Difference between pages "Cosine" and "Cotangent"
(TeX) |
m (dots) |
||
Line 2: | Line 2: | ||
One of the [[Trigonometric functions|trigonometric functions]]: | One of the [[Trigonometric functions|trigonometric functions]]: | ||
− | $$y=\cos x | + | $$y=\operatorname{cotan}x=\frac{\cos x}{\sin x};$$ |
− | + | other notations are $\cot x$, $\operatorname{cotg}x$ and $\operatorname{ctg}x$. The domain of definition is the entire real line with the exception of the points with abscissas $x=\pi n$, $n=0,\pm1,\pm2,\ldots$. The cotangent is an unbounded odd periodic function (with period $\pi$). The cotangent and the tangent are related by | |
− | $$\ | + | $$\operatorname{cotan}x=\frac{1}{\tan x}.$$ |
− | The | + | The inverse function to the cotangent is called the arccotangent. The derivative of the cotangent is given by: |
− | $$\ | + | $$(\operatorname{cotan}x)'=\frac{-1}{\sin^2x}.$$ |
− | The | + | The integral of the cotangent is given by: |
− | + | $$\int\operatorname{cotan}xdx=\ln|{\sin x}|+C.$$ | |
− | |||
− | |||
− | |||
− | $$\int\ | ||
The series expansion is: | The series expansion is: | ||
− | $$\ | + | $$\operatorname{cotan}x=\frac1x-\frac x3-\frac{x^3}{45}-\dotsb,\quad0<|x|<\pi.$$ |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | $$ | + | The cotangent of a complex argument $z$ is a meromorphic function with poles at the points $z=\pi n$, $n=0,\pm1,\pm2,\ldots$. |
− | |||
− | |||
− | |||
− | $ | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | + | See also [[Tangent, curve of the|Tangent, curve of the]]; [[Sine|Sine]]; [[Cosine|Cosine]]. | |
− | |||
− | |||
− |
Revision as of 12:42, 14 February 2020
One of the trigonometric functions:
$$y=\operatorname{cotan}x=\frac{\cos x}{\sin x};$$
other notations are $\cot x$, $\operatorname{cotg}x$ and $\operatorname{ctg}x$. The domain of definition is the entire real line with the exception of the points with abscissas $x=\pi n$, $n=0,\pm1,\pm2,\ldots$. The cotangent is an unbounded odd periodic function (with period $\pi$). The cotangent and the tangent are related by
$$\operatorname{cotan}x=\frac{1}{\tan x}.$$
The inverse function to the cotangent is called the arccotangent. The derivative of the cotangent is given by:
$$(\operatorname{cotan}x)'=\frac{-1}{\sin^2x}.$$
The integral of the cotangent is given by:
$$\int\operatorname{cotan}xdx=\ln|{\sin x}|+C.$$
The series expansion is:
$$\operatorname{cotan}x=\frac1x-\frac x3-\frac{x^3}{45}-\dotsb,\quad0<|x|<\pi.$$
The cotangent of a complex argument $z$ is a meromorphic function with poles at the points $z=\pi n$, $n=0,\pm1,\pm2,\ldots$.
Comments
See also Tangent, curve of the; Sine; Cosine.
Cosine. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cosine&oldid=31900