Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/23"
(AUTOMATIC EDIT of page 23 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.) |
(AUTOMATIC EDIT of page 23 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
||
| Line 1: | Line 1: | ||
== List == | == List == | ||
| − | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002050.png ; $u \neq 0$ ; confidence 0.974 |
| − | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019045.png ; $\varphi ( t , x ) = e ^ { t A } x$ ; confidence 0.974 |
| − | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034068.png ; $S ^ { 1 } = R / Z$ ; confidence 0.974 |
| − | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007013.png ; $X = t ^ { 2 }$ ; confidence 0.974 |
| − | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070143.png ; $H ^ { 0 }$ ; confidence 0.974 |
| − | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003044.png ; $j \geq j 0 \}$ ; confidence 0.974 |
| − | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095068.png ; $x ^ { i } = x ^ { i } ( t )$ ; confidence 0.974 |
| − | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c1300905.png ; $( N + 1 )$ ; confidence 0.974 |
| − | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012034.png ; $\Phi = \overline { \phi } d \overline { \phi }$ ; confidence 0.974 |
| − | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220161.png ; $\operatorname { det } ( r _ { D } )$ ; confidence 0.974 |
| − | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l058430142.png ; $E _ { 8 } ^ { ( 1 ) }$ ; confidence 0.974 |
| − | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015019.png ; $\chi _ { K }$ ; confidence 0.974 |
| − | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001043.png ; $V _ { i } = F _ { i } / \Gamma _ { i }$ ; confidence 0.974 |
| − | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025023.png ; $D _ { i } \in D$ ; confidence 0.974 |
| − | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120010/g1200107.png ; $( G _ { b } ^ { \alpha } f ) ( \omega ) = \int _ { - \infty } ^ { \infty } [ e ^ { - i \omega t } f ( t ) ] g _ { \alpha } ( t - b ) d t$ ; confidence 0.974 |
| − | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500062.png ; $B ( x _ { i } , \epsilon ) \subset C$ ; confidence 0.974 |
| − | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003054.png ; $( Z h ) ( t , w ) = \int _ { 0 } ^ { 1 } ( Z R ) ( t - s , w ) ( Z f ) ( s , w ) d s$ ; confidence 0.974 |
| − | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015075.png ; $u \in G ^ { \infty } ( \Omega )$ ; confidence 0.974 |
| − | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023067.png ; $E ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.974 |
| − | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046940/h04694056.png ; $A / I$ ; confidence 0.974 |
| − | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005025.png ; $X ^ { p } - X - a$ ; confidence 0.974 |
| − | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017039.png ; $H ( k ) \equiv ( \beta _ { i + j } ) _ { 0 \leq i , j \leq k }$ ; confidence 0.974 |
| − | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026880/c02688030.png ; $s > 2$ ; confidence 0.974 |
| − | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006063.png ; $( P ) \leq k$ ; confidence 0.974 |
| − | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v0969109.png ; $\operatorname { lim } _ { T \rightarrow \infty } \frac { 1 } { T } \int _ { 0 } ^ { T } U _ { t } h d t = \hbar$ ; confidence 0.974 |
| − | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016090.png ; $USDF = \alpha + \beta$ ; confidence 0.974 |
| − | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t1202006.png ; $M _ { 2 } ( k ) = \operatorname { max } _ { j } | z _ { j } | ^ { k }$ ; confidence 0.974 |
| − | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001057.png ; $F : C ^ { n } \rightarrow C ^ { n }$ ; confidence 0.974 |
| − | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001046.png ; $F ^ { * } = F ^ { - 1 }$ ; confidence 0.974 |
| − | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007024.png ; $M f = \operatorname { det } ( \frac { \partial ^ { 2 } f } { \partial z _ { i } \partial z _ { j } } )$ ; confidence 0.974 |
| − | 31. https://www.encyclopediaofmath.org/legacyimages/l/l120/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l1200306.png ; $H ^ { * } ( X , F _ { p } ) = R ^ { * }$ ; confidence 0.974 |
| − | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033026.png ; $( 4 u ^ { 2 } , 2 u ^ { 2 } - u , u ^ { 2 } - u )$ ; confidence 0.974 |
| − | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006058.png ; $J ^ { 1 } \Gamma : J ^ { 1 } Y \rightarrow J ^ { 1 } ( J ^ { 1 } Y \rightarrow M )$ ; confidence 0.974 |
| − | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009071.png ; $H _ { K }$ ; confidence 0.973 |
| − | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b1203206.png ; $x , y , u , v \in L ^ { P } ( \mu )$ ; confidence 0.973 |
| − | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003026.png ; $( a b ) ^ { - 1 } > 1$ ; confidence 0.973 |
| − | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110125.png ; $R ^ { 2 n } \times R ^ { 2 n }$ ; confidence 0.973 |
| − | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i12005041.png ; $\theta \in \Theta _ { 1 } \subset \Theta - \Theta _ { 0 }$ ; confidence 0.973 |
| − | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002061.png ; $x ^ { + } = x \vee e$ ; confidence 0.973 |
| − | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003096.png ; $D _ { + } + D _ { + } ^ { * }$ ; confidence 0.973 |
| − | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001075.png ; $\dot { y } ( t ) = F ( y ( t ) )$ ; confidence 0.973 |
| − | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310123.png ; $T ^ { \prime } \leq o ( T )$ ; confidence 0.973 |
| − | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080126.png ; $B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } \varphi _ { j } ( x ) \overline { \varphi _ { j } ( y ) }$ ; confidence 0.973 |
| − | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520254.png ; $d j = 0$ ; confidence 0.973 |
| − | 45. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022054.png ; $Z ( g h ; z )$ ; confidence 0.973 |
| − | 46. https://www.encyclopediaofmath.org/legacyimages/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002027.png ; $F _ { 2 } + \ldots + F _ { 2 k } = F _ { 2 k + 1 } - 1$ ; confidence 0.973 |
| − | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033850/d0338501.png ; $x ^ { j }$ ; confidence 0.973 |
| − | 48. https://www.encyclopediaofmath.org/legacyimages/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020113.png ; $( x _ { 0 } , y _ { 0 } ) \in \Gamma ( F )$ ; confidence 0.973 |
| − | 49. https://www.encyclopediaofmath.org/legacyimages/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032450/d032450242.png ; $U _ { y }$ ; confidence 0.973 |
| − | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007033.png ; $b = 1$ ; confidence 0.973 |
| − | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702060.png ; $H ^ { i } ( X , F ) = H ^ { i } ( X , F )$ ; confidence 0.973 |
| − | 52. https://www.encyclopediaofmath.org/legacyimages/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130080/i13008034.png ; $X \mapsto X ^ { \prime }$ ; confidence 0.973 |
| − | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004037.png ; $=$ ; confidence 0.973 |
| − | 54. https://www.encyclopediaofmath.org/legacyimages/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008030.png ; $n = [ L : K ]$ ; confidence 0.973 |
| − | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008018.png ; $r ^ { 2 } = z z$ ; confidence 0.973 |
| − | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002034.png ; $R = P / Q$ ; confidence 0.973 |
| − | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008014.png ; $S _ { i } = 1$ ; confidence 0.973 |
| − | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015046.png ; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.973 |
| − | 59. https://www.encyclopediaofmath.org/legacyimages/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003010.png ; $L _ { 2 } ( \mu )$ ; confidence 0.973 |
| − | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230113.png ; $\phi ( \lambda ( T T ^ { \prime } ) )$ ; confidence 0.973 |
| − | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120250/c1202506.png ; $C = \frac { \operatorname { det } \mu } { \operatorname { trace } ^ { 2 } \mu } \text { or } C ^ { \prime } = \frac { \operatorname { det } \mu } { \operatorname { trace } \mu }$ ; confidence 0.973 |
| − | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w13013032.png ; $R > r$ ; confidence 0.973 |
| − | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045037.png ; $x _ { 1 } < x _ { 2 }$ ; confidence 0.973 |
| − | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040117.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { D } T )$ ; confidence 0.973 |
| − | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001079.png ; $\omega ^ { c } = \gamma$ ; confidence 0.973 |
| − | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f1200503.png ; $F ( T )$ ; confidence 0.973 |
| − | 67. https://www.encyclopediaofmath.org/legacyimages/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620221.png ; $\mu _ { ac } ( A ) > 0$ ; confidence 0.973 |
| − | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016750/b01675060.png ; $q \rightarrow 0$ ; confidence 0.973 |
| − | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007030.png ; $m ( P )$ ; confidence 0.973 |
| − | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002037.png ; $u \in U M$ ; confidence 0.973 |
| − | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150113.png ; $k > \operatorname { max } ( i ( F ) , 0 )$ ; confidence 0.973 |
| − | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130270/b13027014.png ; $S ^ { * } S = 1$ ; confidence 0.973 |
| − | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001012.png ; $R _ { S } ^ { * }$ ; confidence 0.973 |
| − | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005092.png ; $| z _ { 1 } - z _ { 2 } | = | z _ { 2 } - z _ { 3 } | \Rightarrow \frac { | h ( z _ { 1 } ) - h ( z _ { 2 } ) | } { | h ( z _ { 2 } ) - h ( z _ { 3 } ) | } \leq M$ ; confidence 0.973 |
| − | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064068.png ; $s \in L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.973 |
| − | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029018.png ; $\{ s _ { k } ( x ) \} _ { 0 } ^ { n }$ ; confidence 0.973 |
| − | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090205.png ; $g _ { \chi } ^ { * } ( T )$ ; confidence 0.973 |
| − | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008050.png ; $\lambda \in C$ ; confidence 0.973 |
| − | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006069.png ; $T _ { B } \circ T _ { A } = T _ { A } \circ T _ { B }$ ; confidence 0.973 |
| − | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004050.png ; $\eta ( W ) d g ( W ) \in i R$ ; confidence 0.973 |
| − | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006037.png ; $\mu _ { k + 1 } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } }$ ; confidence 0.973 |
| − | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013074.png ; $T$ ; confidence 0.973 |
| − | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006023.png ; $z \in Z$ ; confidence 0.973 |
| − | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020240.png ; $B M O$ ; confidence 0.973 |
| − | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006048.png ; $| x _ { i } | > 0$ ; confidence 0.973 |
| − | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076320/q07632050.png ; $A ^ { \prime }$ ; confidence 0.973 |
| − | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110111.png ; $m p ( z )$ ; confidence 0.973 |
| − | 88. https://www.encyclopediaofmath.org/legacyimages/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032029.png ; $\operatorname { log } ( q / p )$ ; confidence 0.973 |
| − | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026023.png ; $S _ { n } = \sum _ { k = 1 } ^ { n } \xi _ { n k }$ ; confidence 0.973 |
| − | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840283.png ; $[ N x , x ] \geq 0$ ; confidence 0.973 |
| − | 91. https://www.encyclopediaofmath.org/legacyimages/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008054.png ; $| w | \leq \rho _ { D }$ ; confidence 0.973 |
| − | 92. https://www.encyclopediaofmath.org/legacyimages/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105068.png ; $N + 1$ ; confidence 0.973 |
| − | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e12018018.png ; $\operatorname { sign } ( M ) = \int _ { M } L ( M , g ) - \eta _ { D } ( 0 )$ ; confidence 0.973 |
| − | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023026.png ; $f | _ { \Gamma }$ ; confidence 0.973 |
| − | 95. https://www.encyclopediaofmath.org/legacyimages/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202203.png ; $( x , v ) \in R ^ { N } \times R ^ { N }$ ; confidence 0.973 |
| − | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012027.png ; $A q \subseteq R$ ; confidence 0.973 |
| − | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031016.png ; $\operatorname { lim } _ { R \rightarrow \infty } M _ { R } ^ { \delta } f ( x ) = f ( x )$ ; confidence 0.973 |
| − | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014041.png ; $f \pm ( x _ { 0 } )$ ; confidence 0.973 |
| − | 99. https://www.encyclopediaofmath.org/legacyimages/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041043.png ; $( P _ { n } )$ ; confidence 0.973 |
| − | 100. https://www.encyclopediaofmath.org/legacyimages/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110790/a11079035.png ; $M _ { 1 }$ ; confidence 0.973 |
| − | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019017.png ; $N \cap H = \{ 1 \}$ ; confidence 0.973 |
| − | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023063.png ; $U = C ( S )$ ; confidence 0.973 |
| − | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120320/d1203204.png ; $T : X \rightarrow L ^ { 1 }$ ; confidence 0.973 |
| − | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029043.png ; $q \leq N$ ; confidence 0.973 |
| − | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230144.png ; $\phi : X _ { n } \rightarrow Y$ ; confidence 0.973 |
| − | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047860/h047860125.png ; $S ( X )$ ; confidence 0.973 |
| − | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e1201904.png ; $\sigma : X \times X \rightarrow F$ ; confidence 0.973 |
| − | 108. https://www.encyclopediaofmath.org/legacyimages/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003089.png ; $T _ { E , \tau } R ^ { * }$ ; confidence 0.973 |
| − | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006014.png ; $\delta ( - k ) = - \delta ( k ) , k \in R , \quad \delta ( \infty ) = 0$ ; confidence 0.973 |
| − | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320111.png ; $\operatorname { Ber } ( T ) = \operatorname { det } ( P - Q S ^ { - 1 } R ) \operatorname { det } ( S ) ^ { - 1 }$ ; confidence 0.973 |
| − | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100180.png ; $f ^ { - 1 } ( K ) \cap T$ ; confidence 0.973 |
| − | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121087.png ; $q ( z )$ ; confidence 0.973 |
| − | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031018.png ; $\| M _ { R } ^ { \delta } f - f \| _ { p } \rightarrow 0$ ; confidence 0.973 |
| − | 114. https://www.encyclopediaofmath.org/legacyimages/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010118.png ; $SU ( n , 1 )$ ; confidence 0.973 |
| − | 115. https://www.encyclopediaofmath.org/legacyimages/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620119.png ; $( 1 / \pi ) \operatorname { Im } m + ( \lambda )$ ; confidence 0.973 |
| − | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015026.png ; $S = J \Delta ^ { 1 / 2 }$ ; confidence 0.973 |
| − | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003080.png ; $* 1$ ; confidence 0.973 |
| − | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010120.png ; $M = ( m _ { i } : A \rightarrow A _ { i } ) _ { I }$ ; confidence 0.973 |
| − | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010045.png ; $L _ { 1 / 2,1 } = 1 / 2$ ; confidence 0.972 |
| − | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001020.png ; $\operatorname { sup } _ { x \neq y \in \Omega } | u ( x ) - u ( y ) | ( \sigma | x - y | ) ^ { - 1 } < \infty$ ; confidence 0.972 |
| − | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015210/b01521045.png ; $a b$ ; confidence 0.972 |
| − | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130140/r13014016.png ; $N ( \lambda )$ ; confidence 0.972 |
| − | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a1300807.png ; $g ( x ) = h ( x ) / \alpha$ ; confidence 0.972 |
| − | 124. https://www.encyclopediaofmath.org/legacyimages/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006023.png ; $\| A \| _ { 1 }$ ; confidence 0.972 |
| − | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010034.png ; $\nu > 0$ ; confidence 0.972 |
| − | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110050/v1100509.png ; $f _ { Q }$ ; confidence 0.972 |
| − | 127. https://www.encyclopediaofmath.org/legacyimages/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010070.png ; $g \in C ^ { G }$ ; confidence 0.972 |
| − | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020129.png ; $M ^ { \perp \perp \perp } = M ^ { \perp }$ ; confidence 0.972 |
| − | 129. https://www.encyclopediaofmath.org/legacyimages/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018018.png ; $x \leq y \Leftrightarrow \exists z : x = y + z ^ { 2 }$ ; confidence 0.972 |
| − | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c13011021.png ; $\{ t _ { i } \}$ ; confidence 0.972 |
| − | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008046.png ; $I ( k ) : = f ^ { \prime } ( 0 , k ) / f ( k )$ ; confidence 0.972 |
| − | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023028.png ; $\sigma ^ { 1 } : M \rightarrow E ^ { 1 }$ ; confidence 0.972 |
| − | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010041.png ; $F _ { \nu }$ ; confidence 0.972 |
| − | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023056.png ; $K ( n \times m )$ ; confidence 0.972 |
| − | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003031.png ; $( U \otimes I \otimes \ldots ) \psi$ ; confidence 0.972 |
| − | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010052.png ; $( i , y )$ ; confidence 0.972 |
| − | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025025.png ; $\alpha = \angle B A C$ ; confidence 0.972 |
| − | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m1201906.png ; $\int _ { 0 } ^ { \infty } | f ( x ) | ^ { 2 } \frac { d x } { x } = \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { tanh } ( \frac { \pi \tau } { 2 } ) | F ( \tau ) | ^ { 2 } d \tau$ ; confidence 0.972 |
| − | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d03009010.png ; $P _ { \nu } = F _ { \nu } - m _ { \nu } w _ { \nu }$ ; confidence 0.972 |
| − | 140. https://www.encyclopediaofmath.org/legacyimages/a/a120/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008066.png ; $v _ { 1 } = d u / d t$ ; confidence 0.972 |
| − | 141. https://www.encyclopediaofmath.org/legacyimages/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012076.png ; $t d$ ; confidence 0.972 |
| − | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024680/c02468023.png ; $X ^ { ( 1 ) }$ ; confidence 0.972 |
| − | 143. https://www.encyclopediaofmath.org/legacyimages/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230131.png ; $X \sim \operatorname { RS } _ { p , n } ( \phi )$ ; confidence 0.972 |
| − | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w12014016.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( M , R ) = 0$ ; confidence 0.972 |
| − | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510130.png ; $w \in F ( v )$ ; confidence 0.972 |
| − | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200309.png ; $K = \{ f : \int | f | ^ { 2 } \leq 1 \}$ ; confidence 0.972 |
| − | 147. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013170/a01317032.png ; $L ( x )$ ; confidence 0.972 |
| − | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230116.png ; $\tau _ { 1 } \geq \ldots \geq \tau _ { p } \geq 0$ ; confidence 0.972 |
| − | 149. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026046.png ; $U \subset R ^ { n } \times [ 0,1 ]$ ; confidence 0.972 |
| − | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008020.png ; $( x , y , t ) \mapsto ( z , w ) = ( x + i y , t + i | z | ^ { 2 } )$ ; confidence 0.972 |
| − | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d1201506.png ; $d e ^ { - 1 }$ ; confidence 0.972 |
| − | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006086.png ; $P _ { G } = ( V \cup E , < )$ ; confidence 0.972 |
| − | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006024.png ; $l : = - \frac { d ^ { 2 } } { d x ^ { 2 } } + q ( x )$ ; confidence 0.972 |
| − | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d0303305.png ; $E ^ { p } ( M )$ ; confidence 0.972 |
| − | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020014.png ; $W ^ { m + 1 }$ ; confidence 0.972 |
| − | 156. https://www.encyclopediaofmath.org/legacyimages/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019028.png ; $C _ { G } ( n ) \leq N$ ; confidence 0.972 |
| − | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230136.png ; $J : T M \rightarrow T M$ ; confidence 0.972 |
| − | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004075.png ; $( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 )$ ; confidence 0.972 |
| − | 159. https://www.encyclopediaofmath.org/legacyimages/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009068.png ; $\{ e _ { k } : k \geq 1 \}$ ; confidence 0.972 |
| − | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046300/h046300105.png ; $n \leq 3$ ; confidence 0.972 |
| − | 161. https://www.encyclopediaofmath.org/legacyimages/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012460/a012460138.png ; $t , x$ ; confidence 0.972 |
| − | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024027.png ; $f ( 2 k ) ( 0 ) = 0$ ; confidence 0.972 |
| − | 163. https://www.encyclopediaofmath.org/legacyimages/b/b120/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120060/b12006014.png ; $\frac { 1 } { \operatorname { sin } ^ { 2 } \vartheta } \cdot \frac { \partial ^ { 2 } Y } { \partial \varphi ^ { 2 } } + \frac { 1 } { \operatorname { sin } \vartheta } \cdot \frac { \partial } { \partial \vartheta } ( \operatorname { sin } \vartheta \cdot \frac { \partial Y } { \partial \vartheta } ) +$ ; confidence 0.972 |
| − | 164. https://www.encyclopediaofmath.org/legacyimages/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840386.png ; $D _ { \alpha , \beta } \subset C$ ; confidence 0.972 |
| − | 165. https://www.encyclopediaofmath.org/legacyimages/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180385.png ; $r = 0 \in ( - 1 , + 1 )$ ; confidence 0.972 |
| − | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012035.png ; $x \in ( 0 , \infty )$ ; confidence 0.972 |
| − | 167. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015400/b015400101.png ; $\Psi _ { 2 }$ ; confidence 0.972 |
| − | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015061.png ; $G ( \Omega )$ ; confidence 0.972 |
| − | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004031.png ; $W \cap U _ { \xi } = * \emptyset$ ; confidence 0.972 |
| − | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017094.png ; $\operatorname { col } M ( n + 1 )$ ; confidence 0.972 |
| − | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011840/a01184056.png ; $G$ ; confidence 0.972 |
| − | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028066.png ; $\phi \in A ( \tilde { D } )$ ; confidence 0.972 |
| − | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010026.png ; $b _ { i } \geq 0$ ; confidence 0.972 |
| − | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w1300804.png ; $X = \epsilon x$ ; confidence 0.972 |
| − | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130020/n13002024.png ; $Z = R$ ; confidence 0.972 |
| − | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012059.png ; $A G _ { d } - 1 ( d , q )$ ; confidence 0.972 |
| − | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003036.png ; $K ( H ^ { * } \operatorname { Map } ( Z , Y ) , H ^ { * } X ) \rightarrow$ ; confidence 0.972 |
| − | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003055.png ; $\frac { s ^ { \prime } } { s } = e ^ { - x / k }$ ; confidence 0.972 |
| − | 179. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052038.png ; $L _ { 2 } ( \Omega )$ ; confidence 0.972 |
| − | 180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430161.png ; $q \rightarrow 1$ ; confidence 0.972 |
| − | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028032.png ; $h ^ { \Pi } \in [ 0,1 ]$ ; confidence 0.972 |
| − | 182. https://www.encyclopediaofmath.org/legacyimages/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070125.png ; $\{ h ( t , x ) \} \forall x \in E$ ; confidence 0.972 |
| − | 183. https://www.encyclopediaofmath.org/legacyimages/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180306.png ; $( R ( \nabla ) \otimes 1 ) g \in \otimes ^ { 4 } E$ ; confidence 0.972 |
| − | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164066.png ; $i > 0$ ; confidence 0.972 |
| − | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200509.png ; $\psi ( x , y , t ) = \psi _ { 0 } ( y )$ ; confidence 0.972 |
| − | 186. https://www.encyclopediaofmath.org/legacyimages/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120140/w1201406.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( M , N ) = 0$ ; confidence 0.972 |
| − | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002015.png ; $\alpha ( T E ) \leq k \alpha ( E )$ ; confidence 0.972 |
| − | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014047.png ; $\chi _ { Q } : K _ { 0 } ( Q ) \rightarrow Z$ ; confidence 0.972 |
| − | 189. https://www.encyclopediaofmath.org/legacyimages/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230141.png ; $[ P , P ]$ ; confidence 0.972 |
| − | 190. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211028.png ; $k > m$ ; confidence 0.972 |
| − | 191. https://www.encyclopediaofmath.org/legacyimages/c/c120/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002039.png ; $A ^ { \alpha } f$ ; confidence 0.972 |
| − | 192. https://www.encyclopediaofmath.org/legacyimages/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b12056014.png ; $\frac { 1 } { 4 } h ^ { 2 } \leq \lambda _ { 1 }$ ; confidence 0.972 |
| − | 193. https://www.encyclopediaofmath.org/legacyimages/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034030.png ; $H ^ { * } ( M ; Z )$ ; confidence 0.972 |
| − | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010062.png ; $26$ ; confidence 0.972 |
| − | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021020.png ; $W = \left( \begin{array} { c c c c } { A } & { B } & { C } & { D } \\ { - B } & { A } & { - D } & { C } \\ { - C } & { D } & { A } & { - B } \\ { - D } & { - C } & { B } & { A } \end{array} \right)$ ; confidence 0.972 |
| − | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017034.png ; $G / \omega ( G )$ ; confidence 0.971 |
| − | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220249.png ; $i , j \in Z$ ; confidence 0.971 |
| − | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060172.png ; $i \frac { \partial f } { \partial t _ { 2 } } + A _ { 2 } f = \Phi ^ { * } \sigma _ { 2 } u$ ; confidence 0.971 |
| − | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011020.png ; $A ( 3 , n ) = 2 ^ { n + 3 } - 3$ ; confidence 0.971 |
| − | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013039.png ; $\Psi _ { + }$ ; confidence 0.971 |
| − | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240439.png ; $( N ) \leq 1$ ; confidence 0.971 |
| − | 202. https://www.encyclopediaofmath.org/legacyimages/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301302.png ; $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0$ ; confidence 0.971 |
| − | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002010.png ; $\| \hat { f } \| _ { 2 } = 1$ ; confidence 0.971 |
| − | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090206.png ; $G _ { \chi } ^ { * } ( T )$ ; confidence 0.971 |
| − | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015066.png ; $0 < U < I _ { p } , a > \frac { 1 } { 2 } ( p - 1 ) , b > \frac { 1 } { 2 } ( p - 1 )$ ; confidence 0.971 |
| − | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014041.png ; $E = S \cup T$ ; confidence 0.971 |
| − | 207. https://www.encyclopediaofmath.org/legacyimages/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013012.png ; $\frac { d N } { d t } = \lambda N ( 1 - \frac { N } { K } )$ ; confidence 0.971 |
| − | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007084.png ; $V \times V \rightarrow R$ ; confidence 0.971 |
| − | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c1201701.png ; $\gamma \equiv \gamma ^ { ( 2 n ) }$ ; confidence 0.971 |
| − | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045039.png ; $x _ { 1 } > x _ { 2 }$ ; confidence 0.971 |
| − | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130580/s13058026.png ; $I = ( Q ^ { 2 } + U ^ { 2 } + V ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.971 |
| − | 212. https://www.encyclopediaofmath.org/legacyimages/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110210/b11021014.png ; $S \neq 0$ ; confidence 0.971 |
| − | 213. https://www.encyclopediaofmath.org/legacyimages/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754803.png ; $( p \& q ) \supset p$ ; confidence 0.971 |
| − | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013019.png ; $p ( x ) = \sqrt { 1 - x ^ { 2 } }$ ; confidence 0.971 |
| − | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022038.png ; $\sum _ { 1 } ^ { m } r _ { j } = n$ ; confidence 0.971 |
| − | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025025.png ; $u v = F ^ { - 1 } ( F u ^ { * } F v )$ ; confidence 0.971 |
| − | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548015.png ; $A \& B \Leftrightarrow \neg ( A \supset \neg B ) , \quad A \vee B \Leftrightarrow \neg A \supset B$ ; confidence 0.971 |
| − | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180457.png ; $R ^ { + } = ( 0 , \infty )$ ; confidence 0.971 |
| − | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031044.png ; $f \in L ^ { 1 } \cap L ^ { 2 } ( R ^ { 2 k + 1 } )$ ; confidence 0.971 |
| − | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d1203004.png ; $d Y ( t ) = h ( t , X ( t ) , Y ( t ) ) d t + g ( t , Y ( t ) ) d \tilde { B } ( t )$ ; confidence 0.971 |
| − | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009034.png ; $\operatorname { Re } p _ { 2 } ( \xi , \tau ) > 0$ ; confidence 0.971 |
| − | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012011.png ; $[ x _ { 1 } , y _ { 1 } ] + [ x _ { 2 } , y _ { 2 } ] = [ x _ { 1 } + x _ { 2 } , y _ { 1 } + y _ { 2 } ]$ ; confidence 0.971 |
| − | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130100.png ; $A K N S$ ; confidence 0.971 |
| − | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023042.png ; $( ( \partial f ) ^ { - 1 } + t l ) ^ { - 1 }$ ; confidence 0.971 |
| − | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006099.png ; $k \times r$ ; confidence 0.971 |
| − | 226. https://www.encyclopediaofmath.org/legacyimages/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040533.png ; $C : P ( A ) \rightarrow P ( A )$ ; confidence 0.971 |
| − | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016066.png ; $x _ { 2 } ^ { \prime } = x _ { 3 } ^ { \prime } = \frac { 1 } { 2 } [ ( x _ { 1 } + x _ { 2 } ) s - x _ { 1 } v ]$ ; confidence 0.971 |
| − | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160153.png ; $f ( y i t )$ ; confidence 0.971 |
| − | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006026.png ; $L ^ { 2 } ( R _ { + } )$ ; confidence 0.971 |
| − | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260241.png ; $M ( B )$ ; confidence 0.971 |
| − | 231. https://www.encyclopediaofmath.org/legacyimages/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010148.png ; $n < 6$ ; confidence 0.971 |
| − | 232. https://www.encyclopediaofmath.org/legacyimages/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008043.png ; $V \times L ^ { 2 } ( \Omega )$ ; confidence 0.971 |
| − | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220209.png ; $i = m = 1$ ; confidence 0.971 |
| − | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002037.png ; $a b > 1$ ; confidence 0.971 |
| − | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007036.png ; $| x | > a$ ; confidence 0.971 |
| − | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005052.png ; $( x y ) ^ { p } = x ^ { p } y ^ { p } z$ ; confidence 0.971 |
| − | 237. https://www.encyclopediaofmath.org/legacyimages/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040345.png ; $\tilde { \Omega } _ { D } F =$ ; confidence 0.971 |
| − | 238. https://www.encyclopediaofmath.org/legacyimages/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040062.png ; $B \subset G$ ; confidence 0.971 |
| − | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026013.png ; $\Gamma ( L ^ { 2 } ( R ^ { n } ) )$ ; confidence 0.971 |
| − | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520246.png ; $\sum _ { i = 1 } ^ { m } d _ { i } = n$ ; confidence 0.971 |
| − | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002019.png ; $x , y \in J$ ; confidence 0.971 |
| − | 242. https://www.encyclopediaofmath.org/legacyimages/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120030/n12003033.png ; $f : L A \times B \rightarrow C$ ; confidence 0.971 |
| − | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007060.png ; $F ^ { ( k + 1 ) } = f$ ; confidence 0.971 |
| − | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005015.png ; $L _ { 2 } ( R _ { + } ; \operatorname { cosh } ( \pi \tau ) )$ ; confidence 0.971 |
| − | 245. https://www.encyclopediaofmath.org/legacyimages/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022020.png ; $\partial M \neq \emptyset$ ; confidence 0.971 |
| − | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120180/e12018015.png ; $( M )$ ; confidence 0.971 |
| − | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006076.png ; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma$ ; confidence 0.971 |
| − | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008067.png ; $I$ ; confidence 0.971 |
| − | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008030.png ; $Q ( \partial / \partial x ) ( K _ { p } ( f ) ) \equiv 0$ ; confidence 0.971 |
| − | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003036.png ; $\rho ( x , y ) w ( x , y )$ ; confidence 0.971 |
| − | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300908.png ; $F _ { \nu } = m _ { \nu } w _ { \nu } + P _ { \nu }$ ; confidence 0.971 |
| − | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110167.png ; $g + h$ ; confidence 0.971 |
| − | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018033.png ; $M \rightarrow R$ ; confidence 0.971 |
| − | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007089.png ; $1 \leq h \leq H$ ; confidence 0.971 |
| − | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004044.png ; $\varphi : G ^ { \prime } \rightarrow R ^ { 2 }$ ; confidence 0.970 |
| − | 256. https://www.encyclopediaofmath.org/legacyimages/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007080.png ; $\zeta ( 1 / 2 + i t ) \ll t ^ { p } \operatorname { log } t$ ; confidence 0.970 |
| − | 257. https://www.encyclopediaofmath.org/legacyimages/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b120130107.png ; $\| f / \varphi \| _ { p } \leq \| f \| _ { p }$ ; confidence 0.970 |
| − | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004095.png ; $L _ { \infty }$ ; confidence 0.970 |
| − | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021011.png ; $K \mapsto h _ { K }$ ; confidence 0.970 |
| − | 260. https://www.encyclopediaofmath.org/legacyimages/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m1201602.png ; $\phi _ { X } ( T ) = \operatorname { etr } ( i T ^ { \prime } M ) \psi ( \operatorname { tr } ( T ^ { \prime } \Sigma T \Phi ) )$ ; confidence 0.970 |
| − | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021900/c02190072.png ; $2 N$ ; confidence 0.970 |
| − | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004069.png ; $w _ { 1 } = ( 1 + \operatorname { sign } ( c ) ) / 2$ ; confidence 0.970 |
| − | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033021.png ; $H _ { c } ^ { * } ( M , R )$ ; confidence 0.970 |
| − | 264. https://www.encyclopediaofmath.org/legacyimages/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540127.png ; $K _ { 2 } R$ ; confidence 0.970 |
| − | 265. https://www.encyclopediaofmath.org/legacyimages/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016420/b0164209.png ; $1 - p$ ; confidence 0.970 |
| − | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030032.png ; $\overline { \theta ( A ) } = B$ ; confidence 0.970 |
| − | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840193.png ; $\leq 2 \kappa + 1$ ; confidence 0.970 |
| − | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004065.png ; $| \lambda | = n$ ; confidence 0.970 |
| − | 269. https://www.encyclopediaofmath.org/legacyimages/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009088.png ; $f ( z ) \in B ( \alpha / m )$ ; confidence 0.970 |
| − | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070233.png ; $T \cap k ( C _ { 2 } ) = T _ { 2 }$ ; confidence 0.970 |
| − | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070114.png ; $g \in C ^ { 0 } ( \Gamma , k + 2 , v )$ ; confidence 0.970 |
| − | 272. https://www.encyclopediaofmath.org/legacyimages/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g130040175.png ; $B \subset \Omega \times G ( n , m )$ ; confidence 0.970 |
| − | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m1202404.png ; $\psi \rightarrow \psi [ 1 ]$ ; confidence 0.970 |
| − | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004023.png ; $\varphi : X \times W \rightarrow \overline { R }$ ; confidence 0.970 |
| − | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008039.png ; $w ^ { H }$ ; confidence 0.970 |
| − | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007033.png ; $F ^ { k } ( 2 , m ) =$ ; confidence 0.970 |
| − | 277. https://www.encyclopediaofmath.org/legacyimages/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016052.png ; $\beta _ { k }$ ; confidence 0.970 |
| − | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011048.png ; $\nabla \times H = \frac { 1 } { c } J , \nabla B = 0$ ; confidence 0.970 |
| − | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o1200103.png ; $\operatorname { det } F = f ( \theta )$ ; confidence 0.970 |
| − | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i1300109.png ; $\chi = \chi _ { \lambda }$ ; confidence 0.970 |
| − | 281. https://www.encyclopediaofmath.org/legacyimages/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021099.png ; $L ( T _ { n } | P _ { n } ^ { \prime } ) \Rightarrow N ( \Gamma h , \Gamma )$ ; confidence 0.970 |
| − | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026050.png ; $( t , \nu )$ ; confidence 0.970 |
| − | 283. https://www.encyclopediaofmath.org/legacyimages/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120080/l12008027.png ; $( x , y ) \mapsto ( x ^ { 2 } / 2 + i y )$ ; confidence 0.970 |
| − | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120114.png ; $Q ( \theta | \theta ^ { * } )$ ; confidence 0.970 |
| − | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009082.png ; $L ( r ) = \int _ { 0 } ^ { 2 \pi } | z f ^ { \prime } ( z ) | d \theta = O ( \operatorname { log } \frac { 1 } { 1 - r } )$ ; confidence 0.970 |
| − | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020088.png ; $\Delta _ { - } = - \Delta _ { + }$ ; confidence 0.970 |
| − | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042060.png ; $K _ { 1 }$ ; confidence 0.970 |
| − | 288. https://www.encyclopediaofmath.org/legacyimages/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018056.png ; $M = M ^ { \perp \perp }$ ; confidence 0.970 |
| − | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007064.png ; $L _ { E } ^ { * } ( z ) = \operatorname { limsup } _ { w \rightarrow z } L _ { E } ( w )$ ; confidence 0.970 |
| − | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005069.png ; $\Theta _ { \Delta } ( z )$ ; confidence 0.970 |
| − | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602048.png ; $\Phi ^ { - } ( t _ { 0 } )$ ; confidence 0.970 |
| − | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b1200106.png ; $\{ x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } , u ^ { \prime } , \frac { \partial u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } } , \frac { \partial u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } } \}$ ; confidence 0.970 |
| − | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055053.png ; $b _ { p } ( x ) = \operatorname { sup } _ { \gamma } b _ { \gamma } ( x )$ ; confidence 0.970 |
| − | 294. https://www.encyclopediaofmath.org/legacyimages/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003043.png ; $\alpha = \pi / 2$ ; confidence 0.970 |
| − | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023027.png ; $\sigma ^ { 1 }$ ; confidence 0.970 |
| − | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s0860209.png ; $| \phi ( t _ { 1 } ) - \phi ( t _ { 2 } ) | \leq C | t _ { 1 } - t _ { 2 } | ^ { \alpha } , \quad 0 < \alpha \leq 1$ ; confidence 0.970 |
| − | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034067.png ; $z _ { 0 } = 0$ ; confidence 0.970 |
| − | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010074.png ; $L ( s )$ ; confidence 0.970 |
| − | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044044.png ; $k G$ ; confidence 0.970 |
| − | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025059.png ; $\overline { O K } = \frac { \overline { O \Omega } } { \operatorname { cos } \omega }$ ; confidence 0.970 |
Revision as of 00:10, 13 February 2020
List
1.
; $u \neq 0$ ; confidence 0.974
2.
; $\varphi ( t , x ) = e ^ { t A } x$ ; confidence 0.974
3.
; $S ^ { 1 } = R / Z$ ; confidence 0.974
4.
; $X = t ^ { 2 }$ ; confidence 0.974
5.
; $H ^ { 0 }$ ; confidence 0.974
6.
; $j \geq j 0 \}$ ; confidence 0.974
7.
; $x ^ { i } = x ^ { i } ( t )$ ; confidence 0.974
8.
; $( N + 1 )$ ; confidence 0.974
9.
; $\Phi = \overline { \phi } d \overline { \phi }$ ; confidence 0.974
10.
; $\operatorname { det } ( r _ { D } )$ ; confidence 0.974
11.
; $E _ { 8 } ^ { ( 1 ) }$ ; confidence 0.974
12.
; $\chi _ { K }$ ; confidence 0.974
13.
; $V _ { i } = F _ { i } / \Gamma _ { i }$ ; confidence 0.974
14.
; $D _ { i } \in D$ ; confidence 0.974
15.
; $( G _ { b } ^ { \alpha } f ) ( \omega ) = \int _ { - \infty } ^ { \infty } [ e ^ { - i \omega t } f ( t ) ] g _ { \alpha } ( t - b ) d t$ ; confidence 0.974
16.
; $B ( x _ { i } , \epsilon ) \subset C$ ; confidence 0.974
17.
; $( Z h ) ( t , w ) = \int _ { 0 } ^ { 1 } ( Z R ) ( t - s , w ) ( Z f ) ( s , w ) d s$ ; confidence 0.974
18.
; $u \in G ^ { \infty } ( \Omega )$ ; confidence 0.974
19.
; $E ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.974
20.
; $A / I$ ; confidence 0.974
21.
; $X ^ { p } - X - a$ ; confidence 0.974
22.
; $H ( k ) \equiv ( \beta _ { i + j } ) _ { 0 \leq i , j \leq k }$ ; confidence 0.974
23.
; $s > 2$ ; confidence 0.974
24.
; $( P ) \leq k$ ; confidence 0.974
25.
; $\operatorname { lim } _ { T \rightarrow \infty } \frac { 1 } { T } \int _ { 0 } ^ { T } U _ { t } h d t = \hbar$ ; confidence 0.974
26.
; $USDF = \alpha + \beta$ ; confidence 0.974
27.
; $M _ { 2 } ( k ) = \operatorname { max } _ { j } | z _ { j } | ^ { k }$ ; confidence 0.974
28.
; $F : C ^ { n } \rightarrow C ^ { n }$ ; confidence 0.974
29.
; $F ^ { * } = F ^ { - 1 }$ ; confidence 0.974
30.
; $M f = \operatorname { det } ( \frac { \partial ^ { 2 } f } { \partial z _ { i } \partial z _ { j } } )$ ; confidence 0.974
31.
; $H ^ { * } ( X , F _ { p } ) = R ^ { * }$ ; confidence 0.974
32.
; $( 4 u ^ { 2 } , 2 u ^ { 2 } - u , u ^ { 2 } - u )$ ; confidence 0.974
33.
; $J ^ { 1 } \Gamma : J ^ { 1 } Y \rightarrow J ^ { 1 } ( J ^ { 1 } Y \rightarrow M )$ ; confidence 0.974
34.
; $H _ { K }$ ; confidence 0.973
35.
; $x , y , u , v \in L ^ { P } ( \mu )$ ; confidence 0.973
36.
; $( a b ) ^ { - 1 } > 1$ ; confidence 0.973
37.
; $R ^ { 2 n } \times R ^ { 2 n }$ ; confidence 0.973
38.
; $\theta \in \Theta _ { 1 } \subset \Theta - \Theta _ { 0 }$ ; confidence 0.973
39.
; $x ^ { + } = x \vee e$ ; confidence 0.973
40.
; $D _ { + } + D _ { + } ^ { * }$ ; confidence 0.973
41.
; $\dot { y } ( t ) = F ( y ( t ) )$ ; confidence 0.973
42.
; $T ^ { \prime } \leq o ( T )$ ; confidence 0.973
43.
; $B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } \varphi _ { j } ( x ) \overline { \varphi _ { j } ( y ) }$ ; confidence 0.973
44.
; $d j = 0$ ; confidence 0.973
45.
; $Z ( g h ; z )$ ; confidence 0.973
46.
; $F _ { 2 } + \ldots + F _ { 2 k } = F _ { 2 k + 1 } - 1$ ; confidence 0.973
47.
; $x ^ { j }$ ; confidence 0.973
48.
; $( x _ { 0 } , y _ { 0 } ) \in \Gamma ( F )$ ; confidence 0.973
49.
; $U _ { y }$ ; confidence 0.973
50.
; $b = 1$ ; confidence 0.973
51.
; $H ^ { i } ( X , F ) = H ^ { i } ( X , F )$ ; confidence 0.973
52.
; $X \mapsto X ^ { \prime }$ ; confidence 0.973
53.
; $=$ ; confidence 0.973
54.
; $n = [ L : K ]$ ; confidence 0.973
55.
; $r ^ { 2 } = z z$ ; confidence 0.973
56.
; $R = P / Q$ ; confidence 0.973
57.
; $S _ { i } = 1$ ; confidence 0.973
58.
; $g ^ { i } ( x , \dot { x } , t )$ ; confidence 0.973
59.
; $L _ { 2 } ( \mu )$ ; confidence 0.973
60.
; $\phi ( \lambda ( T T ^ { \prime } ) )$ ; confidence 0.973
61.
; $C = \frac { \operatorname { det } \mu } { \operatorname { trace } ^ { 2 } \mu } \text { or } C ^ { \prime } = \frac { \operatorname { det } \mu } { \operatorname { trace } \mu }$ ; confidence 0.973
62.
; $R > r$ ; confidence 0.973
63.
; $x _ { 1 } < x _ { 2 }$ ; confidence 0.973
64.
; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { D } T )$ ; confidence 0.973
65.
; $\omega ^ { c } = \gamma$ ; confidence 0.973
66.
; $F ( T )$ ; confidence 0.973
67.
; $\mu _ { ac } ( A ) > 0$ ; confidence 0.973
68.
; $q \rightarrow 0$ ; confidence 0.973
69.
; $m ( P )$ ; confidence 0.973
70.
; $u \in U M$ ; confidence 0.973
71.
; $k > \operatorname { max } ( i ( F ) , 0 )$ ; confidence 0.973
72.
; $S ^ { * } S = 1$ ; confidence 0.973
73.
; $R _ { S } ^ { * }$ ; confidence 0.973
74.
; $| z _ { 1 } - z _ { 2 } | = | z _ { 2 } - z _ { 3 } | \Rightarrow \frac { | h ( z _ { 1 } ) - h ( z _ { 2 } ) | } { | h ( z _ { 2 } ) - h ( z _ { 3 } ) | } \leq M$ ; confidence 0.973
75.
; $s \in L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.973
76.
; $\{ s _ { k } ( x ) \} _ { 0 } ^ { n }$ ; confidence 0.973
77.
; $g _ { \chi } ^ { * } ( T )$ ; confidence 0.973
78.
; $\lambda \in C$ ; confidence 0.973
79.
; $T _ { B } \circ T _ { A } = T _ { A } \circ T _ { B }$ ; confidence 0.973
80.
; $\eta ( W ) d g ( W ) \in i R$ ; confidence 0.973
81.
; $\mu _ { k + 1 } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } }$ ; confidence 0.973
82.
; $T$ ; confidence 0.973
83.
; $z \in Z$ ; confidence 0.973
84.
; $B M O$ ; confidence 0.973
85.
; $| x _ { i } | > 0$ ; confidence 0.973
86.
; $A ^ { \prime }$ ; confidence 0.973
87.
; $m p ( z )$ ; confidence 0.973
88.
; $\operatorname { log } ( q / p )$ ; confidence 0.973
89.
; $S _ { n } = \sum _ { k = 1 } ^ { n } \xi _ { n k }$ ; confidence 0.973
90.
; $[ N x , x ] \geq 0$ ; confidence 0.973
91.
; $| w | \leq \rho _ { D }$ ; confidence 0.973
92.
; $N + 1$ ; confidence 0.973
93.
; $\operatorname { sign } ( M ) = \int _ { M } L ( M , g ) - \eta _ { D } ( 0 )$ ; confidence 0.973
94.
; $f | _ { \Gamma }$ ; confidence 0.973
95.
; $( x , v ) \in R ^ { N } \times R ^ { N }$ ; confidence 0.973
96.
; $A q \subseteq R$ ; confidence 0.973
97.
; $\operatorname { lim } _ { R \rightarrow \infty } M _ { R } ^ { \delta } f ( x ) = f ( x )$ ; confidence 0.973
98.
; $f \pm ( x _ { 0 } )$ ; confidence 0.973
99.
; $( P _ { n } )$ ; confidence 0.973
100.
; $M _ { 1 }$ ; confidence 0.973
101.
; $N \cap H = \{ 1 \}$ ; confidence 0.973
102.
; $U = C ( S )$ ; confidence 0.973
103.
; $T : X \rightarrow L ^ { 1 }$ ; confidence 0.973
104.
; $q \leq N$ ; confidence 0.973
105.
; $\phi : X _ { n } \rightarrow Y$ ; confidence 0.973
106.
; $S ( X )$ ; confidence 0.973
107.
; $\sigma : X \times X \rightarrow F$ ; confidence 0.973
108.
; $T _ { E , \tau } R ^ { * }$ ; confidence 0.973
109.
; $\delta ( - k ) = - \delta ( k ) , k \in R , \quad \delta ( \infty ) = 0$ ; confidence 0.973
110.
; $\operatorname { Ber } ( T ) = \operatorname { det } ( P - Q S ^ { - 1 } R ) \operatorname { det } ( S ) ^ { - 1 }$ ; confidence 0.973
111.
; $f ^ { - 1 } ( K ) \cap T$ ; confidence 0.973
112.
; $q ( z )$ ; confidence 0.973
113.
; $\| M _ { R } ^ { \delta } f - f \| _ { p } \rightarrow 0$ ; confidence 0.973
114.
; $SU ( n , 1 )$ ; confidence 0.973
115.
; $( 1 / \pi ) \operatorname { Im } m + ( \lambda )$ ; confidence 0.973
116.
; $S = J \Delta ^ { 1 / 2 }$ ; confidence 0.973
117.
; $* 1$ ; confidence 0.973
118.
; $M = ( m _ { i } : A \rightarrow A _ { i } ) _ { I }$ ; confidence 0.973
119.
; $L _ { 1 / 2,1 } = 1 / 2$ ; confidence 0.972
120.
; $\operatorname { sup } _ { x \neq y \in \Omega } | u ( x ) - u ( y ) | ( \sigma | x - y | ) ^ { - 1 } < \infty$ ; confidence 0.972
121.
; $a b$ ; confidence 0.972
122.
; $N ( \lambda )$ ; confidence 0.972
123.
; $g ( x ) = h ( x ) / \alpha$ ; confidence 0.972
124.
; $\| A \| _ { 1 }$ ; confidence 0.972
125.
; $\nu > 0$ ; confidence 0.972
126.
; $f _ { Q }$ ; confidence 0.972
127.
; $g \in C ^ { G }$ ; confidence 0.972
128.
; $M ^ { \perp \perp \perp } = M ^ { \perp }$ ; confidence 0.972
129.
; $x \leq y \Leftrightarrow \exists z : x = y + z ^ { 2 }$ ; confidence 0.972
130.
; $\{ t _ { i } \}$ ; confidence 0.972
131.
; $I ( k ) : = f ^ { \prime } ( 0 , k ) / f ( k )$ ; confidence 0.972
132.
; $\sigma ^ { 1 } : M \rightarrow E ^ { 1 }$ ; confidence 0.972
133.
; $F _ { \nu }$ ; confidence 0.972
134.
; $K ( n \times m )$ ; confidence 0.972
135.
; $( U \otimes I \otimes \ldots ) \psi$ ; confidence 0.972
136.
; $( i , y )$ ; confidence 0.972
137.
; $\alpha = \angle B A C$ ; confidence 0.972
138.
; $\int _ { 0 } ^ { \infty } | f ( x ) | ^ { 2 } \frac { d x } { x } = \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { tanh } ( \frac { \pi \tau } { 2 } ) | F ( \tau ) | ^ { 2 } d \tau$ ; confidence 0.972
139.
; $P _ { \nu } = F _ { \nu } - m _ { \nu } w _ { \nu }$ ; confidence 0.972
140.
; $v _ { 1 } = d u / d t$ ; confidence 0.972
141.
; $t d$ ; confidence 0.972
142.
; $X ^ { ( 1 ) }$ ; confidence 0.972
143.
; $X \sim \operatorname { RS } _ { p , n } ( \phi )$ ; confidence 0.972
144.
; $\operatorname { Ext } _ { R } ^ { 1 } ( M , R ) = 0$ ; confidence 0.972
145.
; $w \in F ( v )$ ; confidence 0.972
146.
; $K = \{ f : \int | f | ^ { 2 } \leq 1 \}$ ; confidence 0.972
147.
; $L ( x )$ ; confidence 0.972
148.
; $\tau _ { 1 } \geq \ldots \geq \tau _ { p } \geq 0$ ; confidence 0.972
149.
; $U \subset R ^ { n } \times [ 0,1 ]$ ; confidence 0.972
150.
; $( x , y , t ) \mapsto ( z , w ) = ( x + i y , t + i | z | ^ { 2 } )$ ; confidence 0.972
151.
; $d e ^ { - 1 }$ ; confidence 0.972
152.
; $P _ { G } = ( V \cup E , < )$ ; confidence 0.972
153.
; $l : = - \frac { d ^ { 2 } } { d x ^ { 2 } } + q ( x )$ ; confidence 0.972
154.
; $E ^ { p } ( M )$ ; confidence 0.972
155.
; $W ^ { m + 1 }$ ; confidence 0.972
156.
; $C _ { G } ( n ) \leq N$ ; confidence 0.972
157.
; $J : T M \rightarrow T M$ ; confidence 0.972
158.
; $( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 )$ ; confidence 0.972
159.
; $\{ e _ { k } : k \geq 1 \}$ ; confidence 0.972
160.
; $n \leq 3$ ; confidence 0.972
161.
; $t , x$ ; confidence 0.972
162.
; $f ( 2 k ) ( 0 ) = 0$ ; confidence 0.972
163.
; $\frac { 1 } { \operatorname { sin } ^ { 2 } \vartheta } \cdot \frac { \partial ^ { 2 } Y } { \partial \varphi ^ { 2 } } + \frac { 1 } { \operatorname { sin } \vartheta } \cdot \frac { \partial } { \partial \vartheta } ( \operatorname { sin } \vartheta \cdot \frac { \partial Y } { \partial \vartheta } ) +$ ; confidence 0.972
164.
; $D _ { \alpha , \beta } \subset C$ ; confidence 0.972
165.
; $r = 0 \in ( - 1 , + 1 )$ ; confidence 0.972
166.
; $x \in ( 0 , \infty )$ ; confidence 0.972
167.
; $\Psi _ { 2 }$ ; confidence 0.972
168.
; $G ( \Omega )$ ; confidence 0.972
169.
; $W \cap U _ { \xi } = * \emptyset$ ; confidence 0.972
170.
; $\operatorname { col } M ( n + 1 )$ ; confidence 0.972
171.
; $G$ ; confidence 0.972
172.
; $\phi \in A ( \tilde { D } )$ ; confidence 0.972
173.
; $b _ { i } \geq 0$ ; confidence 0.972
174.
; $X = \epsilon x$ ; confidence 0.972
175.
; $Z = R$ ; confidence 0.972
176.
; $A G _ { d } - 1 ( d , q )$ ; confidence 0.972
177.
; $K ( H ^ { * } \operatorname { Map } ( Z , Y ) , H ^ { * } X ) \rightarrow$ ; confidence 0.972
178.
; $\frac { s ^ { \prime } } { s } = e ^ { - x / k }$ ; confidence 0.972
179.
; $L _ { 2 } ( \Omega )$ ; confidence 0.972
180.
; $q \rightarrow 1$ ; confidence 0.972
181.
; $h ^ { \Pi } \in [ 0,1 ]$ ; confidence 0.972
182.
; $\{ h ( t , x ) \} \forall x \in E$ ; confidence 0.972
183.
; $( R ( \nabla ) \otimes 1 ) g \in \otimes ^ { 4 } E$ ; confidence 0.972
184.
; $i > 0$ ; confidence 0.972
185.
; $\psi ( x , y , t ) = \psi _ { 0 } ( y )$ ; confidence 0.972
186.
; $\operatorname { Ext } _ { R } ^ { 1 } ( M , N ) = 0$ ; confidence 0.972
187.
; $\alpha ( T E ) \leq k \alpha ( E )$ ; confidence 0.972
188.
; $\chi _ { Q } : K _ { 0 } ( Q ) \rightarrow Z$ ; confidence 0.972
189.
; $[ P , P ]$ ; confidence 0.972
190.
; $k > m$ ; confidence 0.972
191.
; $A ^ { \alpha } f$ ; confidence 0.972
192.
; $\frac { 1 } { 4 } h ^ { 2 } \leq \lambda _ { 1 }$ ; confidence 0.972
193.
; $H ^ { * } ( M ; Z )$ ; confidence 0.972
194.
; $26$ ; confidence 0.972
195.
; $W = \left( \begin{array} { c c c c } { A } & { B } & { C } & { D } \\ { - B } & { A } & { - D } & { C } \\ { - C } & { D } & { A } & { - B } \\ { - D } & { - C } & { B } & { A } \end{array} \right)$ ; confidence 0.972
196.
; $G / \omega ( G )$ ; confidence 0.971
197.
; $i , j \in Z$ ; confidence 0.971
198.
; $i \frac { \partial f } { \partial t _ { 2 } } + A _ { 2 } f = \Phi ^ { * } \sigma _ { 2 } u$ ; confidence 0.971
199.
; $A ( 3 , n ) = 2 ^ { n + 3 } - 3$ ; confidence 0.971
200.
; $\Psi _ { + }$ ; confidence 0.971
201.
; $( N ) \leq 1$ ; confidence 0.971
202.
; $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0$ ; confidence 0.971
203.
; $\| \hat { f } \| _ { 2 } = 1$ ; confidence 0.971
204.
; $G _ { \chi } ^ { * } ( T )$ ; confidence 0.971
205.
; $0 < U < I _ { p } , a > \frac { 1 } { 2 } ( p - 1 ) , b > \frac { 1 } { 2 } ( p - 1 )$ ; confidence 0.971
206.
; $E = S \cup T$ ; confidence 0.971
207.
; $\frac { d N } { d t } = \lambda N ( 1 - \frac { N } { K } )$ ; confidence 0.971
208.
; $V \times V \rightarrow R$ ; confidence 0.971
209.
; $\gamma \equiv \gamma ^ { ( 2 n ) }$ ; confidence 0.971
210.
; $x _ { 1 } > x _ { 2 }$ ; confidence 0.971
211.
; $I = ( Q ^ { 2 } + U ^ { 2 } + V ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.971
212.
; $S \neq 0$ ; confidence 0.971
213.
; $( p \& q ) \supset p$ ; confidence 0.971
214.
; $p ( x ) = \sqrt { 1 - x ^ { 2 } }$ ; confidence 0.971
215.
; $\sum _ { 1 } ^ { m } r _ { j } = n$ ; confidence 0.971
216.
; $u v = F ^ { - 1 } ( F u ^ { * } F v )$ ; confidence 0.971
217.
; $A \& B \Leftrightarrow \neg ( A \supset \neg B ) , \quad A \vee B \Leftrightarrow \neg A \supset B$ ; confidence 0.971
218.
; $R ^ { + } = ( 0 , \infty )$ ; confidence 0.971
219.
; $f \in L ^ { 1 } \cap L ^ { 2 } ( R ^ { 2 k + 1 } )$ ; confidence 0.971
220.
; $d Y ( t ) = h ( t , X ( t ) , Y ( t ) ) d t + g ( t , Y ( t ) ) d \tilde { B } ( t )$ ; confidence 0.971
221.
; $\operatorname { Re } p _ { 2 } ( \xi , \tau ) > 0$ ; confidence 0.971
222.
; $[ x _ { 1 } , y _ { 1 } ] + [ x _ { 2 } , y _ { 2 } ] = [ x _ { 1 } + x _ { 2 } , y _ { 1 } + y _ { 2 } ]$ ; confidence 0.971
223.
; $A K N S$ ; confidence 0.971
224.
; $( ( \partial f ) ^ { - 1 } + t l ) ^ { - 1 }$ ; confidence 0.971
225.
; $k \times r$ ; confidence 0.971
226.
; $C : P ( A ) \rightarrow P ( A )$ ; confidence 0.971
227.
; $x _ { 2 } ^ { \prime } = x _ { 3 } ^ { \prime } = \frac { 1 } { 2 } [ ( x _ { 1 } + x _ { 2 } ) s - x _ { 1 } v ]$ ; confidence 0.971
228.
; $f ( y i t )$ ; confidence 0.971
229.
; $L ^ { 2 } ( R _ { + } )$ ; confidence 0.971
230.
; $M ( B )$ ; confidence 0.971
231.
; $n < 6$ ; confidence 0.971
232.
; $V \times L ^ { 2 } ( \Omega )$ ; confidence 0.971
233.
; $i = m = 1$ ; confidence 0.971
234.
; $a b > 1$ ; confidence 0.971
235.
; $| x | > a$ ; confidence 0.971
236.
; $( x y ) ^ { p } = x ^ { p } y ^ { p } z$ ; confidence 0.971
237.
; $\tilde { \Omega } _ { D } F =$ ; confidence 0.971
238.
; $B \subset G$ ; confidence 0.971
239.
; $\Gamma ( L ^ { 2 } ( R ^ { n } ) )$ ; confidence 0.971
240.
; $\sum _ { i = 1 } ^ { m } d _ { i } = n$ ; confidence 0.971
241.
; $x , y \in J$ ; confidence 0.971
242.
; $f : L A \times B \rightarrow C$ ; confidence 0.971
243.
; $F ^ { ( k + 1 ) } = f$ ; confidence 0.971
244.
; $L _ { 2 } ( R _ { + } ; \operatorname { cosh } ( \pi \tau ) )$ ; confidence 0.971
245.
; $\partial M \neq \emptyset$ ; confidence 0.971
246.
; $( M )$ ; confidence 0.971
247.
; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma$ ; confidence 0.971
248.
; $I$ ; confidence 0.971
249.
; $Q ( \partial / \partial x ) ( K _ { p } ( f ) ) \equiv 0$ ; confidence 0.971
250.
; $\rho ( x , y ) w ( x , y )$ ; confidence 0.971
251.
; $F _ { \nu } = m _ { \nu } w _ { \nu } + P _ { \nu }$ ; confidence 0.971
252.
; $g + h$ ; confidence 0.971
253.
; $M \rightarrow R$ ; confidence 0.971
254.
; $1 \leq h \leq H$ ; confidence 0.971
255.
; $\varphi : G ^ { \prime } \rightarrow R ^ { 2 }$ ; confidence 0.970
256.
; $\zeta ( 1 / 2 + i t ) \ll t ^ { p } \operatorname { log } t$ ; confidence 0.970
257.
; $\| f / \varphi \| _ { p } \leq \| f \| _ { p }$ ; confidence 0.970
258.
; $L _ { \infty }$ ; confidence 0.970
259.
; $K \mapsto h _ { K }$ ; confidence 0.970
260.
; $\phi _ { X } ( T ) = \operatorname { etr } ( i T ^ { \prime } M ) \psi ( \operatorname { tr } ( T ^ { \prime } \Sigma T \Phi ) )$ ; confidence 0.970
261.
; $2 N$ ; confidence 0.970
262.
; $w _ { 1 } = ( 1 + \operatorname { sign } ( c ) ) / 2$ ; confidence 0.970
263.
; $H _ { c } ^ { * } ( M , R )$ ; confidence 0.970
264.
; $K _ { 2 } R$ ; confidence 0.970
265.
; $1 - p$ ; confidence 0.970
266.
; $\overline { \theta ( A ) } = B$ ; confidence 0.970
267.
; $\leq 2 \kappa + 1$ ; confidence 0.970
268.
; $| \lambda | = n$ ; confidence 0.970
269.
; $f ( z ) \in B ( \alpha / m )$ ; confidence 0.970
270.
; $T \cap k ( C _ { 2 } ) = T _ { 2 }$ ; confidence 0.970
271.
; $g \in C ^ { 0 } ( \Gamma , k + 2 , v )$ ; confidence 0.970
272.
; $B \subset \Omega \times G ( n , m )$ ; confidence 0.970
273.
; $\psi \rightarrow \psi [ 1 ]$ ; confidence 0.970
274.
; $\varphi : X \times W \rightarrow \overline { R }$ ; confidence 0.970
275.
; $w ^ { H }$ ; confidence 0.970
276.
; $F ^ { k } ( 2 , m ) =$ ; confidence 0.970
277.
; $\beta _ { k }$ ; confidence 0.970
278.
; $\nabla \times H = \frac { 1 } { c } J , \nabla B = 0$ ; confidence 0.970
279.
; $\operatorname { det } F = f ( \theta )$ ; confidence 0.970
280.
; $\chi = \chi _ { \lambda }$ ; confidence 0.970
281.
; $L ( T _ { n } | P _ { n } ^ { \prime } ) \Rightarrow N ( \Gamma h , \Gamma )$ ; confidence 0.970
282.
; $( t , \nu )$ ; confidence 0.970
283.
; $( x , y ) \mapsto ( x ^ { 2 } / 2 + i y )$ ; confidence 0.970
284.
; $Q ( \theta | \theta ^ { * } )$ ; confidence 0.970
285.
; $L ( r ) = \int _ { 0 } ^ { 2 \pi } | z f ^ { \prime } ( z ) | d \theta = O ( \operatorname { log } \frac { 1 } { 1 - r } )$ ; confidence 0.970
286.
; $\Delta _ { - } = - \Delta _ { + }$ ; confidence 0.970
287.
; $K _ { 1 }$ ; confidence 0.970
288.
; $M = M ^ { \perp \perp }$ ; confidence 0.970
289.
; $L _ { E } ^ { * } ( z ) = \operatorname { limsup } _ { w \rightarrow z } L _ { E } ( w )$ ; confidence 0.970
290.
; $\Theta _ { \Delta } ( z )$ ; confidence 0.970
291.
; $\Phi ^ { - } ( t _ { 0 } )$ ; confidence 0.970
292.
; $\{ x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } , u ^ { \prime } , \frac { \partial u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } } , \frac { \partial u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } } \}$ ; confidence 0.970
293.
; $b _ { p } ( x ) = \operatorname { sup } _ { \gamma } b _ { \gamma } ( x )$ ; confidence 0.970
294.
; $\alpha = \pi / 2$ ; confidence 0.970
295.
; $\sigma ^ { 1 }$ ; confidence 0.970
296.
; $| \phi ( t _ { 1 } ) - \phi ( t _ { 2 } ) | \leq C | t _ { 1 } - t _ { 2 } | ^ { \alpha } , \quad 0 < \alpha \leq 1$ ; confidence 0.970
297.
; $z _ { 0 } = 0$ ; confidence 0.970
298.
; $L ( s )$ ; confidence 0.970
299.
; $k G$ ; confidence 0.970
300.
; $\overline { O K } = \frac { \overline { O \Omega } } { \operatorname { cos } \omega }$ ; confidence 0.970
Maximilian Janisch/latexlist/latex/NoNroff/23. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/23&oldid=44433