|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| + | |
| The theorems 1)–8) on the distribution of prime numbers, proved by P.L. Chebyshev [[#References|[1]]] in 1848–1850. | | The theorems 1)–8) on the distribution of prime numbers, proved by P.L. Chebyshev [[#References|[1]]] in 1848–1850. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c0220101.png" /> be the number of primes not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c0220102.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c0220103.png" /> be an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c0220104.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c0220105.png" /> be a prime number, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c0220106.png" /> be the natural logarithm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c0220107.png" />, and let | + | Let $\pi(x)$ be the number of primes not exceeding $x$, let $m$ be an integer $\geq0$, let $p$ be a prime number, let $\ln u$ be the natural logarithm of $u$, and let |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c0220108.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | $$\operatorname{li}x=\int\limits_2^x\frac{dt}{\ln x}=\label{*}\tag{*}$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c0220109.png" /></td> </tr></table>
| + | $$=\frac x{\ln x}+\dots+\frac{(n-1)!x}{\ln^nx}+O\left(\frac x{\ln^{n+1}x}\right).$$ |
| | | |
− | 1) For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201010.png" /> the sum of the series | + | 1) For any $m$ the sum of the series |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201011.png" /></td> </tr></table>
| + | $$\sum_{n=2}^\infty\left(\pi(n)-\pi(n-1)-\frac1{\ln n}\right)\frac{\ln^mn}{n^s}$$ |
| | | |
− | has a finite limit as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201012.png" />. | + | has a finite limit as $s\to1+$. |
| | | |
− | 2) For arbitrary small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201013.png" /> and arbitrary large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201014.png" />, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201015.png" /> satisfies the two inequalities | + | 2) For arbitrary small $a>0$ and arbitrary large $m$, the function $\pi(x)$ satisfies the two inequalities |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201016.png" /></td> </tr></table>
| + | $$\pi(x)>\operatorname{li}x-ax\ln^{-m}x,\quad\pi(x)<\operatorname{li}x+ax\ln^{-m}x$$ |
| | | |
| infinitely often. | | infinitely often. |
| | | |
− | 3) The fraction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201017.png" /> cannot have a limit distinct from 1 as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201018.png" />. | + | 3) The fraction $(\pi(x)\ln x)/x$ cannot have a limit distinct from 1 as $x\to\infty$. |
| | | |
− | 4) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201019.png" /> can be expressed algebraically in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201022.png" /> up to order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201023.png" />, then the expression must be (*). After this, Chebyshev introduced two new distribution functions for prime numbers — the Chebyshev functions (cf. [[Chebyshev function|Chebyshev function]]) | + | 4) If $\pi(x)$ can be expressed algebraically in $x$, $\ln x$ and $e^x$ up to order $x\ln^{-n}x$, then the expression must be \eqref{*}. After this, Chebyshev introduced two new distribution functions for prime numbers — the Chebyshev functions (cf. [[Chebyshev function|Chebyshev function]]) |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201024.png" /></td> </tr></table>
| + | $$\theta(x)=\sum_{p\leq x}\ln p,\quad\psi(x)=\sum_{p^m\leq x}\ln p,$$ |
| | | |
− | and actually determined the order of growth of these functions. Hence he was the first to obtain the order of growth of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201025.png" /> and of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201026.png" />-th prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201027.png" />. More precisely, he proved: | + | and actually determined the order of growth of these functions. Hence he was the first to obtain the order of growth of $\pi(x)$ and of the $n$-th prime number $P_n$. More precisely, he proved: |
| | | |
− | 5) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201028.png" />, then for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201029.png" /> the inequalities | + | 5) If $A=\ln(2^{1/2}3^{1/3}5^{1/5}/30^{1/30})$, then for $x>1$ the inequalities |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201030.png" /></td> </tr></table>
| + | $$\psi(x)>Ax-\frac52\ln x-1,$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201031.png" /></td> </tr></table> | + | $$\psi(x)<\frac65Ax+\frac5{4\ln6}\ln^2x+\frac54\ln x+1,$$ |
| | | |
| hold. | | hold. |
| | | |
− | 6) For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201032.png" /> larger than some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201033.png" />, the inequality | + | 6) For $x$ larger than some $x_0$ the inequality |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201034.png" /></td> </tr></table>
| + | $$0.9212\ldots<\frac{\pi(x)\ln x}{x}<1.1055\dots$$ |
| | | |
| holds. | | holds. |
| | | |
− | 7) There exist constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201035.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201036.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201037.png" />-th prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201038.png" /> satisfies the inequalities | + | 7) There exist constants $a>0,A>0$ such that for all $n=1,2,\dots,$ the $n$-th prime number $P_n$ satisfies the inequalities |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201039.png" /></td> </tr></table> | + | $$an\ln n<P_n<An\ln n.$$ |
| | | |
− | 8) For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201040.png" /> there is at least one prime number in the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201041.png" /> (Bertrand's postulate). | + | 8) For $a>3$ there is at least one prime number in the interval $(a,2a-2)$ (Bertrand's postulate). |
| | | |
| The main idea of the method of proof of 1)–4) lies in the study of the behaviour of the quantities | | The main idea of the method of proof of 1)–4) lies in the study of the behaviour of the quantities |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201042.png" /></td> </tr></table>
| + | $$\sum_{n=2}^\infty\frac1{n^{1+s}}-\frac1s,\quad\ln s-\sum\ln\left(1-\frac1{p^{1+s}}\right),$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201043.png" /></td> </tr></table>
| + | $$\sum_p\ln\left(1-\frac1{p^{1+s}}\right)+\sum_p\frac1{p^{1+s}},$$ |
| | | |
− | and their derivatives as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201044.png" />. The basis of the method of deducing 5)–8) is the Chebyshev identity: | + | and their derivatives as $s\to0+$. The basis of the method of deducing 5)–8) is the Chebyshev identity: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201045.png" /></td> </tr></table>
| + | $$\ln[x]!=\sum_{n\leq x}\psi\left(\frac xn\right).$$ |
| | | |
| ====References==== | | ====References==== |
Line 65: |
Line 67: |
| By now (1987) Chebyshev's theorems have been superceded by better results. E.g., | | By now (1987) Chebyshev's theorems have been superceded by better results. E.g., |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201046.png" /></td> </tr></table>
| + | $$\pi(x)=\operatorname{li}(x)+O(x\exp(-c\sqrt{\log x}))$$ |
| | | |
− | (see [[#References|[a1]]] for even better results); further <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022010/c02201047.png" /> changes sign infinitely often. More results, as well as references, can be found in [[#References|[a1]]], Chapt. 12, Notes. | + | (see [[#References|[a1]]] for even better results); further $\pi(x)-\operatorname{li}(x)$ changes sign infinitely often. More results, as well as references, can be found in [[#References|[a1]]], Chapt. 12, Notes. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Ivic, "The Riemann zeta-function" , Wiley (1985)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Ivic, "The Riemann zeta-function" , Wiley (1985)</TD></TR></table> |
The theorems 1)–8) on the distribution of prime numbers, proved by P.L. Chebyshev [1] in 1848–1850.
Let $\pi(x)$ be the number of primes not exceeding $x$, let $m$ be an integer $\geq0$, let $p$ be a prime number, let $\ln u$ be the natural logarithm of $u$, and let
$$\operatorname{li}x=\int\limits_2^x\frac{dt}{\ln x}=\label{*}\tag{*}$$
$$=\frac x{\ln x}+\dots+\frac{(n-1)!x}{\ln^nx}+O\left(\frac x{\ln^{n+1}x}\right).$$
1) For any $m$ the sum of the series
$$\sum_{n=2}^\infty\left(\pi(n)-\pi(n-1)-\frac1{\ln n}\right)\frac{\ln^mn}{n^s}$$
has a finite limit as $s\to1+$.
2) For arbitrary small $a>0$ and arbitrary large $m$, the function $\pi(x)$ satisfies the two inequalities
$$\pi(x)>\operatorname{li}x-ax\ln^{-m}x,\quad\pi(x)<\operatorname{li}x+ax\ln^{-m}x$$
infinitely often.
3) The fraction $(\pi(x)\ln x)/x$ cannot have a limit distinct from 1 as $x\to\infty$.
4) If $\pi(x)$ can be expressed algebraically in $x$, $\ln x$ and $e^x$ up to order $x\ln^{-n}x$, then the expression must be \eqref{*}. After this, Chebyshev introduced two new distribution functions for prime numbers — the Chebyshev functions (cf. Chebyshev function)
$$\theta(x)=\sum_{p\leq x}\ln p,\quad\psi(x)=\sum_{p^m\leq x}\ln p,$$
and actually determined the order of growth of these functions. Hence he was the first to obtain the order of growth of $\pi(x)$ and of the $n$-th prime number $P_n$. More precisely, he proved:
5) If $A=\ln(2^{1/2}3^{1/3}5^{1/5}/30^{1/30})$, then for $x>1$ the inequalities
$$\psi(x)>Ax-\frac52\ln x-1,$$
$$\psi(x)<\frac65Ax+\frac5{4\ln6}\ln^2x+\frac54\ln x+1,$$
hold.
6) For $x$ larger than some $x_0$ the inequality
$$0.9212\ldots<\frac{\pi(x)\ln x}{x}<1.1055\dots$$
holds.
7) There exist constants $a>0,A>0$ such that for all $n=1,2,\dots,$ the $n$-th prime number $P_n$ satisfies the inequalities
$$an\ln n<P_n<An\ln n.$$
8) For $a>3$ there is at least one prime number in the interval $(a,2a-2)$ (Bertrand's postulate).
The main idea of the method of proof of 1)–4) lies in the study of the behaviour of the quantities
$$\sum_{n=2}^\infty\frac1{n^{1+s}}-\frac1s,\quad\ln s-\sum\ln\left(1-\frac1{p^{1+s}}\right),$$
$$\sum_p\ln\left(1-\frac1{p^{1+s}}\right)+\sum_p\frac1{p^{1+s}},$$
and their derivatives as $s\to0+$. The basis of the method of deducing 5)–8) is the Chebyshev identity:
$$\ln[x]!=\sum_{n\leq x}\psi\left(\frac xn\right).$$
References
[1] | P.L. Chebyshev, "Oeuvres de P.L. Tchebycheff" , 1–2 , Chelsea (1961) (Translated from Russian) |
By now (1987) Chebyshev's theorems have been superceded by better results. E.g.,
$$\pi(x)=\operatorname{li}(x)+O(x\exp(-c\sqrt{\log x}))$$
(see [a1] for even better results); further $\pi(x)-\operatorname{li}(x)$ changes sign infinitely often. More results, as well as references, can be found in [a1], Chapt. 12, Notes.
References
[a1] | A. Ivic, "The Riemann zeta-function" , Wiley (1985) |