , \xi )$ ; confidence 0.630

219. b1200603.png ; $D _ { 1 } \subset \mathbf{R} ^ { 2 }$ ; confidence 0.630

220. p13013054.png ; $\zeta _ { \lambda } ^ { \pi }$ ; confidence 0.630

221. i13002061.png ; $\overline{A} \in \mathcal{S}$ ; confidence 0.630

222. f12023023.png ; $L _ { i } \in \Omega ^ { l } ( N ; T N )$ ; confidence 0.630

223. l13001035.png ; $C _ { 1 } N ^ { ( n - 1 ) / 2 } \leq \| S _ { N } \| \leq C _ { 2 } N ^ { ( n - 1 ) / 2 }.$ ; confidence 0.630

224. f1100107.png ; $ax \leq ay$ ; confidence 0.630

225. g130060112.png ; $\{ r _ { i } ( A ) \} _ { i = 1 } ^ { n }$ ; confidence 0.630

226. i12008048.png ; $m _ { s } = \operatorname { lim } _ { H \rightarrow 0 } m ( T , H ) > 0.$ ; confidence 0.630

227. t130140145.png ; $K I = K ( I , \preceq )$ ; confidence 0.630

228. c120010165.png ; $\sum | c_k| < \infty$ ; confidence 0.630

229. f120230123.png ; $( \mathcal{L} _ { K } \omega ) ( X _ { 1 } , \dots , X _ { k + 1 } ) =$ ; confidence 0.630

230. a01105038.png ; $A _ { \alpha }$ ; confidence 0.630

231. a130240438.png ; $\mathbf{N}$ ; confidence 0.630

232. p07452022.png ; $a + b \in F$ ; confidence 0.629

233. f12014051.png ; $r ( 1 + 2.78 / \lambda )$ ; confidence 0.629

234. e12005027.png ; $( u = v ) \in S$ ; confidence 0.629

235. a01018013.png ; $R$ ; confidence 0.629

236. s1304509.png ; $\overline { R } = \sum _ { i = 1 } ^ { n } R _ { i } / n = ( n + 1 ) / 2 = \sum _ { i = 1 } ^ { n } S _ { i } / n = \overline { S }$ ; confidence 0.629

237. v12002033.png ; $\overline { H } \square ^ { * }$ ; confidence 0.629

238. a12015037.png ; $G \subset \operatorname { GL } ( V )$ ; confidence 0.629

239. v120020197.png ; $H ^ { n } ( S ^ { n } )$ ; confidence 0.629

240. h13006030.png ; $\widetilde { D } = \{ \alpha \in G : \alpha D \alpha ^ { - 1 } \text { is commensurable with} \ D\}$ ; confidence 0.629

241. e12021041.png ; $p _ { m } ( z ) = m ! \sum _ { 0 \leq n \leq m - 1 } b _ { m } ( n + 1 ) z ^ { n } , \quad z \in \mathbf{C},$ ; confidence 0.629

242. k12003023.png ; $c _ { 1 } ( M ) _ { \mathbf{R} } > 0$ ; confidence 0.629

243. t1200807.png ; $x , y , z _ { 1 } , \dots , z _ { s } \in \mathbf{Z}$ ; confidence 0.629

244. k12012049.png ; $X ^ { 2 n + 1 }$ ; confidence 0.629

245. i13005046.png ; $k = i k_j$ ; confidence 0.629

246. b017330266.png ; $H _ { p }$ ; confidence 0.629

247. i130090116.png ; $\Gamma = \operatorname { Gal } ( K / k )$ ; confidence 0.628

248. f13009094.png ; $\mathbf{x} = ( x , \ldots , x )$ ; confidence 0.628

249. t130140138.png ; $q_l : \mathbf{Z} ^ { l } \rightarrow \mathbf{Z}$ ; confidence 0.628

250. f13002010.png ; $\operatorname { su } ( 2 )$ ; confidence 0.628

251. d12029081.png ; $y _ { n } \geq 0$ ; confidence 0.628

252. a130240516.png ; $\mathbf{R} = \mathbf{V} _ { 33 } ^ { - 1 } \mathbf{V} _ { 32 }$ ; confidence 0.628

253. b120210104.png ; $\rho = ( 1 / 2 ) \sum _ { \alpha \in \Delta ^ { + } } \alpha$ ; confidence 0.628

254. n13005044.png ; $\operatorname{TD} [ r , s ]$ ; confidence 0.628

255. t12014026.png ; $\| W _ { k } \| = \| \mathcal{F} k \| _ { L^\infty } $ ; confidence 0.628

256. s120340123.png ; $u_-$ ; confidence 0.628

257. h120020135.png ; $f \in X \text{ implies } \bar{f} \in X \text{ and } \mathcal{P}_-f \in X,$ ; confidence 0.628

258. f12005020.png ; $n ^ { \text { th } }$ ; confidence 0.628

259. m12016023.png ; $A X B + C \sim E _ { q , n } ( A M B + C , ( A \Sigma A ^ { \prime } ) \otimes ( B ^ { \prime } \Phi B ) , \psi )$ ; confidence 0.628

260. w12011010.png ; $x . D _ { x }$ ; confidence 0.628

261. f12011044.png ; $x \notin - \Delta ^ { \circ }$ ; confidence 0.628

262. b12022072.png ; $\partial _ { t } \eta ( u ) + \operatorname { div } _ { x } G ( u ) \leq 0,$ ; confidence 0.627

263. b13023047.png ; $\operatorname { St } _ { G } ( u )$ ; confidence 0.627

264. s12023044.png ; $\frac { 1 } { ( 2 \pi ) ^ { n p / 2 } } | \Sigma | ^ { - n / 2 } \operatorname { etr } \left\{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } X X ^ { \prime } \right\} , X \in \mathbf{R} ^ { p \times n },$ ; confidence 0.627

265. a01052030.png ; $3 / 2$ ; confidence 0.627

266. c0200305.png ; $P \subset X$ ; confidence 0.627

267. v120020115.png ; $x _ { 0 } \in F ( x _ { 0 } )$ ; confidence 0.627

268. p130100137.png ; $K \subset \mathbf{C} ^ { n + 1 }$ ; confidence 0.627

269. w130080215.png ; $W = p ^ { n + 1 } - q _ { 1 } p ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.627

270. m1302507.png ; $0 = ( \delta ( x ) x ) \operatorname { vp } \frac { 1 } { x } \neq \delta ( x ) \left( x \operatorname{vp} \frac { 1 } { x } \right) = \delta ( x )$ ; confidence 0.627

271. t13005082.png ; $\sigma _ { \delta }$ ; confidence 0.627

272. b01557030.png ; $D _ { j }$ ; confidence 0.627

273. i13001053.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { s } , \dots , \lambda _ { t } )$ ; confidence 0.627

274. g12004067.png ; $\Gamma \subset \Omega \times ( \mathbf{R} ^ { n } \backslash \{ 0 \} )$ ; confidence 0.627

275. a12012086.png ; $c _ { t } ^ { \prime } > c _ { t }$ ; confidence 0.627

276. b12032088.png ; $a _ { n^i } = ( a _ { n } )^i$ ; confidence 0.627

277. s120150127.png ; $G /G_x$ ; confidence 0.627

278. i130030161.png ; $l ^ { 2 } ( \Gamma )$ ; confidence 0.627

279. a11032027.png ; $u_{m + 1}$ ; confidence 0.627

280. a12028071.png ; $\rho \otimes x$ ; confidence 0.627

281. s120230143.png ; $S _ { i } > 0 , i = 1 , \dots , r.$ ; confidence 0.627

282. k13002014.png ; $y _ { j } < y _ { k }$ ; confidence 0.627

283. m12019030.png ; $= \pi ^ { 2 } \sqrt { \frac { \pi } { 2 } } \int _ { 0 } ^ { \infty } \tau \frac { \operatorname { sinh } ( \pi \tau ) } { \operatorname { cosh } ^ { 3 } ( \pi \tau ) } P _ { i \tau - 1 / 2 } ( x ) F ( \tau ) G ( \tau ) d \tau,$ ; confidence 0.627

284. t12019021.png ; $n/ ( k - 1 )$ ; confidence 0.627

285. c02211030.png ; $p _ { i } ( \theta ) = \mathsf{P} \{ X _ { i } \in ( x _ { i - 1} , x _ { i } ] \} > 0,$ ; confidence 0.626

286. a130240206.png ; $\operatorname{rank} ( \mathbf{X} ) = r$ ; confidence 0.626

287. e1300303.png ; $\rho : G / \mathbf{Q} \rightarrow \operatorname{GL} (\mathcal{M} )$ ; confidence 0.626

288. t120060108.png ; $\rho _ { \text{atom} } ^ { \text{TF} } ( x , N = Z , Z ) \sim \gamma ^ { 3 } \left( \frac { 3 } { \pi } \right) ^ { 3 } | x | ^ { - 6 },$ ; confidence 0.626

289. z13010037.png ; $\forall x \forall y \exists z \forall v ( v \in z \leftrightarrow ( v = x \vee v = y ) ).$ ; confidence 0.626

290. i13003030.png ; $\operatorname{Ch} ( [ a ] ) \mathcal{T} ( M )$ ; confidence 0.626

291. a12005047.png ; $i = 1 , \ldots , k$ ; confidence 0.626

292. w1301203.png ; $\operatorname{CL} ( X )$ ; confidence 0.626

293. c120180427.png ; $( q _ { 1 } , \dots , q _ { m } )$ ; confidence 0.626

294. c02313056.png ; $B / A$ ; confidence 0.626

295. a130240433.png ; $\mathbf{A} \Theta \mathbf{B}$ ; confidence 0.626

296. i12004044.png ; $s = ( s _ { 1 } , \dots , s _ { n } ) : \partial D \times D \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.626

297. w120110197.png ; $G _ { X } ( X - Y) \leq \rho ^ { 2 } \Rightarrow G _ { Y } \leq C G _ { X };$ ; confidence 0.626

298. a13013044.png ; $F _ { j k } =$ ; confidence 0.626

299. a01008024.png ; $\mathcal{M}$ ; confidence 0.626

300. b120420115.png ; $U _ { q } ( \mathfrak { g } )$ ; confidence 0.626

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/50. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/50&oldid=44460