Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/51"
(→List) |
(→List) |
||
| Line 4: | Line 4: | ||
2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280132.png ; $M ^ { U } ( E ) = P ( E )\cal X$ ; confidence 1.000 | 2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280132.png ; $M ^ { U } ( E ) = P ( E )\cal X$ ; confidence 1.000 | ||
| − | 3. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057500/l05750023.png ; ${\bf R} _ { | + | 3. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057500/l05750023.png ; ${\bf R} _ { X } ^ { n }$ ; confidence 1.000 |
4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210134.png ; $C _ { k } = \oplus _ { w \in W ^ { ( i ) } } M ( w . \lambda )$ ; confidence 1.000 | 4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210134.png ; $C _ { k } = \oplus _ { w \in W ^ { ( i ) } } M ( w . \lambda )$ ; confidence 1.000 | ||
| − | 5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024080.png ; $H ^ { 2 } ( Z [ 1 / p ] ; Z _ { p } ( n ) )$ ; confidence | + | 5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024080.png ; $H ^ { 2 } ( {\bf Z} [ 1 / p ] ; {\bf Z} _ { p } ( n ) )$ ; confidence 1.000 |
6. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940173.png ; $P _ { n + 1}$ ; confidence 1.000 | 6. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940173.png ; $P _ { n + 1}$ ; confidence 1.000 | ||
| Line 16: | Line 16: | ||
8. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008083.png ; $\rho ^ { \prime } ( \xi ) = ( \partial \rho / \partial \xi _ { 1 } , \dots , \partial \rho / \partial \xi _ { n } )$ ; confidence 0.625 | 8. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008083.png ; $\rho ^ { \prime } ( \xi ) = ( \partial \rho / \partial \xi _ { 1 } , \dots , \partial \rho / \partial \xi _ { n } )$ ; confidence 0.625 | ||
| − | 9. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008022.png ; $V _ { | + | 9. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008022.png ; $V _ { n } ^ { m } ( x , y ) = e ^ { i m \theta } R _ { n } ^ { m } ( r ),$ ; confidence 1.000 |
10. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028031.png ; $N _ { \tilde{A}x } ( \tilde { B } ) \geq h ^ { N }$ ; confidence 1.000 | 10. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028031.png ; $N _ { \tilde{A}x } ( \tilde { B } ) \geq h ^ { N }$ ; confidence 1.000 | ||
| Line 108: | Line 108: | ||
54. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203604.png ; $k _ { B }$ ; confidence 0.623 | 54. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203604.png ; $k _ { B }$ ; confidence 0.623 | ||
| − | 55. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011088.png ; $ | + | 55. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011088.png ; $\operatorname{Cd} \approx \frac { l } { b } , f \approx \frac { l } { U } , \operatorname{Cd} \approx \frac { f U } { d } , \operatorname{Cd} \approx \frac { 1 } { \operatorname{St} }$ ; confidence 1.000 |
56. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002074.png ; $\operatorname{P} ( m , F )$ ; confidence 1.000 | 56. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002074.png ; $\operatorname{P} ( m , F )$ ; confidence 1.000 | ||
| Line 176: | Line 176: | ||
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180192.png ; $V \subseteq {\bf C A}_\alpha$ ; confidence 1.000 | 88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180192.png ; $V \subseteq {\bf C A}_\alpha$ ; confidence 1.000 | ||
| − | 89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220219.png ; ${\ | + | 89. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220219.png ; ${\cal MM}_{\bf Z}$ ; confidence 1.000 |
| − | 90. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201708.png ; $\operatorname { ker }\delta _ { A } \subseteq \operatorname { ker } \delta _ { A } | + | 90. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201708.png ; $\operatorname { ker }\delta _ { A } \subseteq \operatorname { ker } \delta _ { A ^*}$ ; confidence 1.000 |
91. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002018.png ; $\{. , e , ^{- 1} , \vee , \wedge \}$ ; confidence 1.000 | 91. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002018.png ; $\{. , e , ^{- 1} , \vee , \wedge \}$ ; confidence 1.000 | ||
| Line 184: | Line 184: | ||
92. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014050/a01405025.png ; $B _ { 1 }$ ; confidence 0.620 | 92. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014050/a01405025.png ; $B _ { 1 }$ ; confidence 0.620 | ||
| − | 93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130190/a13019012.png ; $r ^ { i } ( A ) * r ^ { j } ( B )$ ; confidence | + | 93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130190/a13019012.png ; $r ^ { i } ( A ) ^* r ^ { j } ( B )$ ; confidence 1.000 |
94. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007018.png ; $A _ { h } , A _ { k } , A _ { m }$ ; confidence 1.000 | 94. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007018.png ; $A _ { h } , A _ { k } , A _ { m }$ ; confidence 1.000 | ||
| Line 216: | Line 216: | ||
108. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080146.png ; $G = \operatorname{GL} ( N ,\bf C )$ ; confidence 1.000 | 108. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080146.png ; $G = \operatorname{GL} ( N ,\bf C )$ ; confidence 1.000 | ||
| − | 109. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006016.png ; $A \in T _ { | + | 109. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006016.png ; $A \in T _ { x } M$ ; confidence 1.000 |
110. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100102.png ; $\hat { K } = K$ ; confidence 0.620 | 110. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100102.png ; $\hat { K } = K$ ; confidence 0.620 | ||
| Line 222: | Line 222: | ||
111. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240346.png ; $q \times p$ ; confidence 0.619 | 111. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240346.png ; $q \times p$ ; confidence 0.619 | ||
| − | 112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200191.png ; $\alpha _ { i } \in \Pi ^ { im }$ ; confidence | + | 112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200191.png ; $\alpha _ { i } \in \Pi ^ { \text{im} }$ ; confidence 1.000 |
| − | 113. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202207.png ; $\operatorname{id}: ( X , * ) \rightarrow ( X , * )$ ; confidence 1.000 | + | 113. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202207.png ; $\operatorname{id}: ( X , ^* ) \rightarrow ( X ,^ * )$ ; confidence 1.000 |
114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004064.png ; $f _ { i + 1 } ^ { n } = a u _ { i + 1 } ^ { n }$ ; confidence 0.619 | 114. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004064.png ; $f _ { i + 1 } ^ { n } = a u _ { i + 1 } ^ { n }$ ; confidence 0.619 | ||
| Line 358: | Line 358: | ||
179. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110700/a1107003.png ; $\bf K$ ; confidence 1.000 | 179. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110700/a1107003.png ; $\bf K$ ; confidence 1.000 | ||
| − | 180. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m1201307.png ; $N | + | 180. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m1201307.png ; $N \equiv 0$ ; confidence 1.000 |
181. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065026.png ; $ { c } _ { \mu } > - \infty$ ; confidence 1.000 | 181. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065026.png ; $ { c } _ { \mu } > - \infty$ ; confidence 1.000 | ||
| Line 364: | Line 364: | ||
182. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211041.png ; $X ^ { 2 } ( \tilde { \theta } _ { n } ) = \operatorname { min } _ { \theta \in \Theta } X ^ { 2 } ( \theta ).$ ; confidence 1.000 | 182. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211041.png ; $X ^ { 2 } ( \tilde { \theta } _ { n } ) = \operatorname { min } _ { \theta \in \Theta } X ^ { 2 } ( \theta ).$ ; confidence 1.000 | ||
| − | 183. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300802.png ; $\square _ { m } u = ( - \frac { d ^ { 2 } } { d x ^ { 2 } } + q _ { m } ( x ) ) u$ ; confidence 0.615 | + | 183. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300802.png ; $\square _ { m } u = ( - \frac { d ^ { 2 } } { d x ^ { 2 } } + q _ { m } ( x ) ) u,$ ; confidence 0.615 |
| − | 184. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040049.png ; $\xi = G \times ^ { \varrho } C$ ; confidence | + | 184. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040049.png ; $\xi = G \times ^ { \varrho } \bf C$ ; confidence 1.000 |
| − | 185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027068.png ; $h _ { p } = ( 2 , d ) _ { P } \cdot W _ { P } ( \rho ) / W _ { P } ( \operatorname { det } _ { \rho } ) | + | 185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027068.png ; $h _ { p } = ( 2 , d ) _ { P } \cdot W _ { P } ( \rho ) / W _ { P } ( \operatorname { det } _ { \rho } )$ ; confidence 0.615 |
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040236.png ; $K ( x ) \approx L ( x ) = \{ \kappa _ { j } ( x ) \approx \lambda _ { j } ( x ) : j \in J \}$ ; confidence 0.615 | 186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040236.png ; $K ( x ) \approx L ( x ) = \{ \kappa _ { j } ( x ) \approx \lambda _ { j } ( x ) : j \in J \}$ ; confidence 0.615 | ||
| Line 394: | Line 394: | ||
197. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c1300907.png ; $T _ { N + 1 } / 2 ^ { N }$ ; confidence 0.614 | 197. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c1300907.png ; $T _ { N + 1 } / 2 ^ { N }$ ; confidence 0.614 | ||
| − | 198. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030162.png ; $ | + | 198. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030162.png ; $K_0({\cal R}\otimes {\bf C}[\Gamma])$ ; confidence 1.000 |
| − | 199. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064014.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( | + | 199. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064014.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { G ( a ) ^ { N } } = E ( a ),$ ; confidence 1.000 |
| − | 200. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010106.png ; $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / SU ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }.$ ; confidence 0.614 | + | 200. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010106.png ; $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / \operatorname{SU} ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }.$ ; confidence 0.614 |
201. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200199.png ; $S _ { \Lambda }$ ; confidence 0.614 | 201. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200199.png ; $S _ { \Lambda }$ ; confidence 0.614 | ||
| Line 418: | Line 418: | ||
209. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017090.png ; $a b = b a$ ; confidence 0.614 | 209. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017090.png ; $a b = b a$ ; confidence 0.614 | ||
| − | 210. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049039.png ; $\frac { | \nabla ( {\cal A} ) | } { | N _ { k | + | 210. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049039.png ; $\frac { | \nabla ( {\cal A} ) | } { | N _ { k + 1} | } \geq \frac { | {\cal A} | } { | N _ { k } | }$ ; confidence 1.000 |
| − | 211. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007027.png ; $\frac { 1 } { q } + a _ { 0 } + a _ { 1 } q + | + | 211. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007027.png ; $\frac { 1 } { q } + a _ { 0 } + a _ { 1 } q + a _ { 2 } q ^ { 2 } + \ldots , \quad q = \operatorname { exp } ( 2 \pi i z )$ ; confidence 0.614 |
212. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008042.png ; $q = \operatorname { inf } \{ { k } : \sigma _ { k } \geq 1 \}$ ; confidence 1.000 | 212. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008042.png ; $q = \operatorname { inf } \{ { k } : \sigma _ { k } \geq 1 \}$ ; confidence 1.000 | ||
| Line 442: | Line 442: | ||
221. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011076.png ; $\sigma = \left( \begin{array} { c c } { 0 } & { \operatorname{Id} ( E ^ { * } ) } \\ { - \operatorname{Id} ( E ) } & { 0 } \end{array} \right),$ ; confidence 1.000 | 221. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011076.png ; $\sigma = \left( \begin{array} { c c } { 0 } & { \operatorname{Id} ( E ^ { * } ) } \\ { - \operatorname{Id} ( E ) } & { 0 } \end{array} \right),$ ; confidence 1.000 | ||
| − | 222. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018053.png ; $S ^ { \perp } = \{ x \in E : \langle x , s \rangle = 0 \text { for all } s \in S \}$ ; confidence 1.000 | + | 222. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018053.png ; $S ^ { \perp } = \{ x \in E : \langle x , s \rangle = 0 \text { for all } s \in S \}.$ ; confidence 1.000 |
223. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010037.png ; $\operatorname { Ext } _ { H } ^ { 1 } ( T , - )$ ; confidence 0.613 | 223. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010037.png ; $\operatorname { Ext } _ { H } ^ { 1 } ( T , - )$ ; confidence 0.613 | ||
| Line 516: | Line 516: | ||
258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004018.png ; $\| x _ { n } \| \rightarrow 0$ ; confidence 1.000 | 258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004018.png ; $\| x _ { n } \| \rightarrow 0$ ; confidence 1.000 | ||
| − | 259. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007031.png ; $f | _ { k } ^ { \text{V} } M = f , \forall M \in \Gamma$ ; confidence 1.000 | + | 259. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007031.png ; $f | _ { k } ^ { \text{V} } M = f , \forall M \in \Gamma.$ ; confidence 1.000 |
| − | 260. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019024.png ; $y ( a _ { 1 } / q _ { 1 } )$ ; confidence | + | 260. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019024.png ; ${\bf y} ( a _ { 1 } / q _ { 1 } )$ ; confidence 1.000 |
261. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008097.png ; $\| \square ^ { t } M _ { \varphi } \| _ { \text{cb} } : = \operatorname { sup } \| \square ^ { t } M _ { \varphi } \otimes 1 _ { n } \|$ ; confidence 1.000 | 261. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008097.png ; $\| \square ^ { t } M _ { \varphi } \| _ { \text{cb} } : = \operatorname { sup } \| \square ^ { t } M _ { \varphi } \otimes 1 _ { n } \|$ ; confidence 1.000 | ||
| Line 524: | Line 524: | ||
262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020089.png ; $T$ ; confidence 0.611 NOTE: there are three dots on the edges | 262. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020089.png ; $T$ ; confidence 0.611 NOTE: there are three dots on the edges | ||
| − | 263. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110127.png ; $\frac { D } { D t } = \frac { \partial } { \partial t } + v _ { i } ( . ) , _ { i } = \frac { \partial } { \partial t } + v . \nabla$ ; confidence | + | 263. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110127.png ; $\frac { D } { D t } = \frac { \partial } { \partial t } + v _ { i } ( . ) , _ { i } = \frac { \partial } { \partial t } + {\bf v} . \nabla$ ; confidence 1.000 |
264. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012030.png ; $\| f ( x ) - a ( x ) \| \leq K \| x \| ^ { p }$ ; confidence 0.611 | 264. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012030.png ; $\| f ( x ) - a ( x ) \| \leq K \| x \| ^ { p }$ ; confidence 0.611 | ||
| Line 546: | Line 546: | ||
273. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147035.png ; $j = 1 , \dots , r$ ; confidence 0.610 | 273. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021470/c02147035.png ; $j = 1 , \dots , r$ ; confidence 0.610 | ||
| − | 274. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011045.png ; $\gamma _ { 1 } ^ { 2 } = - 1 , \gamma _ { 2 } ^ { 2 } = \gamma _ { 3 } ^ { 2 } = \gamma _ { 4 } ^ { 2 } = 1$ ; confidence 0.610 | + | 274. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011045.png ; $\gamma _ { 1 } ^ { 2 } = - 1 , \gamma _ { 2 } ^ { 2 } = \gamma _ { 3 } ^ { 2 } = \gamma _ { 4 } ^ { 2 } = 1,$ ; confidence 0.610 |
275. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020071.png ; $\operatorname { max } _ { j = 1 , \ldots , n - m + 1 } | s _ { j } | \geq m ( \frac { 1 } { 2 } + \frac { m } { 8 n } + \frac { 3 m ^ { 2 } } { 64 n ^ { 2 } } ).$ ; confidence 0.610 | 275. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020071.png ; $\operatorname { max } _ { j = 1 , \ldots , n - m + 1 } | s _ { j } | \geq m ( \frac { 1 } { 2 } + \frac { m } { 8 n } + \frac { 3 m ^ { 2 } } { 64 n ^ { 2 } } ).$ ; confidence 0.610 | ||
| Line 574: | Line 574: | ||
287. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006028.png ; $\langle \langle A \rangle \rangle$ ; confidence 0.609 | 287. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006028.png ; $\langle \langle A \rangle \rangle$ ; confidence 0.609 | ||
| − | 288. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t1200706.png ; $= 2 ^ { 46 } . 3 ^ { 20 } . 5 ^ { 9 } . 7 ^ { 6 } . 11 ^ { 2 } . 13 ^ { 3 }$ ; confidence 1.000 | + | 288. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t1200706.png ; $= 2 ^ { 46 } . 3 ^ { 20 } . 5 ^ { 9 } . 7 ^ { 6 } . 11 ^ { 2 } . 13 ^ { 3 }.$ ; confidence 1.000 |
289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012038.png ; $v - A v = ( I - A ) v$ ; confidence 0.609 | 289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012038.png ; $v - A v = ( I - A ) v$ ; confidence 0.609 | ||
Revision as of 18:26, 30 April 2020
List
1.
; $V _ { 0 } ^ { n } = V _ { j } ^ { n } = 0$ ; confidence 0.626
2.
; $M ^ { U } ( E ) = P ( E )\cal X$ ; confidence 1.000
3.
; ${\bf R} _ { X } ^ { n }$ ; confidence 1.000
4.
; $C _ { k } = \oplus _ { w \in W ^ { ( i ) } } M ( w . \lambda )$ ; confidence 1.000
5.
; $H ^ { 2 } ( {\bf Z} [ 1 / p ] ; {\bf Z} _ { p } ( n ) )$ ; confidence 1.000
6.
; $P _ { n + 1}$ ; confidence 1.000
7.
; $f = ( f _ { b } ) _ { b \in B }$ ; confidence 0.625
8.
; $\rho ^ { \prime } ( \xi ) = ( \partial \rho / \partial \xi _ { 1 } , \dots , \partial \rho / \partial \xi _ { n } )$ ; confidence 0.625
9.
; $V _ { n } ^ { m } ( x , y ) = e ^ { i m \theta } R _ { n } ^ { m } ( r ),$ ; confidence 1.000
10.
; $N _ { \tilde{A}x } ( \tilde { B } ) \geq h ^ { N }$ ; confidence 1.000
11.
; $\mu _ { B } ( A {\bf x} )$ ; confidence 1.000
12.
; $( p _ { 0 } < \ldots < p _ { h } )$ ; confidence 0.625
13.
; $1 = e _ { 1 } + \ldots + e _ { k }$ ; confidence 0.625
14.
; $\alpha \pi$ ; confidence 0.625
15.
; $D_{f , 2}$ ; confidence 1.000
16.
; $\{ \varphi_+ ( k ) , \varphi_- ( k ) \}$ ; confidence 1.000
17.
; $B \rtimes _ { \alpha } \bf Z$ ; confidence 1.000
18.
; $= [ \sigma _ { Te } ( A , {\cal H} ) \times \sigma _ { T } ( B , {\cal H} ) ] \bigcup [ \sigma _ { T } ( A , {\cal H} ) \times \sigma _ { Te } ( B , {\cal H} ) ].$ ; confidence 1.000
19.
; $\operatorname{Wh} ^ { * } ( \pi ) \neq \{ 0 \}$ ; confidence 1.000
20.
; $v = w$ ; confidence 0.625
21.
; $\lambda ( T T ^ { \prime } ) = \operatorname { diag } ( \tau _ { 1 } , \dots , \tau _ { 1 } )$ ; confidence 0.625
22.
; $D _ { s } f ( t ) = f ( t / s )$ ; confidence 0.625
23.
; $\overset{\rightharpoonup} { x } . \overset{\rightharpoonup} { v } < 0$ ; confidence 1.000
24.
; $E \subset {\bf R} ^ { n }$ ; confidence 1.000
25.
; $b _ { N - 1 } = 2 N a _ { N }$ ; confidence 0.624
26.
; $A$ ; confidence 1.000
27.
; $( \gamma _ { j - k } ) _ { j , k \geq 0 }$ ; confidence 0.624
28.
; $M _ { n+ 1} / M _ { n }$ ; confidence 1.000
29.
; $\{ m _ { n } \}$ ; confidence 1.000
30.
; $i \neq d$ ; confidence 1.000
31.
; $\sigma _ { \text{ess} } ( T ) = \sigma _ { \text{ess} } ( T + S ).$ ; confidence 1.000
32.
; $N = N _ { 1 } \cup \ldots \cup N _ { n }$ ; confidence 0.624
33.
; $R ^ { * }$ ; confidence 1.000
34.
; $W _ { \Theta } ( z ) = I - 2 i K ^ { * } ( T - z I ) ^ { - 1 } K J,$ ; confidence 0.624
35.
; $10_{101}$ ; confidence 1.000
36.
; ${\cal L} _ {\bf C } ^ { p } ( G )$ ; confidence 1.000
37.
; $| S ^ { n - 1 } |$ ; confidence 1.000
38.
; $J ^ { * }$ ; confidence 0.624
39.
; $\{ f _ { i _ { 1 } } , \dots , f _ { i _ { n } } \}$ ; confidence 0.624
40.
; $\operatorname { dim } D _ { s } ^ { \perp } = 2 ^ { n } - n - 1$ ; confidence 0.624
41.
; $z _ { 1 } ^ { m } d z _ { 1 }$ ; confidence 0.624
42.
; $R = {\bf R} _ { \geq 0 } v \subset \overline { N E } ( X / S )$ ; confidence 1.000
43.
; $m = 0,1 , \ldots$ ; confidence 0.623
44.
; $c = 7$ ; confidence 0.623
45.
; $\leq 2$ ; confidence 1.000
46.
; $F M \rightarrow M$ ; confidence 0.623
47.
; $F _ { m n }$ ; confidence 0.623
48.
; $Z [ f ( t + m ) ] ( t , w ) = e ^ { 2 \pi i m w } Z [ f ] ( t , w ).$ ; confidence 1.000
49.
; $\mu _ { n } = \sum _ { i = 1 } ^ { N } 1 _ { \{ f _ { i n } \geq 1 \} }$ ; confidence 0.623
50.
; $| x |$ ; confidence 0.623
51.
; $k = 1 , \dots , n$ ; confidence 0.623
52.
; $d _ { k } = \operatorname{rd} _ { Y } M _ { k }$ ; confidence 1.000
53.
; $H _ { k } ^ { ( m ) } > 0 , m = 0 , \pm 1 , \pm 2 , \ldots , k = 1,2 ,\dots .$ ; confidence 1.000
54.
; $k _ { B }$ ; confidence 0.623
55.
; $\operatorname{Cd} \approx \frac { l } { b } , f \approx \frac { l } { U } , \operatorname{Cd} \approx \frac { f U } { d } , \operatorname{Cd} \approx \frac { 1 } { \operatorname{St} }$ ; confidence 1.000
56.
; $\operatorname{P} ( m , F )$ ; confidence 1.000
57.
; $E ^ { k + 1 }$ ; confidence 0.623
58.
; $B ^ { n - k }$ ; confidence 1.000
59.
; $m = 1 + I + J + I J$ ; confidence 0.623
60.
; $H ^ { 1 } ( {\bf R} _ { X } )$ ; confidence 1.000
61.
; $g = ( g _ { 1 } , \dots , g _ { N } )$ ; confidence 0.622
62.
; $\operatorname{WFA} f$ ; confidence 1.000
63.
; $b _ { j } ^ { l } > 0$ ; confidence 0.622
64.
; ${\bf p}_j$ ; confidence 1.000
65.
; $x \in {\cal D} ( p ( A ) )$ ; confidence 1.000
66.
; $R ( \nabla ) : \otimes ^ { r } {\cal E} \rightarrow \otimes ^ {r + 2 } {\cal E}$ ; confidence 1.000
67.
; ${\cal M} _ { s }$ ; confidence 1.000
68.
; $F ( z ) = - \frac { 1 } { 2 \pi i } \int_\gamma \frac { \operatorname { exp } e ^ { \zeta ^ { 2 } } } { \zeta - z } d \zeta$ ; confidence 1.000
69.
; $s ^ { 2 = 4 \lambda } ( x , y ) p q$ ; confidence 0.622
70.
; $u = \alpha ^ { s }$ ; confidence 0.622
71.
; $T _ { \text{B} \delta }$ ; confidence 1.000
72.
; $Z [ e ^ { 2 \pi i m t } f ( t + n ) ] ( t , w ) = e ^ { 2 \pi i m t } e ^ { 2 \pi i n w } ( Z f ) ( t , w ).$ ; confidence 0.622
73.
; $\bf M$ ; confidence 1.000
74.
; $\Pi _ { 1 } ^ { 1 }$ ; confidence 0.621
75.
; $U \rightarrow G _ { N } ( {\bf R} ^ { N } \times {\bf R} ^ { p } )$ ; confidence 1.000
76.
; $f ( x ) = \sum _ { i = 1 } ^ { m } w _ { i } \| p _ { i } - x \| , x \in {\bf R} ^ { n },$ ; confidence 1.000
77.
; $V _ { n , p } ( f , x ) = f ( x )$ ; confidence 1.000
78.
; $Q _ { n } ( x )$ ; confidence 0.621
79.
; $E ( a )$ ; confidence 0.621
80.
; $g \times ^ { \varrho } {\bf f} \in G \times ^ { \varrho } F$ ; confidence 1.000
81.
; $S _ { \mathfrak { g } } ^ { * }$ ; confidence 0.621
82.
; $P : E \rightarrow \bf C$ ; confidence 1.000
83.
; ${\cal G} _ { \alpha }$ ; confidence 1.000
84.
; $\phi _ { t }$ ; confidence 0.621
85.
; $\operatorname{P} \{ \operatorname { sup } W ^ { ( N ) } ( t ) > u \}$ ; confidence 1.000
86.
; $X \otimes Y \in \otimes ^ { 2 } \cal E *$ ; confidence 1.000
87.
; $\xi_r$ ; confidence 1.000
88.
; $V \subseteq {\bf C A}_\alpha$ ; confidence 1.000
89.
; ${\cal MM}_{\bf Z}$ ; confidence 1.000
90.
; $\operatorname { ker }\delta _ { A } \subseteq \operatorname { ker } \delta _ { A ^*}$ ; confidence 1.000
91.
; $\{. , e , ^{- 1} , \vee , \wedge \}$ ; confidence 1.000
92.
; $B _ { 1 }$ ; confidence 0.620
93.
; $r ^ { i } ( A ) ^* r ^ { j } ( B )$ ; confidence 1.000
94.
; $A _ { h } , A _ { k } , A _ { m }$ ; confidence 1.000
95.
; $K : = \int \frac { - \operatorname { ln } f ( . ) } { 1 + x ^ { 2 } } d x,$ ; confidence 1.000
96.
; $b \in S ( m _ { 2 } , G )$ ; confidence 0.620
97.
; $\operatorname{P} ( N _ { k } = n ) = p ^ { n } F _ { n + 1 - k } ^ { ( k ) } ( \frac { q } { p } ),$ ; confidence 1.000
98.
; $\sigma ( z ) = e ^ { i \theta } z + a$ ; confidence 1.000
99.
; ${\bf Z} ^ { d }$ ; confidence 1.000
100.
; $G = \operatorname{SL} ( 2 , \bf R )$ ; confidence 1.000
101.
; $( \lambda - a _ { i } ) ^ { n _ { i j } }$ ; confidence 0.620
102.
; $X = 0$ ; confidence 0.620
103.
; $x \operatorname { exp } ( x + 1 ) = 1$ ; confidence 0.620
104.
; $\langle f , g \rangle = \int \int _ { D } f ( x , y ) \overline { g ( x , y ) } d x d y$ ; confidence 0.620
105.
; $n \times p _ { 1 }$ ; confidence 0.620
106.
; $F _ { i } ( \tau ) = \int _ { 0 } ^ { \infty } \frac { \sqrt { 2 \tau \operatorname { sinh } \pi \tau } } { \pi } \frac { K _ { i \tau } } { \sqrt { x } } f _ { i } ( x ) d x.$ ; confidence 0.620
107.
; $\bf y = X \beta + e,$ ; confidence 1.000
108.
; $G = \operatorname{GL} ( N ,\bf C )$ ; confidence 1.000
109.
; $A \in T _ { x } M$ ; confidence 1.000
110.
; $\hat { K } = K$ ; confidence 0.620
111.
; $q \times p$ ; confidence 0.619
112.
; $\alpha _ { i } \in \Pi ^ { \text{im} }$ ; confidence 1.000
113.
; $\operatorname{id}: ( X , ^* ) \rightarrow ( X ,^ * )$ ; confidence 1.000
114.
; $f _ { i + 1 } ^ { n } = a u _ { i + 1 } ^ { n }$ ; confidence 0.619
115.
; $\pi _ { n } ( X , Y )$ ; confidence 0.619
116.
; $g ^ { - 1 } \in \operatorname{S} ^ { 2 } \cal E *$ ; confidence 0.619
117.
; $= f ( N { * } ) + f ^ { \prime } ( N { * } ) n + \frac { f ^ { \prime \prime } ( N { * } ) } { 2 } n ^ { 2 } + \ldots,$ ; confidence 1.000
118.
; $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right)$ ; confidence 1.000
119.
; $C ^ { \prime} \small C A$ ; confidence 1.000
120.
; $f \in L _ { 2 } ( {\bf R} _ { + } ; x ^ { - 1 } )$ ; confidence 1.000
121.
; $A = \{ 0 , \dots , q - 1 \}$ ; confidence 0.619
122.
; $= \sum _ { i = 0 } ^ { m } D _ { i , m - i } \Lambda ^ { i } M ^ { m - i } , D _ { i j } \in C ^ { n \times n },$ ; confidence 0.619
123.
; $P ( i , i \sqrt { 2 } ) = ( - \sqrt { 2 } ) ^ { \operatorname { com } ( L ) - 1 } ( - 1 ) ^ { \operatorname { Arf } ( L ) }$ ; confidence 0.618
124.
; $V ^ { \sigma } ( y )$ ; confidence 0.618
125.
; $\overline { D } \square ^ { n + 1 } \subset E ^ { n + 1 }$ ; confidence 0.618
126.
; $\alpha _ { i } = 1$ ; confidence 0.618
127.
; $|.| _ { \infty }$ ; confidence 1.000
128.
; $F ^ { SW } = \tilde { F }$ ; confidence 0.618
129.
; $h \rightarrow D f ( x_0 , h ),$ ; confidence 1.000
130.
; $\tau _ { 2 } \Theta = - \Theta$ ; confidence 0.618
131.
; $u , v \in k ( C )$ ; confidence 0.618
132.
; $\operatorname { lcm } ( 1 , \dots , n ) > 3 ^ { n }$ ; confidence 1.000
133.
; $\Delta = \gamma d x _ { 1 } \wedge \ldots \wedge d x _ { n }$ ; confidence 0.618
134.
; $H = {\bf R} ^ { n }$ ; confidence 1.000
135.
; $\operatorname{GL} _ { n } ( {\bf Q} A )$ ; confidence 1.000
136.
; $a _ { n } = 1$ ; confidence 1.000
137.
; $\operatorname{WF} _ { s } ( P ( x , D ) u ) \cap \Gamma = \emptyset$ ; confidence 1.000
138.
; $A = \frac { 1 } { 6 n 16 ^ { n } } ( \frac { 1 + \rho } { 2 } ) ^ { m } ( \frac { 1 - \rho } { 2 } ) ^ { 2 n + k } | \operatorname { Re } \sum _ { j = 1 } ^ { n } b _ { j } |$ ; confidence 1.000
139.
; $\Delta _ { n } ^ { * } ( \theta )$ ; confidence 1.000
140.
; $\zeta_N ( s )$ ; confidence 1.000
141.
; $a _ { N / 2 - k}$ ; confidence 1.000
142.
; $\phi \in \operatorname{VMO}$ ; confidence 1.000
143.
; $L ^ { \times }$ ; confidence 1.000
144.
; $\operatorname{Aut}( B )$ ; confidence 1.000
145.
; ${\bf Z} G = {\bf Z} H$ ; confidence 1.000
146.
; $\bf Z$ ; confidence 1.000
147.
; $\pi : U M \rightarrow M$ ; confidence 0.617
148.
; $U ^ { \prime }$ ; confidence 0.617
149.
; $\operatorname{Ad} : G \rightarrow \operatorname{GL} (\frak g )$ ; confidence 1.000
150.
; $\psi = \psi ( y ; \eta ) \not\equiv 0$ ; confidence 1.000
151.
; $t ^ { 1 / d }$ ; confidence 0.617
152.
; $| { k } | > 1$ ; confidence 1.000
153.
; $c \in E$ ; confidence 0.617
154.
; $\| ( \lambda + A ( t _ { k } ) ) ^ { - 1 } \ldots ( \lambda + A ( t _ { 1 } ) ) ^ { - 1 } \| _ { L ( X ) } \leq \frac { M } { ( \lambda - \beta ) ^ { k } }$ ; confidence 0.617
155.
; $i f \in A$ ; confidence 0.617
156.
; $D _ { Y }$ ; confidence 0.617
157.
; $f _ { L } ^ { \leftarrow } ( b ) = b \circ f.$ ; confidence 0.617
158.
; $R _ { l } ( p ; k , n )$ ; confidence 0.617
159.
; $f ( u ) = a u$ ; confidence 0.617
160.
; $H ^ { p , q } ( M ) \cong H ^ { q , p } ( M ),$ ; confidence 0.617
161.
; $k \leq d$ ; confidence 0.617
162.
; $a _ { 1 } > a _ { 0 } + 2 \sqrt { a _ { 0 } }$ ; confidence 0.616
163.
; $C _ { C } ^ { \infty } ( G )$ ; confidence 0.616
164.
; $L (. ; t ) = h (. ; t ) ^ { * } f ( . )$ ; confidence 1.000
165.
; ${\cal U} _ { q } ( \mathfrak { g } )$ ; confidence 1.000
166.
; $K _ { p } ( g \circ \lambda ) = K _ { \lambda ( p ) } ( g ) \circ \lambda$ ; confidence 1.000
167.
; $T > T _ { C }$ ; confidence 0.616
168.
; $T ^ { n }$ ; confidence 0.616
169.
; $u _ { n + 1 - k}$ ; confidence 1.000
170.
; $\pi_T$ ; confidence 1.000
171.
; $( m l + U t , \pm b / 2 )$ ; confidence 0.616
172.
; $\operatorname{Re} \lambda \leq 0$ ; confidence 1.000
173.
; $R _ {\frak M }$ ; confidence 1.000
174.
; $k = 0 , \ldots , r ( P ) - 1$ ; confidence 0.616
175.
; $j = 1 , \ldots , p$ ; confidence 0.616
176.
; $\frak G$ ; confidence 1.000
177.
; $a , b \in \bf R$ ; confidence 1.000
178.
; $a_0 , a _ { 1 } , \dots$ ; confidence 1.000
179.
; $\bf K$ ; confidence 1.000
180.
; $N \equiv 0$ ; confidence 1.000
181.
; $ { c } _ { \mu } > - \infty$ ; confidence 1.000
182.
; $X ^ { 2 } ( \tilde { \theta } _ { n } ) = \operatorname { min } _ { \theta \in \Theta } X ^ { 2 } ( \theta ).$ ; confidence 1.000
183.
; $\square _ { m } u = ( - \frac { d ^ { 2 } } { d x ^ { 2 } } + q _ { m } ( x ) ) u,$ ; confidence 0.615
184.
; $\xi = G \times ^ { \varrho } \bf C$ ; confidence 1.000
185.
; $h _ { p } = ( 2 , d ) _ { P } \cdot W _ { P } ( \rho ) / W _ { P } ( \operatorname { det } _ { \rho } )$ ; confidence 0.615
186.
; $K ( x ) \approx L ( x ) = \{ \kappa _ { j } ( x ) \approx \lambda _ { j } ( x ) : j \in J \}$ ; confidence 0.615
187.
; ${\cal H} _ { j }$ ; confidence 1.000
188.
; $Q_\lambda$ ; confidence 1.000
189.
; $y_{it}$ ; confidence 1.000
190.
; $C _ { G } ( x ) \leq N$ ; confidence 0.615
191.
; ${\frak sl} ( n )$ ; confidence 1.000
192.
; $M ( G ( z , w ) ) = ( 2 \pi ) ^ { n } \delta _ { w }$ ; confidence 0.615
193.
; $q = ( q _ { 1 } , \dots , q _ { n } )$ ; confidence 0.615
194.
; $K _ { S } ( \overline { \sigma } )$ ; confidence 0.615
195.
; $\mu _ { x } ^ { \Omega } = P _ { \Omega } ( x , \xi ) d \sigma ( \xi )$ ; confidence 0.615
196.
; $\frac { n ^ { \prime } } { n } < 1 + C \frac { ( \operatorname { log } \operatorname { log } n ) ^ { 2 } } { \operatorname { log } n } , C = \text { const } > 0,$ ; confidence 0.614
197.
; $T _ { N + 1 } / 2 ^ { N }$ ; confidence 0.614
198.
; $K_0({\cal R}\otimes {\bf C}[\Gamma])$ ; confidence 1.000
199.
; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { G ( a ) ^ { N } } = E ( a ),$ ; confidence 1.000
200.
; $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / \operatorname{SU} ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }.$ ; confidence 0.614
201.
; $S _ { \Lambda }$ ; confidence 0.614
202.
; $\kappa \partial _ { S } F + H _ { S } ( \frac { \delta F } { \delta u } , u , t ) = 0.$ ; confidence 0.614
203.
; $\hat { \mathfrak { g } } = \hat{\mathfrak { g } }( A )$ ; confidence 1.000
204.
; $J ^ { r } ( V , W )$ ; confidence 1.000
205.
; $f ( T ^ { n } x ) g ( S ^ { n } y ) e ^ { 2 \pi i n \varepsilon }$ ; confidence 0.614
206.
; $m \geq 5$ ; confidence 1.000
207.
; $y ( x _ { i } ) = c _ { i } , \quad i = 1 , \dots , n ; \quad x _ { i } \in [ a , b ].$ ; confidence 0.614
208.
; $J _ { f } ^ { r }$ ; confidence 1.000
209.
; $a b = b a$ ; confidence 0.614
210.
; $\frac { | \nabla ( {\cal A} ) | } { | N _ { k + 1} | } \geq \frac { | {\cal A} | } { | N _ { k } | }$ ; confidence 1.000
211.
; $\frac { 1 } { q } + a _ { 0 } + a _ { 1 } q + a _ { 2 } q ^ { 2 } + \ldots , \quad q = \operatorname { exp } ( 2 \pi i z )$ ; confidence 0.614
212.
; $q = \operatorname { inf } \{ { k } : \sigma _ { k } \geq 1 \}$ ; confidence 1.000
213.
; $z \in \bf D$ ; confidence 1.000
214.
; $T _ { n } ( \zeta )$ ; confidence 0.613
215.
; $A _ { R }$ ; confidence 1.000
216.
; $| u_{ tt } |$ ; confidence 1.000
217.
; $E _ { 2 ^{i-1}(n+1)} ^ { i } $ ; confidence 1.000
218.
; $Y \times_M TM \rightarrow T Y$ ; confidence 1.000
219.
; $Z _ { G } ( - q ^ { - 1 } ) = 0$ ; confidence 0.613
220.
; $\square ^ { 1 } S_n$ ; confidence 1.000
221.
; $\sigma = \left( \begin{array} { c c } { 0 } & { \operatorname{Id} ( E ^ { * } ) } \\ { - \operatorname{Id} ( E ) } & { 0 } \end{array} \right),$ ; confidence 1.000
222.
; $S ^ { \perp } = \{ x \in E : \langle x , s \rangle = 0 \text { for all } s \in S \}.$ ; confidence 1.000
223.
; $\operatorname { Ext } _ { H } ^ { 1 } ( T , - )$ ; confidence 0.613
224.
; $I _ { i } ( \omega )$ ; confidence 0.613
225.
; $A ^ { - }$ ; confidence 0.613
226.
; $r \ll n$ ; confidence 1.000
227.
; $A | _ {\cal E _ { \lambda } ^ { \prime } }$ ; confidence 1.000
228.
; $r = 0$ ; confidence 0.613
229.
; $\Xi = {\bf R} ^ { N }$ ; confidence 1.000
230.
; $( u _ { j } , v _ { j } ) \in E _ { j }$ ; confidence 0.613
231.
; $G ( \zeta ) e ^ { - \varepsilon | \operatorname { lm } \zeta | - H _ { K } ( \operatorname { lm } \zeta ) }$ ; confidence 1.000
232.
; $R ^ { \prime } ( I ) = \oplus _ { n \in \bf Z} I^ { n }$ ; confidence 1.000
233.
; $A _ { P^\prime }$ ; confidence 1.000
234.
; $\Omega = \{ 0,1 \} ^ { n }$ ; confidence 1.000
235.
; $\Omega = {\bf R} ^ { n }$ ; confidence 1.000
236.
; $T ^ { * } M$ ; confidence 1.000
237.
; $\Gamma \subset {\bf C} ^ { 2 }$ ; confidence 1.000
238.
; $a _ { n + 1} = F ( 1 , a _ { n } )$ ; confidence 1.000
239.
; ${\cal A} ( \sigma ) = \int _ { M } L \circ \sigma ^ { k } \Delta = \int _ { M } \sigma ^ { k ^ { * } } ( L \Delta ).$ ; confidence 1.000
240.
; $\alpha$ ; confidence 1.000
241.
; $f ^ { \Delta ( \varphi ) } : W \rightarrow \overline {\bf R }$ ; confidence 1.000
242.
; $\| .\|$ ; confidence 1.000
243.
; $\hat { X } = X \cup \{ \omega \}$ ; confidence 1.000
244.
; $\operatorname{P} ( m _ { 0 } , F )$ ; confidence 1.000
245.
; ${\cal S = M} \circ d$ ; confidence 1.000
246.
; $x \in A$ ; confidence 0.612
247.
; $\rho _ { n } ( \phi )$ ; confidence 1.000
248.
; $[ K , L ] \bigwedge = i _ { K } L - ( - 1 ) ^ { k \text{l}} i _ { L } K$ ; confidence 1.000
249.
; $\Lambda ( {\cal X} ) : = {\cal X} \otimes _ { {\bf C} } \Lambda$ ; confidence 1.000
250.
; $f \nabla = 1 _ { X }$ ; confidence 0.611
251.
; $\tau = ( \tau _ { 1 } , \ldots , \tau _ { n } )$ ; confidence 1.000
252.
; $m _ { k } = \int _ { I } x ^ { k } d \psi ( x )$ ; confidence 1.000
253.
; $B \in {\cal M} _ { n } ( {\bf R} )$ ; confidence 1.000
254.
; $b ^ { n } = 0$ ; confidence 1.000
255.
; $\psi_b$ ; confidence 1.000
256.
; $\operatorname { ker } \delta _ { A , B } \nsubseteq \operatorname { ker } \delta _ { A ^ { * } , B ^ { * }}$ ; confidence 1.000
257.
; $\frac { 1 - | F ( z _ { n } ) | } { 1 - | z _ { n } | } \rightarrow d ( \omega ) < \infty.$ ; confidence 0.611
258.
; $\| x _ { n } \| \rightarrow 0$ ; confidence 1.000
259.
; $f | _ { k } ^ { \text{V} } M = f , \forall M \in \Gamma.$ ; confidence 1.000
260.
; ${\bf y} ( a _ { 1 } / q _ { 1 } )$ ; confidence 1.000
261.
; $\| \square ^ { t } M _ { \varphi } \| _ { \text{cb} } : = \operatorname { sup } \| \square ^ { t } M _ { \varphi } \otimes 1 _ { n } \|$ ; confidence 1.000
262.
; $T$ ; confidence 0.611 NOTE: there are three dots on the edges
263.
; $\frac { D } { D t } = \frac { \partial } { \partial t } + v _ { i } ( . ) , _ { i } = \frac { \partial } { \partial t } + {\bf v} . \nabla$ ; confidence 1.000
264.
; $\| f ( x ) - a ( x ) \| \leq K \| x \| ^ { p }$ ; confidence 0.611
265.
; $g _ { n }$ ; confidence 1.000
266.
; $X = \{ 1 , \dots , n \}$ ; confidence 0.610
267.
; $e _ { i } e _ { j } + e _ { j } e _ { i } = 0$ ; confidence 0.610
268.
; $w ( p - \delta ) + \delta \in C^-$ ; confidence 1.000
269.
; $S _ { i } = X _ { i } X_i ^ { \prime }$ ; confidence 1.000
270.
; $h : \{ 1 , \dots , n \} \rightarrow \bf R$ ; confidence 1.000
271.
; $| \kappa _ { n } | ^ { 2 } = {\cal M} _ { n - 1 } / {\cal M} _ { n }$ ; confidence 0.610
272.
; $\psi [ 1 ]$ ; confidence 0.610
273.
; $j = 1 , \dots , r$ ; confidence 0.610
274.
; $\gamma _ { 1 } ^ { 2 } = - 1 , \gamma _ { 2 } ^ { 2 } = \gamma _ { 3 } ^ { 2 } = \gamma _ { 4 } ^ { 2 } = 1,$ ; confidence 0.610
275.
; $\operatorname { max } _ { j = 1 , \ldots , n - m + 1 } | s _ { j } | \geq m ( \frac { 1 } { 2 } + \frac { m } { 8 n } + \frac { 3 m ^ { 2 } } { 64 n ^ { 2 } } ).$ ; confidence 0.610
276.
; $\alpha_r$ ; confidence 1.000
277.
; $\tilde { P _ { 8 } }$ ; confidence 1.000
278.
; $\mu _ { R _ { P } } ( M _ { P } ) = \mu _ { Q ( R / P ) } ( M \bigotimes _ { R / P } Q ( R / P ) ).$ ; confidence 1.000
279.
; $f ^ { - 1 } ( ( - \infty , t ] )$ ; confidence 0.610
280.
; $\Delta d_k = d_k - d_{k + 1}$ ; confidence 1.000
281.
; $E _ { \lambda }$ ; confidence 0.610
282.
; $( M _ { T } u ) ( x ) = | \operatorname { det } T \rceil ^ { - 1 / 2 } u ( T ^ { - 1 } x )$ ; confidence 0.610
283.
; $\operatorname { Ker } ( \operatorname{ad} ) = \{ 0 \}$ ; confidence 1.000
284.
; $\left( \begin{array} { c c c c } { h ( x _ { 1 } , y _ { 1 } ) } & { h ( x _ { 1 } , y _ { 2 } ) } & { \dots } & { h ( x _ { 1 } , y _ { n } ) } \\ { h ( x _ { 2 } , y _ { 1 } ) } & { h ( x _ { 2 } , y _ { 2 } ) } & { \dots } & { h ( x _ { 2 } , y _ { n } ) } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { h ( x _ { n } , y _ { 1 } ) } & { h ( x _ { n } , y _ { 2 } ) } & { \dots } & { h ( x _ { n } , y _ { n } ) } \end{array} \right);$ ; confidence 0.609
285.
; $\operatorname{id}: X \rightarrow X$ ; confidence 1.000
286.
; $\{ n _ { i } \}$ ; confidence 0.609
287.
; $\langle \langle A \rangle \rangle$ ; confidence 0.609
288.
; $= 2 ^ { 46 } . 3 ^ { 20 } . 5 ^ { 9 } . 7 ^ { 6 } . 11 ^ { 2 } . 13 ^ { 3 }.$ ; confidence 1.000
289.
; $v - A v = ( I - A ) v$ ; confidence 0.609
290.
; ${\bf S} = c \bf E \times H$ ; confidence 1.000
291.
; $\operatorname { log } a \in L ^ { 1 } (\bf T )$ ; confidence 1.000
292.
; $\Omega _ { 1 } \subset \Omega$ ; confidence 0.609
293.
; $\omega : \operatorname { Gal } ( k ( \mu _ { p } ) / k ) \rightarrow {\bf Z} _ { p } ^ { \times } ( \omega ( a ) \equiv a \operatorname { mod } p )$ ; confidence 1.000
294.
; $( \alpha _ { 1 } \cup \gamma ^ { d } , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.609
295.
; $\operatorname { Ext } _ { H } ^ { 1 } ( T , T ) = 0$ ; confidence 0.609
296.
; $f \tau$ ; confidence 0.609
297.
; $\ldots \subset C _ { 3 } \subset \ldots \subset C _ { 2 } \subset \ldots \subset C _ { 1 } \subset \ldots \subset C _ { 0 } = R \cal K$ ; confidence 1.000
298.
; $\sum _ { i = 1 } ^ { k } s _ { i } A _ { i } A _ { i } ^ { T } = ( m \sum _ { i = 1 } ^ { k } s _ { i } ) I _ { m }$ ; confidence 1.000
299.
; $T _ { F R }$ ; confidence 0.609
300.
; $\chi _ { f } ( x y ) = 0$ ; confidence 0.609
Maximilian Janisch/latexlist/latex/NoNroff/51. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/51&oldid=45621