Difference between revisions of "Lebesgue theorem"
(Importing text file) |
m (spacing) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | Lebesgue's theorem in dimension theory: For any | + | {{TEX|done}} |
+ | Lebesgue's theorem in dimension theory: For any $\epsilon>0$ the $n$-dimensional cube has a finite closed $\epsilon$-covering of multiplicity $\leq n+1$, and at the same there is an $\epsilon_0=\epsilon_0(n)>0$ such that any finite closed $\epsilon_0$-covering of the $n$-dimensional cube has multiplicity $\geq n+1$ (cf. also [[Covering (of a set)|Covering (of a set)]]). This assertion led later to a definition of a fundamental dimension invariant, the [[Lebesgue dimension|Lebesgue dimension]] $\dim X$ of a normal topological space $X$. | ||
====Comments==== | ====Comments==== | ||
− | This theorem is also called the Lebesgue covering theorem or " | + | This theorem is also called the Lebesgue covering theorem or "Pflastersatz" (see [[Dimension|Dimension]]). In the language of [[Dimension theory|dimension theory]] it says that $\dim I^n=n$ for every $n$. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Engelking, "Dimension theory" , North-Holland & PWN (1978) pp. 19; 50</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Hurevicz, G. Wallman, "Dimension theory" , Princeton Univ. Press (1948) ((Appendix by L.S. Pontryagin and L.G. Shnirel'man in Russian edition.))</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> C. Kuratowski, "Introduction to set theory and topology" , Pergamon (1972) (Translated from Polish)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Engelking, "Dimension theory" , North-Holland & PWN (1978) pp. 19; 50 {{MR|0482696}} {{MR|0482697}} {{ZBL|0401.54029}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Hurevicz, G. Wallman, "Dimension theory" , Princeton Univ. Press (1948) ((Appendix by L.S. Pontryagin and L.G. Shnirel'man in Russian edition.)) {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> C. Kuratowski, "Introduction to set theory and topology" , Pergamon (1972) (Translated from Polish) {{MR|0346724}} {{ZBL|0267.54002}} {{ZBL|0247.54001}} </TD></TR></table> |
− | Lebesgue's theorem on the passage to the limit under the integral sign: Suppose that on a measurable set | + | Lebesgue's theorem on the passage to the limit under the integral sign: Suppose that on a measurable set $E$ there is specified a sequence of measurable functions $f_n$ that converges almost-everywhere (or in measure) on $E$ to a function $f$. If there is a summable function $\Phi$ on $E$ such that for all $n$ and $x$, |
− | + | $$|f_n(x)|\leq\Phi(x),$$ | |
− | then | + | then $f_n$ and $f$ are summable on $E$ and |
− | + | $$\lim_{n\to\infty}\int\limits_Ef_n(x)\,dx=\int\limits_Ef(x)\,dx.$$ | |
− | This was first proved by H. Lebesgue [[#References|[1]]]. The important special case when | + | This was first proved by H. Lebesgue [[#References|[1]]]. The important special case when $\Phi=\text{const}$ and $E$ has finite measure is also called the Lebesgue theorem; he obtained it earlier [[#References|[2]]]. |
− | A theorem first proved by B. Levi [[#References|[3]]] is sometimes called the Lebesgue theorem: Suppose that on a measurable set | + | A theorem first proved by B. Levi [[#References|[3]]] is sometimes called the Lebesgue theorem: Suppose that on a measurable set $E$ there is specified a non-decreasing sequence of measurable non-negative functions $0\leq f_1(x)\leq f_2(x)\leq\dots$ ($x\in E$) and that |
− | + | $$f(x)=\lim_{n\to\infty}f_n(x)$$ | |
almost-everywhere; then | almost-everywhere; then | ||
− | + | $$\lim_{n\to\infty}\int\limits_Ef_n(x)\,dx=\int\limits_Ef(x)\,dx.$$ | |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Lebesgue, "Sur les intégrales singuliéres" ''Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys.'' , '''1''' (1909) pp. 25–117</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Lebesgue, "Intégrale, longueur, aire" , Univ. Paris (1902) (Thesis)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B. Levi, "Sopra l'integrazione delle serie" ''Rend. Ist. Lombardo sue Lett. (2)'' , '''39''' (1906) pp. 775–780</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> I.P. Natanson, "Theory of functions of a real variable" , '''1–2''' , F. Ungar (1955–1961) (Translated from Russian)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Lebesgue, "Sur les intégrales singuliéres" ''Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys.'' , '''1''' (1909) pp. 25–117 {{MR|1508308}} {{ZBL|41.0329.01}} {{ZBL|41.0327.02}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Lebesgue, "Intégrale, longueur, aire" , Univ. Paris (1902) (Thesis) {{MR|}} {{ZBL|33.0307.02}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B. Levi, "Sopra l'integrazione delle serie" ''Rend. Ist. Lombardo sue Lett. (2)'' , '''39''' (1906) pp. 775–780 {{MR|}} {{ZBL|37.0424.03}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}} {{ZBL|63.0183.05}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> I.P. Natanson, "Theory of functions of a real variable" , '''1–2''' , F. Ungar (1955–1961) (Translated from Russian) {{MR|0640867}} {{MR|0354979}} {{MR|0148805}} {{MR|0067952}} {{MR|0039790}} {{ZBL|}} </TD></TR></table> |
''T.P. Lukashenko'' | ''T.P. Lukashenko'' | ||
Line 36: | Line 37: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators" , '''1–3''' , Interscience (1958–1971)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.R. Halmos, "Measure theory" , v. Nostrand (1950)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators" , '''1–3''' , Interscience (1958–1971) {{MR|1009164}} {{MR|1009163}} {{MR|1009162}} {{MR|0412888}} {{MR|0216304}} {{MR|0188745}} {{MR|0216303}} {{MR|1530651}} {{MR|0117523}} {{ZBL|0635.47003}} {{ZBL|0635.47002}} {{ZBL|0635.47001}} {{ZBL|0283.47002}} {{ZBL|0243.47001}} {{ZBL|0146.12601}} {{ZBL|0128.34803}} {{ZBL|0084.10402}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.R. Halmos, "Measure theory" , v. Nostrand (1950) {{MR|0033869}} {{ZBL|0040.16802}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) {{MR|0188387}} {{ZBL|0137.03202}} </TD></TR></table> |
Latest revision as of 14:25, 14 February 2020
Lebesgue's theorem in dimension theory: For any $\epsilon>0$ the $n$-dimensional cube has a finite closed $\epsilon$-covering of multiplicity $\leq n+1$, and at the same there is an $\epsilon_0=\epsilon_0(n)>0$ such that any finite closed $\epsilon_0$-covering of the $n$-dimensional cube has multiplicity $\geq n+1$ (cf. also Covering (of a set)). This assertion led later to a definition of a fundamental dimension invariant, the Lebesgue dimension $\dim X$ of a normal topological space $X$.
Comments
This theorem is also called the Lebesgue covering theorem or "Pflastersatz" (see Dimension). In the language of dimension theory it says that $\dim I^n=n$ for every $n$.
References
[a1] | R. Engelking, "Dimension theory" , North-Holland & PWN (1978) pp. 19; 50 MR0482696 MR0482697 Zbl 0401.54029 |
[a2] | W. Hurevicz, G. Wallman, "Dimension theory" , Princeton Univ. Press (1948) ((Appendix by L.S. Pontryagin and L.G. Shnirel'man in Russian edition.)) |
[a3] | C. Kuratowski, "Introduction to set theory and topology" , Pergamon (1972) (Translated from Polish) MR0346724 Zbl 0267.54002 Zbl 0247.54001 |
Lebesgue's theorem on the passage to the limit under the integral sign: Suppose that on a measurable set $E$ there is specified a sequence of measurable functions $f_n$ that converges almost-everywhere (or in measure) on $E$ to a function $f$. If there is a summable function $\Phi$ on $E$ such that for all $n$ and $x$,
$$|f_n(x)|\leq\Phi(x),$$
then $f_n$ and $f$ are summable on $E$ and
$$\lim_{n\to\infty}\int\limits_Ef_n(x)\,dx=\int\limits_Ef(x)\,dx.$$
This was first proved by H. Lebesgue [1]. The important special case when $\Phi=\text{const}$ and $E$ has finite measure is also called the Lebesgue theorem; he obtained it earlier [2].
A theorem first proved by B. Levi [3] is sometimes called the Lebesgue theorem: Suppose that on a measurable set $E$ there is specified a non-decreasing sequence of measurable non-negative functions $0\leq f_1(x)\leq f_2(x)\leq\dots$ ($x\in E$) and that
$$f(x)=\lim_{n\to\infty}f_n(x)$$
almost-everywhere; then
$$\lim_{n\to\infty}\int\limits_Ef_n(x)\,dx=\int\limits_Ef(x)\,dx.$$
References
[1] | H. Lebesgue, "Sur les intégrales singuliéres" Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys. , 1 (1909) pp. 25–117 MR1508308 Zbl 41.0329.01 Zbl 41.0327.02 |
[2] | H. Lebesgue, "Intégrale, longueur, aire" , Univ. Paris (1902) (Thesis) Zbl 33.0307.02 |
[3] | B. Levi, "Sopra l'integrazione delle serie" Rend. Ist. Lombardo sue Lett. (2) , 39 (1906) pp. 775–780 Zbl 37.0424.03 |
[4] | S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) MR0167578 Zbl 1196.28001 Zbl 0017.30004 Zbl 63.0183.05 |
[5] | I.P. Natanson, "Theory of functions of a real variable" , 1–2 , F. Ungar (1955–1961) (Translated from Russian) MR0640867 MR0354979 MR0148805 MR0067952 MR0039790 |
T.P. Lukashenko
Comments
This Lebesgue theorem is also called the dominated convergence theorem, while Levi's theorem is also known as the monotone convergence theorem.
References
[a1] | N. Dunford, J.T. Schwartz, "Linear operators" , 1–3 , Interscience (1958–1971) MR1009164 MR1009163 MR1009162 MR0412888 MR0216304 MR0188745 MR0216303 MR1530651 MR0117523 Zbl 0635.47003 Zbl 0635.47002 Zbl 0635.47001 Zbl 0283.47002 Zbl 0243.47001 Zbl 0146.12601 Zbl 0128.34803 Zbl 0084.10402 |
[a2] | P.R. Halmos, "Measure theory" , v. Nostrand (1950) MR0033869 Zbl 0040.16802 |
[a3] | E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) MR0188387 Zbl 0137.03202 |
Lebesgue theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_theorem&oldid=12122