Difference between revisions of "Average"
(Importing text file) |
m (spacing) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | ''with weight | + | {{TEX|done}} |
+ | ''with weight $q=(q_1,\dots,q_n)$, $q_i>0$, $\sum q_i=1$, of a set of real numbers $a=(a_1,\dots,a_n)$'' | ||
A variable | A variable | ||
− | + | $$\mathfrak M_\phi(a,q)=\phi^{-1}\left(\sum_iq_i\phi(a_i)\right),$$ | |
− | where | + | where $\phi(x)$ is a continuous strictly-monotone function on $\mathbf R$. When $\phi(x)=x^r$, one obtains |
− | + | $$\mathfrak M_r(a,q)=\left(\sum_iq_ia_i^r\right)^{1/r}$$ | |
− | and, in particular, when | + | and, in particular, when $r=1$, $q_i=1/n$, $i=1,\dots,n,$ $\mathfrak M_r(a,1/n)=\mathfrak A(a)$ will be the arithmetic average of the numbers $a_1,\dots,a_n$, while when $r=-1$, it will be the harmonic average. The concepts of the geometric average $\mathfrak G(a)=(\prod_ia_i)^{1/n}$ and the weighted geometric average |
− | + | $$\mathfrak G(a,p)=\left(\prod_ia_i^{p_i}\right)^{1/\sum_ip_i}$$ | |
are introduced separately. | are introduced separately. | ||
− | One of the basic results of the theory of averages is the inequality < | + | One of the basic results of the theory of averages is the inequality $\mathfrak G(a)<\mathfrak A(a)$, except when all $a_i$ are equal to each other. Other results are: |
− | 1) | + | 1) $\mathfrak M_\phi(ka,p)=k\mathfrak M_\phi(a,p),k>0$; |
− | 2) | + | 2) $\mathfrak M_\psi(a,p)=\mathfrak M_\phi(a,p)$ if and only if $\psi=\alpha\phi+\beta$, $\beta\in\mathbf R$, $\alpha\neq0$; |
− | 3) | + | 3) $\mathfrak M_\psi(a,p)\leq\mathfrak M_\phi(a,p)$ if and only if $\phi\circ\psi^{-1}$ is a convex function; in particular $\mathfrak M_r(a,p)\leq\mathfrak M_s(a,p)$ if $r<s$. |
The concept of an average can be extended to infinite sequences under the assumption that the corresponding series and products converge, and to other functions. The following is such an example: | The concept of an average can be extended to infinite sequences under the assumption that the corresponding series and products converge, and to other functions. The following is such an example: | ||
− | + | $$\mathfrak M_\phi(f,p)=\frac{\phi^{-1}\left(\int\limits_a^bp(x)\phi(f(x))\,dx\right)}{\int\limits_a^bp(x)\,dx},$$ | |
− | given the condition that | + | given the condition that $f(x)\geq0$ almost everywhere on the corresponding interval and that $p(x)>0$. Thus, |
− | + | $$\int\limits_a^bf(x)p(x)\,dx\leq\mathfrak M_\phi(f,p)\int\limits_a^bp(x)\,dx.$$ | |
====References==== | ====References==== | ||
Line 37: | Line 38: | ||
====Comments==== | ====Comments==== | ||
− | Instead of "average" the term " | + | Instead of "average" the term "mean" is also quite often used: arithmetic mean, geometric mean, etc. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.S. Mitrinović, "Analytic inequalities" , Springer (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D.S. Mitrinović, "Elementary inequalities" , Noordhoff (1964)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.S. Mitrinović, "Analytic inequalities" , Springer (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D.S. Mitrinović, "Elementary inequalities" , Noordhoff (1964)</TD></TR></table> |
Latest revision as of 14:29, 14 February 2020
with weight $q=(q_1,\dots,q_n)$, $q_i>0$, $\sum q_i=1$, of a set of real numbers $a=(a_1,\dots,a_n)$
A variable
$$\mathfrak M_\phi(a,q)=\phi^{-1}\left(\sum_iq_i\phi(a_i)\right),$$
where $\phi(x)$ is a continuous strictly-monotone function on $\mathbf R$. When $\phi(x)=x^r$, one obtains
$$\mathfrak M_r(a,q)=\left(\sum_iq_ia_i^r\right)^{1/r}$$
and, in particular, when $r=1$, $q_i=1/n$, $i=1,\dots,n,$ $\mathfrak M_r(a,1/n)=\mathfrak A(a)$ will be the arithmetic average of the numbers $a_1,\dots,a_n$, while when $r=-1$, it will be the harmonic average. The concepts of the geometric average $\mathfrak G(a)=(\prod_ia_i)^{1/n}$ and the weighted geometric average
$$\mathfrak G(a,p)=\left(\prod_ia_i^{p_i}\right)^{1/\sum_ip_i}$$
are introduced separately.
One of the basic results of the theory of averages is the inequality $\mathfrak G(a)<\mathfrak A(a)$, except when all $a_i$ are equal to each other. Other results are:
1) $\mathfrak M_\phi(ka,p)=k\mathfrak M_\phi(a,p),k>0$;
2) $\mathfrak M_\psi(a,p)=\mathfrak M_\phi(a,p)$ if and only if $\psi=\alpha\phi+\beta$, $\beta\in\mathbf R$, $\alpha\neq0$;
3) $\mathfrak M_\psi(a,p)\leq\mathfrak M_\phi(a,p)$ if and only if $\phi\circ\psi^{-1}$ is a convex function; in particular $\mathfrak M_r(a,p)\leq\mathfrak M_s(a,p)$ if $r<s$.
The concept of an average can be extended to infinite sequences under the assumption that the corresponding series and products converge, and to other functions. The following is such an example:
$$\mathfrak M_\phi(f,p)=\frac{\phi^{-1}\left(\int\limits_a^bp(x)\phi(f(x))\,dx\right)}{\int\limits_a^bp(x)\,dx},$$
given the condition that $f(x)\geq0$ almost everywhere on the corresponding interval and that $p(x)>0$. Thus,
$$\int\limits_a^bf(x)p(x)\,dx\leq\mathfrak M_\phi(f,p)\int\limits_a^bp(x)\,dx.$$
References
[1] | G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934) |
Comments
Instead of "average" the term "mean" is also quite often used: arithmetic mean, geometric mean, etc.
References
[a1] | D.S. Mitrinović, "Analytic inequalities" , Springer (1970) |
[a2] | D.S. Mitrinović, "Elementary inequalities" , Noordhoff (1964) |
Average. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Average&oldid=12458