Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/8"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 8 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 8 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005018.png ; $\beta ( \phi , \rho ) ( t ) \sim \sum _ { n \geq 0 } \beta _ { n } ( \phi , \rho ) t ^ { n / 2 }$ ; confidence 0.416
+
1. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050015.png ; $f _ { k } : = | F _ { k } |$ ; confidence 0.998
  
2. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006016.png ; $\Delta ( z ) = ( 2 \pi ) ^ { 12 } \sum _ { m = 1 } ^ { \infty } \tau ( m ) q ^ { m } ( z ) \in M ( 12 )$ ; confidence 0.980
+
2. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009030.png ; $y ^ { \prime \prime } + b y ^ { \prime } + c y = 0$ ; confidence 0.998
  
3. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007040.png ; $( A _ { i } , r + j , A _ { i } + 1 , r + j , \dots , A _ { r } + j ; \Delta e _ { j } ) , j = 1 , \dots , l - r$ ; confidence 0.095
+
3. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027025.png ; $n = m + 1$ ; confidence 0.998
  
4. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120147.png ; $T ( \nabla ) _ { \infty } : \overline { B } ( H ( Y ) ) \rightarrow \overline { B } ( Y )$ ; confidence 0.997
+
4. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190189.png ; $\Phi _ { 1 } = \Phi _ { 2 }$ ; confidence 0.998
  
5. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001037.png ; $A = \left( \begin{array} { c c } { B } & { C } \\ { C ^ { * } } & { D } \end{array} \right)$ ; confidence 0.898
+
5. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170138.png ; $M ( n ) ( \geq 0 )$ ; confidence 0.998
  
6. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002031.png ; $P ( A _ { 1 } \cup \ldots \cup A _ { n } ) \geq S _ { 1 } - S _ { 2 } + \ldots + S _ { m - 1 } - S _ { m }$ ; confidence 0.125
+
6. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003043.png ; $( Z f ) ( t , w + 1 ) = ( Z f ) ( t , w )$ ; confidence 0.998
  
7. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005048.png ; $- f ^ { \prime \prime } ( x , i k _ { j } ) + q ( x ) f ( x , i k _ { j } ) + k ^ { 2 } j f ( x , i k _ { j } ) = 0$ ; confidence 0.984
+
7. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006062.png ; $( X , D )$ ; confidence 0.998
  
8. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i1300608.png ; $L _ { 1,1 } : = \{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty , q = \overline { q } \}$ ; confidence 0.951
+
8. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011071.png ; $F ( R )$ ; confidence 0.998
  
9. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020217.png ; $\sum | I _ { j } | \leq \frac { 1 } { \alpha } \int _ { I } | u ( \vartheta ) | d \vartheta$ ; confidence 0.936
+
9. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120158.png ; $\pi : T ( H ( Y ) ) \rightarrow H ( Y )$ ; confidence 0.998
  
10. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020224.png ; $S = \{ r e ^ { i \vartheta } : 1 - h \leq r < 1 , | \vartheta - \vartheta _ { 0 } | \leq h \}$ ; confidence 0.957
+
10. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420171.png ; $D ( H )$ ; confidence 0.998
  
11. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005025.png ; $\frac { Ma } { Re } = \frac { u / c } { u l / \nu } = \frac { 1 } { c } \frac { \nu } { \lambda }$ ; confidence 0.561
+
11. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018020.png ; $\alpha , \beta \in K$ ; confidence 0.998
  
12. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840396.png ; $N _ { f } ( z , \rho ) = \frac { f ( z ) - \overline { f ( \rho ) } } { z - \overline { \rho } }$ ; confidence 0.889
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011016.png ; $A ( 0 , n ) = n + 1$ ; confidence 0.998
  
13. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507016.png ; $\operatorname { dim } A ^ { 1 } = \frac { 1 } { 2 } \operatorname { dim } H ^ { 1 } ( M , C )$ ; confidence 0.544
+
13. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023070.png ; $[ P + A , P + A ] ^ { \wedge } = 2 [ P , A ] ^ { \wedge } + [ A , A ] ^ { \wedge } = 0$ ; confidence 0.998
  
14. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003049.png ; $\lambda _ { X } : T _ { E } H ^ { * } X \rightarrow H ^ { * } \operatorname { Map } ( B E , X )$ ; confidence 0.974
+
14. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004021.png ; $\tau > 0$ ; confidence 0.998
  
15. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004062.png ; $f _ { i + 1 / 2 } = \frac { 1 } { 2 } ( 1 + c ) f _ { i } ^ { N } + \frac { 1 } { 2 } ( 1 - c ) f _ { i + 1 } ^ { n }$ ; confidence 0.309
+
15. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304907.png ; $r ( q ) = r ( p ) + 1$ ; confidence 0.998
  
16. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l1300505.png ; $a ^ { ( t ) } = ( \alpha _ { t } , \alpha _ { t } + 1 , \ldots , \alpha _ { x } + t - 1 ) ( t \geq 0 )$ ; confidence 0.204
+
16. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026023.png ; $( \mu ) \rightarrow F ( \mu )$ ; confidence 0.998
  
17. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008020.png ; $\int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0$ ; confidence 0.983
+
17. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120010/f12001027.png ; $f ^ { 2 } \simeq f$ ; confidence 0.998
  
18. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070107.png ; $= \operatorname { lim } _ { n \rightarrow \infty } ( f _ { n } , f _ { n } ) = \| f \| ^ { 2 }$ ; confidence 0.992
+
18. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033860/d0338605.png ; $e ^ { 2 } = 0$ ; confidence 0.998
  
19. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120020/s12002012.png ; $\partial _ { x } \alpha L = L _ { x _ { 1 } } \alpha _ { 1 \ldots x _ { D } } ^ { \alpha _ { D } }$ ; confidence 0.271
+
19. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031020.png ; $h ( T ) = g ( f ( T ) )$ ; confidence 0.998
  
20. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s1301406.png ; $Q ( t ) = \prod _ { i } \frac { 1 + x _ { i } t } { 1 - x _ { i } t } = \sum _ { r \geq 0 } q _ { r } t ^ { r }$ ; confidence 0.914
+
20. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100106.png ; $\{ A ; \preceq \}$ ; confidence 0.998
  
21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062053.png ; $\phi ( , \lambda ) + m _ { 0 } ( \lambda ) \theta ( , \lambda ) \in L ^ { 2 } ( 0 , \infty )$ ; confidence 0.651
+
21. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002035.png ; $F ( S )$ ; confidence 0.998
  
22. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340164.png ; $\varphi _ { 1 } , \varphi _ { 2 } : ( - \infty , 0 ) \times S ^ { 1 } \rightarrow \Sigma$ ; confidence 0.997
+
22. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021048.png ; $p ( M ; \lambda )$ ; confidence 0.998
  
23. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005041.png ; $\sigma _ { T } ( A , X ) : = \{ \lambda \in C ^ { n } : A - \lambda \text { is singular } \}$ ; confidence 0.493
+
23. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008032.png ; $\varphi \in B ( G )$ ; confidence 0.998
  
24. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005065.png ; $D _ { A } = \left( \begin{array} { l l } { 0 } & { 0 } \\ { A } & { 0 } \end{array} \right)$ ; confidence 0.915
+
24. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026020.png ; $f : M \rightarrow N$ ; confidence 0.998
  
25. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301305.png ; $0 \rightarrow \Lambda \rightarrow T _ { 0 } \rightarrow T _ { 1 } \rightarrow 0$ ; confidence 0.974
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020020.png ; $q ( T ) \neq 0$ ; confidence 0.998
  
26. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140109.png ; $j = \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { 2 } ( S _ { j } , s _ { i } )$ ; confidence 0.262
+
26. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120114.png ; $A , B \in F$ ; confidence 0.998
  
27. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015061.png ; $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$ ; confidence 0.710
+
27. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014061.png ; $n < 12$ ; confidence 0.998
  
28. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200143.png ; $u \neq \nu | z _ { \mu } - z _ { \nu } | \geq \delta \operatorname { max } _ { j } | z _ { j }$ ; confidence 0.320
+
28. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130150/b1301505.png ; $\Gamma ^ { \prime } = \Gamma$ ; confidence 0.998
  
29. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200149.png ; $| g ( k ) | \geq ( \frac { \delta } { 2 + 2 \delta } ) ^ { n - 1 } | b _ { \gamma } z _ { i } ^ { k } |$ ; confidence 0.276
+
29. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130219.png ; $\lambda \in T$ ; confidence 0.998
  
30. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v09603020.png ; $\ddot { x } - \mu ( 1 - x ^ { 2 } ) \dot { x } + x = E _ { 0 } + E \operatorname { sin } \omega t$ ; confidence 0.913
+
30. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005042.png ; $\operatorname { deg } f = 1$ ; confidence 0.998
  
31. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003034.png ; $\operatorname { lim } _ { n \rightarrow \infty } \int _ { E } f _ { n } d \mu = \nu ( E )$ ; confidence 0.985
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008068.png ; $L ( H ^ { 1 } ( \Omega ) , L ^ { 2 } ( \Omega ) )$ ; confidence 0.998
  
32. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011031.png ; $= \int u ( x + \frac { y } { 2 } ) \nabla ( x - \frac { y } { 2 } ) e ^ { - 2 i \pi y \cdot \xi } d y$ ; confidence 0.528
+
32. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691076.png ; $\lambda ^ { \prime }$ ; confidence 0.998
  
33. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110217.png ; $G _ { X } ( X - Y ) \leq C ^ { - 1 } \Rightarrow C ^ { - 1 } \leq \frac { m ( X ) } { m ( Y ) } \leq C$ ; confidence 0.995
+
33. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002024.png ; $1 \leq t \leq n - k$ ; confidence 0.998
  
34. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009067.png ; $\Theta ( f _ { 0 } , f _ { 1 } , \ldots ) = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } )$ ; confidence 0.793
+
34. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027024.png ; $0 \leq \theta < 1$ ; confidence 0.998
  
35. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010040.png ; $= - I ^ { \kappa } a ( b ) \in ( - \infty , 0 ) , \text { for all } 0 < b < \kappa _ { \alpha }$ ; confidence 0.205
+
35. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301103.png ; $\alpha y$ ; confidence 0.998
  
36. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003019.png ; $F _ { X } ( q ) = \frac { 1 } { 2 \pi } \int _ { c ^ { 1 } } X f ( \theta , x , \theta + q ) d \theta$ ; confidence 0.143
+
36. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001025.png ; $A ( \alpha ^ { \prime } , \alpha , k ) = A ( - \alpha , - \alpha ^ { \prime } , k )$ ; confidence 0.998
  
37. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y1200406.png ; $= \int _ { \Omega } \int _ { R ^ { d } } \varphi ( x , \lambda ) d \nu _ { x } ( \lambda ) d x$ ; confidence 0.441
+
37. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170155.png ; $Z ^ { k } = p ( Z , Z )$ ; confidence 0.998
  
38. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008048.png ; $( 4 \frac { \partial ^ { 2 } } { \partial z \partial z } - D ^ { 2 } - 2 ( \alpha + 1 ) D ) f =$ ; confidence 0.989
+
38. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022095.png ; $\varepsilon = 0$ ; confidence 0.998
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006083.png ; $\| A ( t , u ) - A ( t , u ^ { \prime } ) \| _ { L ( Y , X ) } \leq \mu \| u - u ^ { \prime } \| _ { X }$ ; confidence 0.540
+
39. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408016.png ; $A , B \subset X$ ; confidence 0.998
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007093.png ; $\leq K _ { 2 } \sum _ { i = 1 } ^ { k } | \lambda | ^ { \alpha _ { i } } | t - s | ^ { \beta _ { i } }$ ; confidence 0.914
+
40. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002080.png ; $\varphi : X \rightarrow Y$ ; confidence 0.998
  
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060127.png ; $T ^ { \# } ( n ) \sim C _ { 0 } g _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.184
+
41. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000202.png ; $\rho ^ { \prime } ( y ) = \rho ( y )$ ; confidence 0.998
  
42. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020066.png ; $X _ { j } = \operatorname { ker } ( T - t _ { j } I ) ^ { r _ { j } } , \quad ( j = 1 , \ldots , n )$ ; confidence 0.533
+
42. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007072.png ; $K = 2 ^ { k - 1 }$ ; confidence 0.998
  
43. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021054.png ; $\mathfrak { b } = \mathfrak { h } \oplus \mathfrak { n } \subset \mathfrak { g }$ ; confidence 0.766
+
43. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014060.png ; $\left( \begin{array} { l l } { 3 } & { 2 } \\ { 2 } & { 3 } \end{array} \right)$ ; confidence 0.998
  
44. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004060.png ; $\cap _ { N = 1 } ^ { \infty } U _ { n } = \cap _ { N = 1 } ^ { \infty } V _ { n } \neq \emptyset$ ; confidence 0.165
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103307.png ; $F ( x )$ ; confidence 0.998
  
45. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004092.png ; $f ^ { * } ( t ) = \operatorname { inf } \{ \lambda > 0 : \mu _ { f } ( \lambda ) \leq t \}$ ; confidence 0.721
+
45. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010039.png ; $\varphi ( \xi )$ ; confidence 0.998
  
46. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005032.png ; $H ^ { \infty } ( B _ { E } ) \equiv \{ f \in H ( B _ { E } ) : f \text { bounded on } B _ { E } \}$ ; confidence 0.968
+
46. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070124.png ; $g \geq 0$ ; confidence 0.998
  
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009038.png ; $p _ { 3 } ( \xi , \tau ) = p _ { 0 } ( \xi ) ( 1 - \tau ^ { m } ) + p _ { 1 } ( \xi ) \tau ^ { m } ( m > 0 )$ ; confidence 0.606
+
47. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015061.png ; $E \in B ( X ) = B ( X , X )$ ; confidence 0.998
  
48. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015092.png ; $d ^ { * } \in \cap _ { P \in P } L _ { 1 } ( \Omega , A , P ) \cap L _ { 2 } ( \Omega , A , P _ { 0 } )$ ; confidence 0.090
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008036.png ; $S ( 0 ) = 1$ ; confidence 0.998
  
49. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b1301201.png ; $A = \{ f : \| f \| _ { A } = \sum _ { m = - \infty } ^ { \infty } | \hat { f } ( m ) | < \infty \}$ ; confidence 0.548
+
49. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017330/b017330200.png ; $\zeta \in \Gamma$ ; confidence 0.998
  
50. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202909.png ; $R _ { S } ^ { A } : = \operatorname { inf } \{ t : \quad t \geq \operatorname { son } A$ ; confidence 0.403
+
50. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222040.png ; $( h , h , 3 ) ^ { 2 }$ ; confidence 0.998
  
51. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031016.png ; $\operatorname { lim } _ { R \rightarrow \infty } M _ { R } ^ { \delta } f ( x ) = f ( x )$ ; confidence 0.973
+
51. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016098.png ; $f \in F ( L )$ ; confidence 0.998
  
52. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b1204208.png ; $\Phi _ { V , W , Z } : ( V \otimes W ) \otimes Z \rightarrow V \otimes ( W \otimes Z )$ ; confidence 0.655
+
52. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002029.png ; $f ^ { - 1 } ( Y _ { 0 } ) = X _ { 0 }$ ; confidence 0.998
  
53. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420166.png ; $\Psi _ { \langle V , \lambda \rangle , \langle W , \mu \rangle } = \lambda _ { W }$ ; confidence 0.791
+
53. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007071.png ; $\sigma ( \xi , x )$ ; confidence 0.998
  
54. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051019.png ; $f ( x _ { c } + \lambda d ) \leq f ( x _ { c } ) + \alpha \lambda d ^ { T } \nabla f ( x _ { c } )$ ; confidence 0.950
+
54. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004028.png ; $r \geq ( \sqrt { 7 } - 1 ) n \approx 1.647 n$ ; confidence 0.998
  
55. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008030.png ; $\Delta ( \Lambda ) = \operatorname { Det } [ l _ { m } \otimes \Lambda - A _ { 1 } ] =$ ; confidence 0.548
+
55. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110200/c11020031.png ; $f \in A ( D )$ ; confidence 0.998
  
56. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130130/c1301309.png ; $A = \frac { \partial Q } { \partial K } \cdot \frac { 1 } { \alpha } k ^ { 1 - \alpha }$ ; confidence 0.732
+
56. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018016.png ; $\lambda \neq 0,1$ ; confidence 0.998
  
57. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026064.png ; $\| U ^ { n } \| _ { \infty } = \operatorname { max } _ { 1 \leq j \leq J } | U _ { j } ^ { n } |$ ; confidence 0.782
+
57. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012010.png ; $X ^ { \prime \prime } ( t ) + R ( t ) \circ X ( t ) = 0$ ; confidence 0.998
  
58. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018012.png ; $\rho ( u ) = ( 1 + O ( \frac { 1 } { u } ) ) \sqrt { \frac { \xi ^ { \prime } ( u ) } { 2 \pi } } x$ ; confidence 0.552
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137074.png ; $1 \leq i \leq m$ ; confidence 0.998
  
59. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011026.png ; $\gamma _ { i } \gamma _ { j } + \gamma _ { j } \gamma _ { i } = 0 , i \neq j , i , j = 1,2,3,4$ ; confidence 0.992
+
59. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180146.png ; $\chi ( L ; \lambda )$ ; confidence 0.998
  
60. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011031.png ; $\gamma _ { 1 } ^ { 2 } = 1 , \eta _ { 2 } ^ { 2 } = \gamma _ { 3 } ^ { 2 } = \gamma _ { 4 } ^ { 2 } = - 1$ ; confidence 0.385
+
60. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090123.png ; $( A , A ^ { * } )$ ; confidence 0.998
  
61. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d1202608.png ; $X _ { n } ( t ) = \frac { 1 } { \sigma \sqrt { n } } [ S _ { [ n t ] } + ( n t - [ n t ] ) \xi [ n t ] + 1 ]$ ; confidence 0.964
+
61. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070340/o07034081.png ; $h ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998
  
62. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030055.png ; $d r = L ^ { * } r + \langle f ^ { - 1 } ( t , Y ( t ) ) g ( t , X ( t ) , Y ( t ) ) , d Y ( t ) \rangle _ { r }$ ; confidence 0.385
+
62. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m130250105.png ; $r < 3 n / 2$ ; confidence 0.998
  
63. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027021.png ; $\frac { \alpha } { 2 } + \frac { 1 } { 4 } \leq r < \frac { \alpha } { 2 } + \frac { 5 } { 4 }$ ; confidence 0.960
+
63. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022660/c022660149.png ; $I ( f )$ ; confidence 0.998
  
64. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049014.png ; $F _ { \nu _ { 1 } , \nu _ { 2 } } = \frac { \nu _ { 2 } } { \nu _ { 1 } } \frac { X _ { 1 } } { X _ { 2 } }$ ; confidence 0.305
+
64. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018065.png ; $G ( \partial A )$ ; confidence 0.998
  
65. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010094.png ; $f ( Z ) = \sum _ { 0 < T = \square ^ { t } T } c ( T ) e ^ { 2 \pi i \operatorname { Tr } ( T T ) }$ ; confidence 0.134
+
65. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030040.png ; $( Z ( t ) , t \in [ 0 , T ] )$ ; confidence 0.998
  
66. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011050.png ; $G ( \zeta ) = \sum _ { j = 1 } ^ { N } \int _ { \gamma _ { j } } F _ { j } ( z ) e ^ { - i z \zeta } d z$ ; confidence 0.982
+
66. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154010.png ; $\phi ( x ) = \lambda f ( x )$ ; confidence 0.998
  
67. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011041.png ; $\Delta ^ { \circ } = \{ x : \{ x , \eta \} \geq 0 \text { for all } \eta \in \Delta \}$ ; confidence 0.741
+
67. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004037.png ; $H _ { 1 } = H$ ; confidence 0.998
  
68. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024039.png ; $\left( \begin{array} { c c } { 0 } & { K ( a , b ) } \\ { 0 } & { 0 } \end{array} \right)$ ; confidence 0.988
+
68. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026097.png ; $\overline { \alpha } : M ( A ) \rightarrow M ( B )$ ; confidence 0.998
  
69. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021028.png ; $u ( z , \lambda ) = z ^ { \lambda } \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { k }$ ; confidence 0.997
+
69. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170142.png ; $p ( Z , Z ) = 0$ ; confidence 0.998
  
70. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023050.png ; $K \in C ^ { \infty } ( \wedge ^ { k + 1 } T ^ { * } M \otimes T M ) = \Omega ^ { k + 1 } ( M ; T M )$ ; confidence 0.956
+
70. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100107.png ; $\phi \subset U$ ; confidence 0.998
  
71. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h0460205.png ; $\| F \| _ { \infty } = \operatorname { sup } _ { \operatorname { Res } > 0 } | F ( s ) |$ ; confidence 0.776
+
71. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232027.png ; $J ( p )$ ; confidence 0.998
  
72. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002049.png ; $( \alpha _ { 1 } , \alpha _ { 2 } , \ldots , \alpha _ { q } \cup \gamma ) \in F ( S ) ^ { q }$ ; confidence 0.552
+
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007043.png ; $\sigma ( d ) / d < \alpha$ ; confidence 0.998
  
73. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002046.png ; $P _ { \operatorname { min } } \leq P ( A _ { 1 } \cup 1 \cdot \cup A _ { n } ) \leq P _ { r }$ ; confidence 0.090
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a1201806.png ; $( T _ { n } )$ ; confidence 0.998
  
74. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i1300204.png ; $P ( A _ { 1 } \cup \ldots \cup A _ { n } ) = S _ { 1 } - S _ { 2 } + \ldots + ( - 1 ) ^ { n - 1 } S _ { n }$ ; confidence 0.299
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080102.png ; $f = \operatorname { max } f ( x )$ ; confidence 0.998
  
75. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k1201103.png ; $2 \cdot \frac { \partial ^ { 2 } } { \partial x ^ { 2 } } \operatorname { log } \tau$ ; confidence 0.393
+
75. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013013.png ; $B _ { r } = g / r ^ { 2 }$ ; confidence 0.998
  
76. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004014.png ; $F _ { L _ { D } } ( a , x ) = \alpha ^ { - T _ { \text { ait } } ( L _ { D } ) } \Lambda _ { D } ( a , x )$ ; confidence 0.108
+
76. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840328.png ; $U ( T )$ ; confidence 0.998
  
77. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008035.png ; $K _ { p } ( g \circ \lambda ) = K _ { \lambda \langle p \rangle } ( g ) \circ \lambda$ ; confidence 0.616
+
77. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001048.png ; $[ ( n + 2 ) / 2 ]$ ; confidence 0.998
  
78. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578010.png ; $f _ { i } ( x ) x ^ { - 3 / 4 } \in L ( 0 , \infty ) , \quad f _ { i } ( x ) \in L _ { 2 } ( 0 , \infty )$ ; confidence 0.987
+
78. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202504.png ; $f : U \rightarrow f [ U ]$ ; confidence 0.998
  
79. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000152.png ; $\vdash ( \lambda x y . x ) : ( \sigma \rightarrow ( \tau \rightarrow \sigma ) )$ ; confidence 0.397
+
79. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007085.png ; $p \in P ( k )$ ; confidence 0.998
  
80. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100100.png ; $\sum | e | ^ { \gamma } = \gamma \int _ { 0 } ^ { \infty } N _ { E } ( V ) E ^ { \gamma - 1 } d E$ ; confidence 0.790
+
80. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022560/c02256036.png ; $[ A ]$ ; confidence 0.998
  
81. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010066.png ; $\| \nabla f \| _ { L } 2 _ { ( R ^ { n } ) } \geq S _ { n } \| f \| _ { L } 2 n / ( n - 2 ) _ { ( R ^ { n } ) }$ ; confidence 0.071
+
81. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014014.png ; $\frac { 1 } { \lambda } = \operatorname { sup } \frac { | D ( h ) - D ^ { * } ( h ) | } { D ( h ) + D ^ { * } ( h ) }$ ; confidence 0.998
  
82. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004024.png ; $| \eta _ { 1 } | \geq \ldots \geq | r _ { p } | > | r _ { p } + 1 | \geq \ldots \geq | r _ { n } |$ ; confidence 0.510
+
82. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013038.png ; $\gamma _ { n } = 1 / n$ ; confidence 0.998
  
83. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001022.png ; $\{ \langle x _ { 1 } , d _ { 1 } \rangle , \ldots , \langle x _ { n } , d _ { n } \rangle \}$ ; confidence 0.460
+
83. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690086.png ; $T \in A ^ { + }$ ; confidence 0.998
  
84. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110129.png ; $\frac { D v _ { i } } { D t } = \frac { \partial v _ { i } } { \partial t } + v _ { k } v _ { i } , k$ ; confidence 0.589
+
84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007091.png ; $g ^ { \prime }$ ; confidence 0.998
  
85. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015050.png ; $\operatorname { etr } ( A ) = \operatorname { exp } ( \operatorname { tr } ( A ) )$ ; confidence 0.994
+
85. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e1100302.png ; $( X , d )$ ; confidence 0.998
  
86. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015047.png ; $\phi _ { X } ( Z ) = \int _ { X } \operatorname { etr } ( i Z X ^ { \prime } ) f _ { X } ( X ) d X$ ; confidence 0.950
+
86. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170264.png ; $H _ { 1 } ( B ) = 0$ ; confidence 0.998
  
87. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002084.png ; $k _ { \mu } ^ { \prime \prime } ( \theta ) = V _ { F } ( k _ { \mu } ^ { \prime } ( \theta ) )$ ; confidence 0.935
+
87. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003060.png ; $E \subset [ 0,1 ]$ ; confidence 0.998
  
88. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663067.png ; $\| \Delta _ { h } ^ { k } f ^ { ( s ) } \| _ { L _ { p } ( \Omega _ { k | k | } ) } \leq M | h | ^ { r - s }$ ; confidence 0.123
+
88. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010074.png ; $w ( Z ( K ) )$ ; confidence 0.998
  
89. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663045.png ; $H _ { p } ^ { r _ { 1 } , \dots , r _ { i - 1 } , r _ { i } + \epsilon , r _ { i + 1 } , \dots , r _ { n } }$ ; confidence 0.203
+
89. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200804.png ; $( x , t ) \in \partial \Omega \times [ 0 , T ]$ ; confidence 0.998
  
90. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520242.png ; $\overline { B } = S ^ { - 1 } B = ( \overline { b } _ { 1 } , \dots , \overline { b } _ { m } )$ ; confidence 0.747
+
90. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002015.png ; $H _ { 0 } ( M , G ) \cong G$ ; confidence 0.998
  
91. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o1300106.png ; $( \nabla ^ { 2 } + k ^ { 2 } ) u = 0 \text { in } D ^ { \prime } : = R ^ { 3 } \backslash D , k > 0$ ; confidence 0.552
+
91. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016720/b01672055.png ; $\partial f$ ; confidence 0.998
  
92. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070124.png ; $\leq G ( z , w ) \leq \operatorname { log } \operatorname { tanh } \delta ( z , w )$ ; confidence 0.998
+
92. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110040/b1100405.png ; $\theta \in \Theta _ { 0 }$ ; confidence 0.998
  
93. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013064.png ; $\zeta _ { \lambda } ^ { \mu } = 0 \text { if } \mu \neq \lambda , \mu \in SP ^ { - } ( n )$ ; confidence 0.952
+
93. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008018.png ; $u ( x , t )$ ; confidence 0.998
  
94. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005063.png ; $| \alpha | = | \beta | \Rightarrow \frac { | h ( \alpha ) | } { | h ( \beta ) | } \leq M$ ; confidence 0.984
+
94. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025028.png ; $\operatorname { log } h / \sqrt { 1 - x ^ { 2 } } \in L _ { 1 } [ - 1,1 ]$ ; confidence 0.998
  
95. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070150.png ; $= \int \int _ { T } d m ( t ) d m ( s ) F ( t ) \overline { G ( s ) } ( h ( s , x ) , h ( t , x ) ) _ { H } =$ ; confidence 0.944
+
95. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002044.png ; $p = \Omega ( n ^ { - 1 / 2 } )$ ; confidence 0.998
  
96. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080109.png ; $A u = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ( u , \varphi _ { j } ) \varphi _ { j } ( x )$ ; confidence 0.947
+
96. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090229.png ; $\nabla ( \lambda ) ^ { * }$ ; confidence 0.998
  
97. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r1301109.png ; $\xi ( s ) : = \frac { 1 } { 2 } s ( s - 1 ) \pi ^ { - s / 2 } \Gamma ( \frac { s } { 2 } ) \zeta ( s )$ ; confidence 0.997
+
97. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300308.png ; $A \phi = \lambda \phi$ ; confidence 0.998
  
98. https://www.encyclopediaofmath.org/legacyimages/r/r120/r120020/r12002018.png ; $M _ { 21 } ( q ) \ddot { q } _ { 1 } + M _ { 22 } ( q ) \ddot { q } _ { 2 } + F _ { 2 } ( q , \dot { q } ) = 0$ ; confidence 0.980
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027092.png ; $W ( \rho ) = W ( \overline { \rho } )$ ; confidence 0.998
  
99. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004072.png ; $p _ { \lambda _ { j } } = x _ { 1 } ^ { \lambda _ { i } } + \ldots + x _ { i } ^ { \lambda _ { i } }$ ; confidence 0.319
+
99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027026.png ; $U ( t + h ) - U ( t )$ ; confidence 0.998
  
100. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050014.png ; $F _ { k } : = \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) \cap F$ ; confidence 0.968
+
100. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d03025013.png ; $h = b - a$ ; confidence 0.998
  
101. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230130.png ; $\frac { \pi ^ { n p / 2 } } { \Gamma _ { p } ( n / 2 ) } | S | ^ { ( n - p - 1 ) / 2 } f ( S ) , \quad S > 0$ ; confidence 0.385
+
101. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013056.png ; $\tau ( x , y ) = \tau ( x - y )$ ; confidence 0.998
  
102. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023047.png ; $\operatorname { etr } ( A ) = \operatorname { exp } ( \operatorname { tr } ( A ) )$ ; confidence 0.997
+
102. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004061.png ; $u \in D ^ { \prime } ( \Omega )$ ; confidence 0.998
  
103. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024023.png ; $h * ( X _ { 1 } \vee \ldots \vee X _ { k } ) \approx \prod _ { 1 } ^ { \infty } h * ( X _ { i } )$ ; confidence 0.718
+
103. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430113.png ; $\gamma \delta = \delta \gamma + ( 1 - q ^ { - 2 } ) \gamma \alpha$ ; confidence 0.998
  
104. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065048.png ; $S _ { \mu } ( z ) = \frac { F _ { \mu } ( z ) - F _ { \mu } ( 0 ) } { F _ { \mu } ( z ) + F _ { \mu } ( 0 ) }$ ; confidence 0.969
+
104. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110160/b11016016.png ; $\pi f ( x )$ ; confidence 0.998
  
105. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006012.png ; $\frac { 1 } { 2 } \int _ { R ^ { 3 } R ^ { 3 } } \frac { \rho ( x ) \rho ( y ) } { | x - y | } d x d y + U$ ; confidence 0.214
+
105. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y12001023.png ; $R _ { 12 } R _ { 23 } R _ { 12 } = R _ { 23 } R _ { 12 } R _ { 23 }$ ; confidence 0.998
  
106. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008027.png ; $\operatorname { max } \{ | x | , | y | , p _ { 1 } ^ { z _ { 1 } } \ldots p _ { s } ^ { z _ { s } } \}$ ; confidence 0.516
+
106. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150155.png ; $\alpha ( A - K ) < \infty$ ; confidence 0.998
  
107. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015064.png ; $( \Delta ^ { \alpha } \xi | \eta ) = ( \xi | \Delta ^ { \overline { \alpha } } \eta )$ ; confidence 0.989
+
107. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004026.png ; $f \in H ^ { 1 } ( D )$ ; confidence 0.998
  
108. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007019.png ; $P _ { k } = \hbar D _ { k } = \frac { \hbar } { i } \frac { \partial } { \partial x _ { k } }$ ; confidence 0.915
+
108. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b1205506.png ; $\gamma : [ 0 , \infty ) \rightarrow M$ ; confidence 0.998
  
109. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090295.png ; $\mathfrak { n } ^ { + } = \sum _ { \alpha \in \Phi ^ { + } } \mathfrak { g } _ { \alpha }$ ; confidence 0.882
+
109. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301003.png ; $p ^ { \prime } = p / p - 1$ ; confidence 0.998
  
110. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090354.png ; $x _ { \alpha } ( t ) = \sum _ { i = 0 } ^ { \infty } t ^ { i } \otimes e _ { \alpha } ^ { i } / i !$ ; confidence 0.841
+
110. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010079.png ; $H ^ { \infty } ( \Delta )$ ; confidence 0.998
  
111. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008034.png ; $\lambda _ { 1 } = \ldots = \lambda _ { 2 g } = \alpha _ { 1 } = \ldots = \alpha _ { g } = 0$ ; confidence 0.893
+
111. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021026.png ; $M N ^ { T } = N M ^ { T }$ ; confidence 0.998
  
112. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017047.png ; $y _ { t + r } - \hat { y } _ { t , r } = \sum _ { j = 0 } ^ { r - 1 } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.687
+
112. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090360.png ; $G _ { K } ( V ) = G$ ; confidence 0.998
  
113. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001030.png ; $x ( n ) ^ { * } y ( n ) = \sum _ { j = 0 } ^ { n } x ( n - j ) y ( j ) = \sum _ { j = 0 } ^ { n } x ( n ) y ( n - j )$ ; confidence 0.930
+
113. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700059.png ; $( F A ) B = B A$ ; confidence 0.998
  
114. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003029.png ; $\theta _ { 3 } ( z , q ) = \sum _ { k = - \infty } ^ { \infty } q ^ { k ^ { 2 } } e ^ { - 2 \pi i k z }$ ; confidence 0.951
+
114. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040171.png ; $\theta = 1 - 1 / p = 1 / p ^ { \prime }$ ; confidence 0.998
  
115. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110117.png ; $\frac { 1 } { \left( \begin{array} { c } { N - 1 } \\ { M - 1 } \end{array} \right) }$ ; confidence 0.785
+
115. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r081430201.png ; $\Gamma _ { A }$ ; confidence 0.998
  
116. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130120/z13012024.png ; $Z _ { n } ( x ; \sigma ) = ( 1 + \sigma ) ^ { n } T _ { n } ( \frac { x - \sigma } { 1 + \sigma } )$ ; confidence 0.801
+
116. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004030.png ; $( \Omega _ { + } - 1 ) \psi ( t )$ ; confidence 0.998
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040642.png ; $\{ M e _ { S _ { P } } ^ { * } \mathfrak { M } , F _ { S _ { P } } ^ { * } \mathfrak { M } \rangle$ ; confidence 0.214
+
117. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001070.png ; $H = \{ g \in G : \tau ( g ) = g \}$ ; confidence 0.998
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006074.png ; $| \operatorname { Re } ( A ( t ) u , S ^ { 2 } u ) _ { X } | \leq \gamma \| S u \| _ { X } ^ { 2 }$ ; confidence 0.767
+
118. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011077.png ; $X , Y \in \Phi$ ; confidence 0.998
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008061.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A ( t ) } & { 0 } \end{array} \right)$ ; confidence 0.808
+
119. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060182.png ; $( \xi _ { 1 } , \xi _ { 2 } )$ ; confidence 0.998
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008052.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { A ( t ) } & { 0 } \end{array} \right)$ ; confidence 0.962
+
120. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003073.png ; $\pi : Y \rightarrow B$ ; confidence 0.998
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008032.png ; $\frac { f ^ { \prime } ( R ) } { f ( R ) } = \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }$ ; confidence 0.954
+
121. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009015.png ; $\sigma = 0,1,2,3$ ; confidence 0.998
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008031.png ; $\frac { f ^ { \prime } ( L ) } { f ( L ) } = \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) }$ ; confidence 0.997
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050100.png ; $L ( Y , X )$ ; confidence 0.998
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013049.png ; $\theta _ { n } = \theta _ { n - 1 } - \gamma _ { n } \Gamma H ( \theta _ { n - 1 } , X _ { n } )$ ; confidence 0.986
+
123. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600262.png ; $> 0$ ; confidence 0.998
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016049.png ; $N ( X ( t ) , A ( t ) , t ) = A ( t ) \quad \int _ { \alpha ( X ( t ) ) F + b } ^ { \infty } g ( W ) d W$ ; confidence 0.407
+
124. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i1200501.png ; $N ( \alpha , \beta , \theta )$ ; confidence 0.998
  
125. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024049.png ; $\overline { CH } \overline { \square } ^ { 1 } ( \operatorname { Spec } ( Z ) ) = R$ ; confidence 0.091
+
125. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053012.png ; $( \Omega , A , \mu )$ ; confidence 0.998
  
126. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066059.png ; $| K ( x - , y ) - K ( x , y ) | \leq C | x ^ { \prime } - x | ^ { \gamma } | x - y | ^ { - n - \gamma }$ ; confidence 0.940
+
126. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006064.png ; $r : R \rightarrow B$ ; confidence 0.998
  
127. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002023.png ; $\operatorname { sup } _ { \| y \| \leq 1 } | b ( u , v ) | \geq \| u \| , \forall u \in U$ ; confidence 0.390
+
127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023012.png ; $U + V$ ; confidence 0.998
  
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005058.png ; $\tilde { \delta _ { z } } : f \in H _ { \phi } ( E ) \rightarrow \tilde { f } ( z ) \in C$ ; confidence 0.414
+
128. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840160.png ; $z _ { 0 } \in \rho ( A )$ ; confidence 0.998
  
129. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006032.png ; $\Lambda = \operatorname { diag } \{ \lambda _ { 1 } , \ldots , \lambda _ { n } \}$ ; confidence 0.514
+
129. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013016.png ; $X ( i ) \times I ^ { k }$ ; confidence 0.998
  
130. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022032.png ; $M _ { f } ( v ) = \frac { \rho f } { ( 2 \pi T _ { f } ) ^ { N / 2 } } e ^ { - p - u } f | ^ { 2 } / 2 T _ { f }$ ; confidence 0.478
+
130. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022051.png ; $( p y ^ { \prime } ) ^ { \prime } + q y = 0 , p > 0$ ; confidence 0.998
  
131. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004027.png ; $\int _ { 0 } ^ { 1 } \frac { \operatorname { tag } ( t ^ { - 1 } \pm t ) } { 1 + t ^ { 4 } } d t =$ ; confidence 0.299
+
131. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034047.png ; $g ( \omega , J )$ ; confidence 0.998
  
132. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080103.png ; $E x _ { i + 1 , j + 1 } = A _ { 0 x _ { j } } + A _ { 1 } x _ { i + 1 , j } + A _ { 2 } x _ { i , j + 1 } + B u _ { i j }$ ; confidence 0.131
+
132. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150138.png ; $\alpha ( A - S ) < \infty$ ; confidence 0.998
  
133. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008089.png ; $= \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } z _ { 1 } ^ { i } z _ { 2 } ^ { j }$ ; confidence 0.415
+
133. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290113.png ; $( X , \tau )$ ; confidence 0.998
  
134. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006037.png ; $\operatorname { Aut } ( W ) = \cap _ { i = 1 } ^ { r } \operatorname { Aut } ( A _ { i } )$ ; confidence 0.866
+
134. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023063.png ; $X _ { 1 } ( p \times ( n - m ) )$ ; confidence 0.998
  
135. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070204.png ; $\operatorname { ord } _ { T } ( u d v ) = \operatorname { ord } _ { T } ( u d v / d \tau )$ ; confidence 0.188
+
135. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025025.png ; $q = 32$ ; confidence 0.998
  
136. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017049.png ; $a _ { 0 } \beta _ { 0 } + \alpha _ { 1 } \beta _ { 1 } + \ldots + a _ { n } \beta _ { n } \geq 0$ ; confidence 0.609
+
136. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001051.png ; $( n , q ) = ( 3,4 )$ ; confidence 0.998
  
137. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017093.png ; $Z ^ { n + 1 } = p ( Z , Z ) \equiv \sum _ { 0 \leq i + j \leq n } \alpha _ { i j } Z ^ { i } Z ^ { j }$ ; confidence 0.217
+
137. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110260/h11026033.png ; $\beta \geq 0$ ; confidence 0.998
  
138. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160139.png ; $\operatorname { ASPACE } [ s ( n ) ] = \operatorname { DTIME } [ 2 ^ { O ( s ( n ) ) } ]$ ; confidence 0.472
+
138. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120040/v12004053.png ; $\chi ^ { \prime } ( G ) = \chi _ { l } ^ { \prime } ( G )$ ; confidence 0.998
  
139. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021092.png ; $\Lambda _ { \eta } - h ^ { \prime } T _ { N } \rightarrow - h ^ { \prime } \Gamma h / 2$ ; confidence 0.111
+
139. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001037.png ; $z ^ { \sigma }$ ; confidence 0.998
  
140. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020131.png ; $= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$ ; confidence 0.711
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a011480121.png ; $g ( x )$ ; confidence 0.998
  
141. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030290/d03029017.png ; $\geq \operatorname { min } _ { 0 \leq i \leq n + 1 } | f ( x _ { i } ) - P _ { n } ( x _ { i } ) |$ ; confidence 0.464
+
141. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008051.png ; $\alpha , \beta \in C$ ; confidence 0.998
  
142. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167027.png ; $( \xi \oplus \sigma , \eta \oplus \sigma , \zeta \oplus \text { id } \sigma )$ ; confidence 0.877
+
142. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012048.png ; $( x , y ) \in J$ ; confidence 0.998
  
143. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e12021046.png ; $p _ { m } + 1 ( x ) = ( m x + 1 ) p _ { m } ( x ) - x ( x - 1 ) p _ { m } ^ { \prime } ( x ) , \quad m \geq 1$ ; confidence 0.279
+
143. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020141.png ; $s > 1 / p$ ; confidence 0.998
  
144. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005028.png ; $\sum _ { l = 1 } ^ { m } w _ { l } \cdot \frac { p _ { l } - x _ { 0 } } { \| p _ { l } - x _ { 0 } \| } = 0$ ; confidence 0.359
+
144. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008047.png ; $\xi , \eta \in L _ { 2 } ( G )$ ; confidence 0.998
  
145. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100109.png ; $\langle T [ \phi ] , [ \psi ] \rangle _ { L _ { C } ^ { p } ( G ) , L _ { C } ^ { p } ( G ) } \neq 0$ ; confidence 0.122
+
145. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011055.png ; $B = \nabla \times A$ ; confidence 0.998
  
146. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009052.png ; $| f ( \zeta ) | \leq C _ { \epsilon } \operatorname { exp } ( \epsilon | \zeta | )$ ; confidence 0.992
+
146. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005064.png ; $L ^ { 1 } ( x , \infty )$ ; confidence 0.998
  
147. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110215.png ; $| \operatorname { Im } \zeta | / | \operatorname { Re } \zeta | \rightarrow 0$ ; confidence 0.338
+
147. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007094.png ; $f , g \in H ^ { 0 }$ ; confidence 0.998
  
148. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021023.png ; $= \alpha _ { 0 } ^ { N } \prod _ { l = 1 } ^ { \nu } ( \lambda - \lambda _ { i } ) ^ { n _ { i } }$ ; confidence 0.463
+
148. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024021.png ; $f - ( \{ \infty \} )$ ; confidence 0.998
  
149. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003016.png ; $\int _ { - 1 } ^ { 1 } p ( x ) P _ { n } ( x ) E _ { n + 1 } ( x ) x ^ { k } d x = 0 , \quad k = 0 , \dots , n$ ; confidence 0.392
+
149. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003017.png ; $\| \varphi \| = \int \int _ { R } | \varphi ( z ) | d x d y$ ; confidence 0.998
  
150. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002023.png ; $\operatorname { sup } _ { I } \frac { 1 } { | I | } \int _ { I } | f - f _ { I } | d m < \infty$ ; confidence 0.363
+
150. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001025.png ; $\operatorname { exp } ( i A ( x ) ) + o ( 1 )$ ; confidence 0.998
  
151. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005054.png ; $S : = \{ r _ { + } ( k ) , i k _ { j } , ( m _ { j } ^ { + } ) ^ { 2 } : \forall k > 0,1 \leq j \leq J \}$ ; confidence 0.940
+
151. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005080.png ; $\theta = \frac { \phi - 1 } { \phi - 1 - \phi \mu }$ ; confidence 0.998
  
152. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002040.png ; $\lambda = \left( \begin{array} { l } { n } \\ { 3 } \end{array} \right) p ^ { 3 }$ ; confidence 0.951
+
152. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060030/l06003036.png ; $0 < \alpha < \pi / 2$ ; confidence 0.998
  
153. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007015.png ; $\Gamma ( \omega , \alpha ) = \{ z \in \Delta : | z - \omega | < \alpha ( 1 - | z | ) \}$ ; confidence 0.997
+
153. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002052.png ; $\psi \in H ^ { \infty }$ ; confidence 0.998
  
154. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584032.png ; $x = x _ { + } + x _ { - } , \quad y = y _ { + } + y _ { - } , \quad x _ { \pm } , y _ { \pm } \in K _ { + }$ ; confidence 0.427
+
154. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040450/f04045035.png ; $f ( U )$ ; confidence 0.998
  
155. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
+
155. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080168.png ; $B _ { p } ( G , G )$ ; confidence 0.998
  
156. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700091.png ; $Q \equiv \lambda p f x \cdot p ( \lambda a b \cdot b ( a f ) ) ( \lambda q \cdot x ) I$ ; confidence 0.275
+
156. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004029.png ; $c \leq 1 / 4$ ; confidence 0.998
  
157. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l1200509.png ; $K _ { 1 / 2 + i \tau } ( x ) = \frac { K _ { 1 / 2 + i \tau } ( x ) - K _ { 1 / 2 - i \tau } ( x ) } { 2 i }$ ; confidence 0.556
+
157. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060110.png ; $\xi _ { 1 } A _ { 1 } + \xi _ { 2 } A _ { 2 }$ ; confidence 0.998
  
158. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001045.png ; $\rho ( x , \partial B ) = \operatorname { inf } _ { y \in \partial B } \rho ( x , y )$ ; confidence 0.962
+
158. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003054.png ; $f ( x _ { n } ) = 0$ ; confidence 0.998
  
159. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010063.png ; $a _ { e } ( x , \alpha , p ) : = \frac { a ( x , \alpha , p ) + a ( x _ { s } - \alpha , - p ) } { 2 }$ ; confidence 0.131
+
159. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b1202702.png ; $( t , t + h ]$ ; confidence 0.998
  
160. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001052.png ; $\{ \langle x _ { 1 } , y _ { 1 } \rangle , \dots , \langle x _ { m } , y _ { m } \rangle \}$ ; confidence 0.277
+
160. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110070/m1100702.png ; $k = 1,2$ ; confidence 0.998
  
161. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003023.png ; $\sum _ { k = 0 } ^ { \infty } \beta _ { k } ^ { ( l ) } \alpha ^ { d ^ { k } } ( 1 \leq i \leq n )$ ; confidence 0.552
+
161. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020120.png ; $\phi \in B _ { p } ^ { 1 / p }$ ; confidence 0.998
  
162. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130200/m13020019.png ; $\alpha ^ { \prime } : \mathfrak { g } \rightarrow \mathfrak { X } ( M , \omega )$ ; confidence 0.564
+
162. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023073.png ; $f \in C ( \Gamma ) \cap L ^ { 1 } ( \Gamma )$ ; confidence 0.998
  
163. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130220/m13022048.png ; $Z ( g ^ { \alpha } h ^ { c } , g ^ { b } h ^ { d } ; z ) = \alpha Z ( g h ; \frac { a z + b } { c z + d } )$ ; confidence 0.636
+
163. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004014.png ; $H ^ { 1 } ( D )$ ; confidence 0.998
  
164. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018075.png ; $\mu ( \overline { \emptyset } , X ) = \sum _ { A : \overline { H } = X } ( - 1 ) ^ { | A | }$ ; confidence 0.200
+
164. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005052.png ; $D : V \rightarrow V$ ; confidence 0.998
  
165. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002036.png ; $m = k ^ { \prime \mu } ( \theta ) = \int _ { \overline { F } } x P ( \theta , \mu ) ( d x )$ ; confidence 0.415
+
165. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007050.png ; $b > 1$ ; confidence 0.998
  
166. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130060/n13006037.png ; $\mu _ { k + 1 } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } }$ ; confidence 0.973
+
166. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070166.png ; $L ^ { * } = L ^ { - 1 }$ ; confidence 0.998
  
167. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520356.png ; $[ \phi ( x _ { 1 } , \ldots , x _ { n } ) = g ( \mu z ( f ( x _ { 1 } , \ldots , x _ { n } , z ) = 0 ) ) ]$ ; confidence 0.452
+
167. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012051.png ; $( Y , d )$ ; confidence 0.998
  
168. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o1300207.png ; $M ( r _ { 1 } , r _ { 2 } ) > ( \frac { \pi } { 4 } ) ^ { 2 r _ { 2 } } ( \frac { n ^ { n } } { n ! } ) ^ { 2 }$ ; confidence 0.945
+
168. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029071.png ; $1 \leq i \leq j \leq d$ ; confidence 0.998
  
169. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003051.png ; $Y _ { j } = - \sqrt { 3 } \lambda _ { j } ( j = 1,2,3 ) , Y _ { 4 } = \sqrt { 3 } \lambda _ { 8 }$ ; confidence 0.822
+
169. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b1302507.png ; $\angle \Omega A B$ ; confidence 0.998
  
170. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006027.png ; $E = \overline { ( A _ { 1 } - A _ { 1 } ^ { * } ) H + ( A _ { 2 } - A _ { 2 } ^ { * } ) H , } \Phi = P _ { E }$ ; confidence 0.862
+
170. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120330/s12033052.png ; $( 176,50,14 )$ ; confidence 0.998
  
171. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009031.png ; $P _ { \Omega } ( x , \xi ) = \frac { \partial } { \partial n } G _ { \Omega } ( x , \xi )$ ; confidence 0.994
+
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009022.png ; $0 < \tau \leq 1$ ; confidence 0.998
  
172. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827
+
172. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005073.png ; $\phi = 1$ ; confidence 0.998
  
173. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001050.png ; $\sum _ { k } \sum _ { l } \overline { c } _ { k } c l S ( \theta ( f _ { k } ) - f _ { l } ) \geq 0$ ; confidence 0.090
+
173. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009091.png ; $R ( t ^ { \lambda } )$ ; confidence 0.998
  
174. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045078.png ; $\phi _ { S } = 1 - 3 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } | u - v | d C _ { X , Y } \gamma ( u , v ) =$ ; confidence 0.687
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017015.png ; $b ( t )$ ; confidence 0.998
  
175. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048034.png ; $\overline { \partial } : \Omega ^ { p , 0 } ( M ) \rightarrow \Omega ^ { p , 1 } ( M )$ ; confidence 0.968
+
175. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001027.png ; $\operatorname { deg } f _ { i } > i$ ; confidence 0.998
  
176. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050138.png ; $\overline { \operatorname { Ran } D _ { A } } \neq \operatorname { Ker } D _ { A }$ ; confidence 0.927
+
176. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222046.png ; $( h - 1 )$ ; confidence 0.998
  
177. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020043.png ; $\mathscr { Q } ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } ^ { \prime \prime } ( k ) z _ { j } ^ { k }$ ; confidence 0.201
+
177. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005028.png ; $g ( x , k )$ ; confidence 0.998
  
178. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110204.png ; $G _ { X } = \sum _ { 1 \leq j \leq n } h _ { j } ( | \alpha q _ { j } | ^ { 2 } + | d p _ { j } | ^ { 2 } )$ ; confidence 0.466
+
178. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062065.png ; $B \lambda$ ; confidence 0.998
  
179. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021044.png ; $\sum _ { i = 1 } ^ { k } s _ { i } A _ { i } A _ { i } ^ { T } = ( m \sum _ { i = 1 } ^ { k } s _ { i } ) l _ { m }$ ; confidence 0.609
+
179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s13037022.png ; $D _ { E } [ 0 , \infty )$ ; confidence 0.998
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240407.png ; $M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$ ; confidence 0.159
+
180. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030110.png ; $\rho ( - u ) = \rho ( u )$ ; confidence 0.998
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040336.png ; $E ( x _ { 0 } , y _ { 0 } ) , \ldots , E ( x _ { x } - 1 , y _ { n } - 1 ) \operatorname { t } _ { D }$ ; confidence 0.118
+
181. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130050/k13005018.png ; $V = \frac { 4 } { 3 } \pi \sigma ^ { 2 } N$ ; confidence 0.998
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040236.png ; $K ( x ) \approx L ( x ) = \{ \kappa _ { j } ( x ) \approx \lambda _ { j } ( x ) : j \in J \}$ ; confidence 0.615
+
182. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005010.png ; $( \partial _ { t } + \Delta ) u = 0$ ; confidence 0.998
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040655.png ; $S _ { P } , \mathfrak { M } = \operatorname { mng } _ { P } , \mathfrak { N } \circ h$ ; confidence 0.200
+
183. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120300/d12030039.png ; $( Y ( t ) , t \in [ 0 , T ] )$ ; confidence 0.998
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050239.png ; $G ^ { \# } ( n ) = A _ { G } q ^ { n } + O ( q ^ { \nu , n } ) \text { as } n \rightarrow \infty$ ; confidence 0.172
+
184. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023023.png ; $\sigma ( x ) = ( x , y ( x ) )$ ; confidence 0.998
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008074.png ; $u \in L ^ { 2 } ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap H ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.811
+
185. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035017.png ; $D _ { M }$ ; confidence 0.998
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a130080104.png ; $b ( x ) \leq q ( x ) = \frac { f ( x ) } { h ( x ) } , \text { for all } - \infty < x < \infty$ ; confidence 0.970
+
186. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017031.png ; $\omega ( G ) \neq 1$ ; confidence 0.998
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020015.png ; $K ( \langle a b c ) , d ) + K ( c , \langle a b d \rangle \rangle + K ( a , K ( c , d ) b ) = 0$ ; confidence 0.300
+
187. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700058.png ; $F \equiv ( \lambda x ( \lambda y ( y x ) ) )$ ; confidence 0.998
  
188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005036.png ; $\{ f \in H ^ { \infty } ( B _ { E } ) : \text { funiformly continuous on } B _ { E } \}$ ; confidence 0.985
+
188. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510117.png ; $V ^ { f } = \{ u \in V : \gamma ( u ) < \infty \}$ ; confidence 0.998
  
189. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006018.png ; $A , \| A \| _ { \infty } = \operatorname { max } _ { j } \sum _ { i } | \alpha _ { i } j |$ ; confidence 0.149
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280160.png ; $\pi : A \rightarrow B ( H )$ ; confidence 0.998
  
190. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220118.png ; $r _ { D } : H _ { M } ^ { i } ( X , Q ( j ) ) _ { Z } \rightarrow H _ { D } ^ { i } ( X _ { / R } , R ( j ) )$ ; confidence 0.103
+
190. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010082.png ; $f ( T ) \subset K$ ; confidence 0.998
  
191. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220195.png ; $\langle . . \} : CH ^ { p } ( X ) ^ { 0 } \times CH ^ { n + 1 - p } ( X ) ^ { 0 } \rightarrow R$ ; confidence 0.085
+
191. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003059.png ; $\Psi ( x , \sigma ) = \chi ( x / \sigma )$ ; confidence 0.998
  
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014053.png ; $\operatorname { deg } \omega ( z ) < \operatorname { deg } \sigma ( z ) \leq t$ ; confidence 0.999
+
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055048.png ; $\partial \iota ( M )$ ; confidence 0.998
  
193. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016013.png ; $x _ { 1 } ^ { \prime } = p ^ { 2 } , x _ { 2 } ^ { \prime } = q ^ { 2 } , x _ { 3 } ^ { \prime } = 2 p q$ ; confidence 0.598
+
193. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013049.png ; $\tau _ { 0 } = 1$ ; confidence 0.998
  
194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012072.png ; $\operatorname { lim } _ { N \rightarrow \infty } \| f - f _ { N } \| _ { A } ^ { * } = 0$ ; confidence 0.497
+
194. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200200.png ; $\Lambda = 0$ ; confidence 0.998
  
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027069.png ; $\alpha ( t ) = b ( t ) + \int _ { \langle 0 , t ] } a ( t - u ) d F ( u ) \text { for } t \geq 0$ ; confidence 0.272
+
195. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002068.png ; $A \in M ^ { 1 }$ ; confidence 0.998
  
196. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026012.png ; $\sum _ { x \in f } - 1 _ { ( 0 ) \cap \partial K } \text { sign det } f ^ { \prime } ( x )$ ; confidence 0.835
+
196. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180134.png ; $F - \operatorname { dim } E$ ; confidence 0.998
  
197. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001024.png ; $\xi ^ { \prime } ( \xi , \eta ) = \xi , \quad \eta ^ { \prime } ( \xi , \eta ) = \eta$ ; confidence 0.990
+
197. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019032.png ; $d u / d t = L u$ ; confidence 0.998
  
198. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008072.png ; $\Delta ( A , E ) = \sum _ { i = 0 } ^ { m } I \bigotimes D _ { i , n - i } A ^ { i } E ^ { m - i } = 0$ ; confidence 0.218
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010064.png ; $T ( z ) \rightarrow 0$ ; confidence 0.998
  
199. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120060/d12006023.png ; $Q ^ { + } Q ^ { - } ( Q ^ { + } \psi _ { \lambda } ) = \lambda ( Q ^ { + } \psi _ { \lambda } )$ ; confidence 0.918
+
199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110144.png ; $1 / ( 1 - e ^ { 2 \pi i z } )$ ; confidence 0.998
  
200. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013035.png ; $\Psi _ { + } = e ^ { i e \chi / \hbar } \Psi _ { - } = e ^ { 2 i e g \phi / \hbar } \Psi _ { - }$ ; confidence 0.251
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209055.png ; $J ( R )$ ; confidence 0.998
  
201. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012072.png ; $L ( \mu , \Sigma | Y _ { 0 b s } ) = \prod _ { i = 1 } ^ { n } f ( y _ { i } | \mu , \Sigma , \nu )$ ; confidence 0.472
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029012.png ; $f : X \rightarrow Y$ ; confidence 0.998
  
202. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003060.png ; $( \omega , s ) = \sum _ { \gamma \in \Gamma / \Gamma _ { P } } \gamma \omega _ { s }$ ; confidence 0.539
+
202. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211032.png ; $p _ { 1 } ( \theta ) + \ldots + p _ { k } ( \theta ) = 1$ ; confidence 0.998
  
203. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230177.png ; $( E ^ { \alpha } ( L ) \circ \sigma ^ { 2 k } ) ( Z ^ { \alpha } \circ \sigma ) \Delta$ ; confidence 0.372
+
203. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a1201202.png ; $( A , B )$ ; confidence 0.998
  
204. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027022.png ; $\frac { \beta } { 2 } + \frac { 1 } { 4 } \leq s < \frac { \beta } { 2 } + \frac { 5 } { 4 }$ ; confidence 0.999
+
204. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021013.png ; $t ( M ) = 1$ ; confidence 0.998
  
205. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130170/f1301704.png ; $A _ { 2 } ( G ) = \{ \overline { k } ^ { * } \overline { r } : k , l \in L _ { C } ^ { 2 } ( G ) \}$ ; confidence 0.252
+
205. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840142.png ; $T = T ^ { + }$ ; confidence 0.998
  
206. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019015.png ; $a _ { k } = \frac { 1 } { 2 N c _ { k } } \sum _ { j = 0 } ^ { 2 N - 1 } u ( x _ { j } ) e ^ { - i k x _ { j } }$ ; confidence 0.736
+
206. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130090/p13009030.png ; $\Omega \times \partial \Omega$ ; confidence 0.998
  
207. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160176.png ; $\{ \psi _ { \mathfrak { A } } ^ { l } e : \phi \text { is true on } \mathfrak { A } \}$ ; confidence 0.404
+
207. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510132.png ; $c ( w ) < c ( u )$ ; confidence 0.998
  
208. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f1202001.png ; $f = \lambda ^ { n } + a _ { n - 1 } \lambda ^ { n - 1 } + \ldots + a _ { 1 } \lambda + a _ { 0 }$ ; confidence 0.838
+
208. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031014.png ; $\alpha f ( T ) + \beta g ( T ) = ( \alpha f + \beta g ) ( T )$ ; confidence 0.998
  
209. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024012.png ; $= f ( t , x ^ { ( m _ { 1 } ) } ( t - h _ { 1 } ( t ) ) , \ldots , x ^ { ( m _ { k } ) } ( t - h _ { k } ( t ) ) )$ ; confidence 0.555
+
209. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o1300408.png ; $\phi : [ 0 , T ] \rightarrow M$ ; confidence 0.998
  
210. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024052.png ; $x _ { t } ( \theta ) = x ( t + \theta ) , \theta \in J _ { t } \subseteq ( - \infty , 0 ]$ ; confidence 0.916
+
210. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260159.png ; $b _ { 1 } b _ { 2 } = 0$ ; confidence 0.998
  
211. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001026.png ; $A ( x ) = \sum _ { p \leq x } 1 / p \cdot \operatorname { Im } ( f ( p ) p ^ { - i x _ { 0 } } )$ ; confidence 0.366
+
211. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016750/b01675013.png ; $y \in C$ ; confidence 0.998
  
212. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004019.png ; $( v z ) ^ { \operatorname { com } ( L ) - 1 } P _ { L } ( v , z ) \in Z [ v ^ { \pm 2 } , z ^ { 2 } ]$ ; confidence 0.542
+
212. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120220/s12022024.png ; $( M , \Delta )$ ; confidence 0.998
  
213. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006050.png ; $h ^ { i } ( K _ { X } + j L - \sum _ { k = 1 } ^ { r } [ \frac { j \alpha _ { k } } { N } ] D _ { k } ) = 0$ ; confidence 0.637
+
213. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i05023098.png ; $\eta > 0$ ; confidence 0.998
  
214. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005025.png ; $\mu | _ { Y \backslash E } : Y \backslash E \rightarrow X \backslash \mu ( E )$ ; confidence 0.401
+
214. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h1300501.png ; $\frac { \partial u } { \partial t } = \frac { \partial ^ { 3 } } { \partial x ^ { 3 } } ( \frac { 1 } { \sqrt { u } } )$ ; confidence 0.998
  
215. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006055.png ; $F \subseteq \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 0.691
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006054.png ; $L ( X , Y )$ ; confidence 0.998
  
216. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507046.png ; $\omega = \sum g _ { \alpha \beta } d z ^ { \alpha } \wedge d z \square ^ { \beta }$ ; confidence 0.348
+
216. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003032.png ; $P _ { \alpha } P _ { \beta } = P _ { \beta } P _ { \alpha } = P _ { \alpha }$ ; confidence 0.998
  
217. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004038.png ; $u _ { i } ^ { n + 1 } = b _ { - 1 } u _ { t - 1 } ^ { n } + b _ { 0 } u _ { i } ^ { n } + b _ { 1 } u _ { + 1 } ^ { n }$ ; confidence 0.144
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025060.png ; $q > n + 1$ ; confidence 0.998
  
218. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l1300602.png ; $z _ { 1 } + 1 \equiv \alpha z _ { i } + r ( \operatorname { mod } m ) , 0 \leq z _ { i } < m$ ; confidence 0.246
+
218. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340166.png ; $U _ { i } = \varphi _ { i } ( ( \pm \infty , 0 ) \times S ^ { 1 } )$ ; confidence 0.998
  
219. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017039.png ; $\langle \alpha , b | b a ^ { 2 } b ^ { - 1 } = a ^ { 3 } , a b ^ { 2 } a ^ { - 1 } = b ^ { 3 } \rangle$ ; confidence 0.734
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023039.png ; $\partial \Omega \in C ^ { 2 }$ ; confidence 0.998
  
220. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130080/m13008032.png ; $h _ { t } ( s ) = h ( ( s - t ) / \operatorname { log } | t | ) / \operatorname { log } | t$ ; confidence 0.921
+
220. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p13007047.png ; $( z _ { 1 } , z _ { 2 } ) \in \partial D$ ; confidence 0.998
  
221. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013058.png ; $\frac { d N ^ { i } } { d t } = f ^ { i } ( N ^ { 1 } , \ldots , N ^ { n } ) , \quad i = 1 , \dots , n$ ; confidence 0.190
+
221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009011.png ; $\frac { \partial f ( z , t ) } { \partial t } = - f ( z , t ) p ( f , t )$ ; confidence 0.998
  
222. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010044.png ; $\varphi ( \xi _ { 1 } ) \varphi ( \xi _ { 2 } ) \leq \varphi ( \xi _ { 1 } + \xi _ { 2 } )$ ; confidence 0.997
+
222. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260139.png ; $( v ^ { \prime } , p ^ { \prime } )$ ; confidence 0.998
  
223. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004016.png ; $| f ^ { \prime } ( x ) | = \operatorname { max } \{ | f ^ { \prime } ( x ) h | : | h | = 1 \}$ ; confidence 0.966
+
223. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013096.png ; $n = - 1$ ; confidence 0.998
  
224. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007097.png ; $f ) = \sum R ( h \otimes f _ { ( 1 ) } ) R ( g \otimes f ( 2 ) ) , R ( h \otimes g f ) = \sum R$ ; confidence 0.133
+
224. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003062.png ; $\equiv K$ ; confidence 0.998
  
225. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080129.png ; $( u , \varphi _ { j } ) _ { 0 } : = \int _ { D } u ( y ) \overline { \varphi _ { j } ( y ) } d y$ ; confidence 0.727
+
225. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014032.png ; $f \in C ^ { 2 } ( U )$ ; confidence 0.998
  
226. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004055.png ; $s _ { \lambda ^ { \prime } } = \operatorname { det } ( e _ { \lambda _ { i } - i + j } )$ ; confidence 0.951
+
226. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202509.png ; $1 ^ { 2 }$ ; confidence 0.998
  
227. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005067.png ; $\sum _ { i , j = 1 } ^ { n } \overline { c } _ { i } K _ { S } ( w _ { j } , w _ { i } ) c _ { j } \geq 0$ ; confidence 0.936
+
227. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260141.png ; $\alpha ( d \theta ) = d \theta$ ; confidence 0.998
  
228. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050022.png ; $A \subseteq \left( \begin{array} { c } { [ n ] } \\ { i } \end{array} \right)$ ; confidence 0.599
+
228. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005034.png ; $B = \sum _ { j = 1 } ^ { t } B _ { j }$ ; confidence 0.998
  
229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202502.png ; $\int _ { a } ^ { b } P _ { n } ( x ) E _ { n + 1 } ( x ) x ^ { k } h ( x ) d x = 0 , \quad k = 1 , \dots , n$ ; confidence 0.051
+
229. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019061.png ; $b ( m )$ ; confidence 0.998
  
230. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s13059046.png ; $F _ { n } = \frac { 1 } { e _ { x } e _ { x } - 1 } , G _ { x } = \frac { d _ { x } } { e _ { x } } ( e 0 = 1 )$ ; confidence 0.288
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025091.png ; $k \leq ( n - 1 ) q + n$ ; confidence 0.998
  
231. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028018.png ; $p ( X ) \approx \overline { E } \square ^ { q } ( S ^ { n } \backslash X ) , p + q = n - 1$ ; confidence 0.637
+
231. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010047.png ; $\tau ( m n ) = \tau ( m ) \tau ( n )$ ; confidence 0.998
  
232. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t1200706.png ; $= 2 ^ { 46 } \cdot 3 ^ { 20 } \cdot 5 ^ { 9 } \cdot 7 ^ { 6 } \cdot 11 ^ { 2 } \cdot 13 ^ { 3 }$ ; confidence 0.609
+
232. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v11006022.png ; $( x , y , 0 )$ ; confidence 0.998
  
233. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015018.png ; $0 \rightarrow K ( H ^ { 2 } ( T ) ) \frown T ( T ) \rightarrow C ( T ) \rightarrow 0$ ; confidence 0.242
+
233. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008096.png ; $M < 2 N$ ; confidence 0.998
  
234. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200233.png ; $c _ { m , n } = 2 ^ { - n } ( \frac { 1 + \rho } { 2 } ) ^ { m } ( \frac { 1 - \rho } { 2 } ) ^ { n + k }$ ; confidence 0.480
+
234. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002042.png ; $b ( u , v ) = ( B u , v )$ ; confidence 0.998
  
235. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011044.png ; $[ z = \gamma _ { j } e ^ { i m \theta } , \gamma = \alpha + i \beta ] , 0 < \theta < \pi$ ; confidence 0.859
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013490/a0134906.png ; $k > 0$ ; confidence 0.998
  
236. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011043.png ; $x _ { m , j } = \alpha _ { j } e ^ { i m \theta } , y _ { m , j } = \beta _ { j } e ^ { i m \theta }$ ; confidence 0.804
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025094.png ; $n = q + 1$ ; confidence 0.998
  
237. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007078.png ; $( 2 \pi ) ^ { - 2 n } \int _ { R ^ { 2 n } } e ^ { i q X } e ^ { i p D } \hat { \sigma } ( p , q ) d p d q$ ; confidence 0.122
+
237. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044960/g04496018.png ; $\chi ^ { \prime } ( G )$ ; confidence 0.998
  
238. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120010/y120010139.png ; $R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$ ; confidence 0.794
+
238. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007033.png ; $f ( n ) = \alpha n ^ { k }$ ; confidence 0.998
  
239. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001026.png ; $\operatorname { lim } _ { z | \rightarrow \infty } \overline { x } ( z ) = x ( 0 )$ ; confidence 0.158
+
239. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060180.png ; $A ( y ) : = A ( 0 , y ) = 0$ ; confidence 0.998
  
240. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011068.png ; $\alpha ( x ) = \frac { \Gamma ( \beta + 1 ) \Gamma ( x ) } { \Gamma ( x + \beta + 1 ) }$ ; confidence 0.996
+
240. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110010/f11001012.png ; $z \in A ^ { + }$ ; confidence 0.998
  
241. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013022.png ; $\sum _ { n = 0 } ^ { \infty } a _ { n } n ^ { n } P _ { n } ( \operatorname { cos } \theta )$ ; confidence 0.527
+
241. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015046.png ; $( Y ^ { \prime } , X ^ { \prime } )$ ; confidence 0.998
  
242. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001072.png ; $\xi ( \tau ) = \tau _ { 1 } \xi ^ { 1 } + \tau _ { 2 } \xi ^ { 2 } + \tau _ { 3 } \xi ^ { 3 }$ ; confidence 0.998
+
242. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s1304803.png ; $D : \Gamma ( \alpha ) \rightarrow \Gamma ( \beta )$ ; confidence 0.998
  
243. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040314.png ; $\epsilon _ { i , j } ^ { A } ( \alpha , b , c , d ) = h ( \epsilon _ { i , j } ( x , y , z , w ) )$ ; confidence 0.677
+
243. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023067.png ; $[ P , P ] ^ { \wedge } = 0$ ; confidence 0.998
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007046.png ; $u ^ { \prime } \in C ^ { \alpha } ( [ 0 , T ] ; X ) \cap B ( D _ { A } ( \alpha , \infty ) )$ ; confidence 0.748
+
244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202207.png ; $\int \phi ( v ) Q ( f ) ( v ) d v = 0$ ; confidence 0.998
  
245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023025.png ; $\operatorname { limsup } _ { k \rightarrow \infty } \sqrt [ k x ] { k } \leq 1$ ; confidence 0.373
+
245. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021540/c02154017.png ; $f ( x ) = \chi ( \pi ( x ) )$ ; confidence 0.998
  
246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200208.png ; $\beta _ { n } ( t ) = n ^ { 1 / 2 } ( \Gamma _ { n } ^ { - 1 } ( t ) - t ) , \quad 0 \leq t \leq 1$ ; confidence 0.985
+
246. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e120240120.png ; $f : E \rightarrow Y _ { 1 } ( N )$ ; confidence 0.998
  
247. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001099.png ; $\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.965
+
247. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w1100601.png ; $B ( t , \omega )$ ; confidence 0.998
  
248. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003039.png ; $\| \operatorname { ltg } ( t ) \| _ { 2 } \| \gamma g ( \gamma ) \| _ { 2 } < \infty$ ; confidence 0.555
+
248. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001016.png ; $g [ f ] ( x ) = f ( g ^ { - 1 } x )$ ; confidence 0.998
  
249. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007017.png ; $BS ( 2,3 ) = \langle \alpha , b | \alpha ^ { - 1 } b ^ { 2 } \alpha = b ^ { 3 } \rangle$ ; confidence 0.650
+
249. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120110/p12011016.png ; $2$ ; confidence 0.998
  
250. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220117.png ; $r : H _ { M } ^ { \bullet } ( X , Q ( * ) ) \rightarrow H _ { D } ^ { \bullet } ( X , A ( * ) )$ ; confidence 0.159
+
250. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029098.png ; $h _ { 0 } = h _ { 1 } = 0$ ; confidence 0.998
  
251. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b13009014.png ; $\phi ( x ) = 3 ( v - 1 ) \operatorname { sech } ^ { 2 } \{ x \sqrt { ( v - 1 ) / ( 4 v ) } \}$ ; confidence 0.994
+
251. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002011.png ; $E ^ { \prime } ( \Omega )$ ; confidence 0.998
  
252. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012077.png ; $V _ { \varepsilon } = 2 \Delta _ { 2 } \varepsilon - \Delta _ { \varepsilon }$ ; confidence 0.525
+
252. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027018.png ; $( \operatorname { log } m )$ ; confidence 0.998
  
253. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203006.png ; $\psi ( y + 2 \pi p ) = e ^ { 2 \pi i \eta , y } \psi ( y ) \text { for a.e.y } \in R ^ { N }$ ; confidence 0.112
+
253. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160142.png ; $[ s ( n ) , t ( n )$ ; confidence 0.998
  
254. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040042.png ; $g ( g ^ { \prime } \times ^ { \varrho } f ) = g g ^ { \prime } \times ^ { \varrho } f$ ; confidence 0.670
+
254. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013059.png ; $\epsilon ( \lambda ) = 0$ ; confidence 0.998
  
255. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420162.png ; $\lambda _ { 1 } = id , \lambda _ { W } \otimes z = \lambda z \circ \lambda _ { W }$ ; confidence 0.159
+
255. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013075.png ; $H$ ; confidence 0.998
  
256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043089.png ; $\Psi ( E _ { i } \bigotimes E _ { j } ) = q ^ { \alpha _ { i } j } E _ { j } \otimes E _ { i }$ ; confidence 0.097
+
256. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018061.png ; $\chi \rightarrow \psi$ ; confidence 0.998
  
257. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080111.png ; $= \sum _ { l = 0 } ^ { r _ { 1 } } \sum _ { l = 0 } ^ { r _ { 2 } } \alpha _ { l j } z _ { 12 } ^ { i j }$ ; confidence 0.130
+
257. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026066.png ; $\theta _ { 1 } = m / \sigma ^ { 2 }$ ; confidence 0.998
  
258. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015070.png ; $G ^ { \infty } ( \Omega ) \cap D ^ { \prime } ( \Omega ) = C ^ { \infty } ( \Omega )$ ; confidence 0.985
+
258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042024.png ; $1$ ; confidence 0.998
  
259. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180389.png ; $M \times \{ 1 \} \times \{ 0 \} \subset M \times ( 0 , \infty ) \times ( - 1 + 1 )$ ; confidence 0.995
+
259. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020023.png ; $\{ A \}$ ; confidence 0.998
  
260. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180488.png ; $\lambda g = \sum _ { i , j } \lambda _ { B j } d x ^ { i } \otimes d x ^ { j } \in S ^ { 2 } E$ ; confidence 0.085
+
260. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049055.png ; $c ( p , q )$ ; confidence 0.998
  
261. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c1202604.png ; $\{ ( x _ { j } , t _ { n } ) : x _ { j } = j h , t _ { n } = n k , 0 \leq j \leq J , 0 \leq n \leq N \}$ ; confidence 0.799
+
261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019039.png ; $\{ a , x \} \equiv \{ b , x \}$ ; confidence 0.998
  
262. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012051.png ; $\chi _ { j + 1 } ^ { \prime } = \operatorname { codom } \alpha _ { j } ^ { \prime }$ ; confidence 0.339
+
262. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004037.png ; $N : M \rightarrow S ^ { 2 }$ ; confidence 0.998
  
263. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014014.png ; $\sum _ { n = 0 } ^ { \infty } D _ { n } ( x , a ) z ^ { n } = \frac { 2 - x z } { 1 - x z + a z ^ { 2 } }$ ; confidence 0.805
+
263. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006038.png ; $( E , \sigma _ { 1 } , \sigma _ { 2 } )$ ; confidence 0.998
  
264. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022040.png ; $\frac { G ( x , t ) } { ( x - x _ { 1 } ) ^ { \prime } 1 \ldots ( x - x _ { m } ) ^ { r _ { m } } } > 0$ ; confidence 0.212
+
264. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s1306507.png ; $\Phi _ { - 1 } ( z ) = 0$ ; confidence 0.998
  
265. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028064.png ; $F ( t ) = F _ { \phi } ( f ) = \int _ { \partial D _ { m } } f ( z ) \phi ( w ) \omega ( z , w )$ ; confidence 0.588
+
265. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120010/n1200106.png ; $\psi : ( u , v ) \rightarrow ( 2 u , 2 v )$ ; confidence 0.998
  
266. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007052.png ; $M = \left( \begin{array} { c c } { * } & { * } \\ { c } & { d } \end{array} \right)$ ; confidence 0.607
+
266. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010040.png ; $T _ { \varphi } f = P ( \varphi f )$ ; confidence 0.997
  
267. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230157.png ; $L _ { Z ^ { k } } ( L , \Delta ) = Z ^ { k } _ { \perp } d L \Delta + d ( Z ^ { k } , L , \Delta )$ ; confidence 0.136
+
267. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013079.png ; $\dot { y } = A x$ ; confidence 0.997
  
268. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026093.png ; $\{ P ( \theta , \mu _ { p } ) : \theta \in \Theta ( \mu ) , p \in \Lambda ( \mu ) \}$ ; confidence 0.694
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008031.png ; $\frac { f ^ { \prime } ( L ) } { f ( L ) } = \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) }$ ; confidence 0.997
  
269. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027026.png ; $\alpha \leq y _ { 1 } < x _ { 1 } < y _ { 2 } < x _ { 2 } < \ldots < x _ { m } < y _ { m } + 1 \leq b$ ; confidence 0.220
+
269. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620162.png ; $y ( x , \lambda ) = \frac { \operatorname { sin } x } { 1 + ( 2 x - \operatorname { sin } 2 x ) ^ { 2 } }$ ; confidence 0.997
  
270. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010088.png ; $g = \left( \begin{array} { c c } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.585
+
270. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003014.png ; $L _ { \infty } [ 0,1 ]$ ; confidence 0.997
  
271. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011087.png ; $U \# \Omega = U \cap \{ \operatorname { Im } z _ { k } \neq 0 : k = 1 , \ldots , n \}$ ; confidence 0.306
+
271. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024041.png ; $t - h ( t ) \rightarrow \infty$ ; confidence 0.997
  
272. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110136.png ; $\operatorname { supp } f _ { \Delta _ { k } } \subset - \Delta _ { k } ^ { \circ }$ ; confidence 0.560
+
272. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001010.png ; $\sigma : R \rightarrow R$ ; confidence 0.997
  
273. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160155.png ; $\psi _ { \mathfrak { A } } ^ { l - \mathfrak { M } } \overline { \mathfrak { a } }$ ; confidence 0.292
+
273. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014034.png ; $z ( \zeta )$ ; confidence 0.997
  
274. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016053.png ; $f _ { \mathfrak { A } } ( P ) = f _ { \mathfrak { B } } ( P ) \cap A ^ { \mathfrak { K } }$ ; confidence 0.156
+
274. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232019.png ; $g ( x , y ; H )$ ; confidence 0.997
  
275. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024049.png ; $+ \operatorname { dim } _ { \Phi } \{ L ( x , y ) \} _ { \operatorname { span } } =$ ; confidence 0.317
+
275. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006080.png ; $F \xi$ ; confidence 0.997
  
276. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029050.png ; $\bigwedge _ { j \in J } T ( u _ { j } ) \leq T ( \underset { j \in J } { \vee } u _ { j } )$ ; confidence 0.422
+
276. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110142.png ; $\iota = 2 \pi i$ ; confidence 0.997
  
277. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006083.png ; $\vec { P _ { i } P _ { 1 } } , \vec { P _ { 1 } P _ { 2 } } , \dots , \vec { P _ { 1 m } P _ { m + 1 } }$ ; confidence 0.114
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032011.png ; $X _ { k } = 1$ ; confidence 0.997
  
278. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005016.png ; $\operatorname { Re } \mu _ { j } ( k , R ) < \operatorname { Re } \mu _ { 0 } ( k , R )$ ; confidence 0.800
+
278. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p12014056.png ; $m = 0$ ; confidence 0.997
  
279. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001035.png ; $X _ { ( v , w ) } ^ { ( 1 ) } = \operatorname { Hom } ( T _ { v } V \rightarrow T _ { w } W )$ ; confidence 0.531
+
279. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070117.png ; $\xi A$ ; confidence 0.997
  
280. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002048.png ; $( \alpha _ { 1 } , \alpha _ { 2 } \cup \gamma , \ldots , \alpha _ { q } ) , \ldots ,$ ; confidence 0.348
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044012.png ; $f _ { 1 }$ ; confidence 0.997
  
281. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005060.png ; $A _ { + } ( x , y ) + F _ { + } ( x + y ) + \int _ { x } ^ { \infty } A ( x , t ) F _ { + } ( t , y ) d t = 0$ ; confidence 0.990
+
281. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014019.png ; $D ^ { * } ( h )$ ; confidence 0.997
  
282. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005050.png ; $\int _ { - \infty } ^ { \infty } | g ( x , i k _ { j } ) | ^ { 2 } d x = ( m _ { j } ^ { - } ) ^ { - 2 }$ ; confidence 0.985
+
282. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045046.png ; $( x _ { 1 } - x _ { 2 } ) ( y _ { 1 } - y _ { 2 } ) < 0$ ; confidence 0.997
  
283. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005049.png ; $\int _ { - \infty } ^ { \infty } | f ( x , i k _ { j } ) | ^ { 2 } d x = ( m _ { j } ^ { + } ) ^ { - 2 }$ ; confidence 0.995
+
283. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016059.png ; $[ s ( n ) ]$ ; confidence 0.997
  
284. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006064.png ; $S ( k ) : = ( 1 / 2 \pi ) \int _ { - \infty } ^ { \infty } d \operatorname { ln } S ( k )$ ; confidence 0.700
+
284. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200186.png ; $\phi ( z ) \neq 0$ ; confidence 0.997
  
285. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i1300701.png ; $[ - \nabla ^ { 2 } + q ( x ) - k ^ { 2 } ] u = 0 \operatorname { in } R ^ { 3 } , k = const > 0$ ; confidence 0.092
+
285. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468026.png ; $\phi = 0$ ; confidence 0.997
  
286. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010051.png ; $R _ { 1212 } = \alpha _ { 2 } , R _ { 1313 } = \alpha _ { 2 } , R _ { 2424 } = \alpha _ { 2 }$ ; confidence 0.906
+
286. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018047.png ; $L ^ { \infty } ( X , m )$ ; confidence 0.997
  
287. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
+
287. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004052.png ; $\eta ( W ) d g ( W ) \in R$ ; confidence 0.997
  
288. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002032.png ; $i = 1 , \ldots , \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right)$ ; confidence 0.662
+
288. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012033.png ; $| t | > 2$ ; confidence 0.997
  
289. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180149.png ; $n > 2$ ; confidence 0.997
  
290. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012047.png ; $\frac { - x f ^ { \prime } ( x ) } { f ( x ) } / \infty , \quad x \rightarrow \infty$ ; confidence 0.827
+
290. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080119.png ; $\Gamma \varphi ( x , y ) = \varphi ( x y ^ { - 1 } )$ ; confidence 0.997
  
291. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840273.png ; $\sigma ( A | _ { E \langle \Delta \rangle K } ) \subset \overline { \Delta }$ ; confidence 0.292
+
291. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030036.png ; $y , \xi \in R ^ { N }$ ; confidence 0.997
  
292. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840176.png ; $E _ { \lambda } = E _ { \lambda } ^ { \prime } + E _ { \lambda } ^ { \prime \prime }$ ; confidence 0.857
+
292. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003043.png ; $R ^ { \prime } \backslash E ^ { \prime }$ ; confidence 0.997
  
293. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010083.png ; $\Phi = ( N ! ) ^ { - 1 / 2 } \operatorname { det } f _ { j } ( x _ { k } ) | _ { j , k = 1 } ^ { N }$ ; confidence 0.704
+
293. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230153.png ; $\sigma _ { t } = \phi _ { t } \circ \sigma$ ; confidence 0.997
  
294. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004028.png ; $( - 1 ) ^ { n } f ( - z ) f ( z ) = a _ { 0 } ^ { 2 } \prod _ { i = 1 } ^ { n } ( z ^ { 2 } - r _ { i } ^ { 2 } )$ ; confidence 0.399
+
294. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025010.png ; $H : U ^ { \prime } \times I \rightarrow U$ ; confidence 0.997
  
295. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120142.png ; $\overline { \sigma } = ( \sigma _ { 1 } , \ldots , \sigma _ { e } ) \in G ( K ) ^ { e }$ ; confidence 0.123
+
295. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006030.png ; $G _ { 0 } ( z ) = ( z - H _ { 0 } ) ^ { - 1 }$ ; confidence 0.997
  
296. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300901.png ; $0 = [ - ( \frac { \partial } { \partial t } - i \frac { q e } { \hbar } \phi ) ^ { 2 } +$ ; confidence 0.983
+
296. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130110/r1301109.png ; $\xi ( s ) : = \frac { 1 } { 2 } s ( s - 1 ) \pi ^ { - s / 2 } \Gamma ( \frac { s } { 2 } ) \zeta ( s )$ ; confidence 0.997
  
297. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120170/m12017018.png ; $= \operatorname { det } ( 1 + A _ { 1 } \lambda + \ldots + A _ { n } \lambda ^ { n } )$ ; confidence 0.994
+
297. https://www.encyclopediaofmath.org/legacyimages/e/e110/e110070/e110070172.png ; $\alpha = - 1$ ; confidence 0.997
  
298. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011076.png ; $[ \underline { f } \square _ { \alpha } ( x ) , \overline { f } _ { \alpha } ( x ) ]$ ; confidence 0.902
+
298. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f120230144.png ; $[ A , A ] = 0$ ; confidence 0.997
  
299. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520355.png ; $( \exists g ) ( \forall \phi ) ( \exists f ) ( \forall x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.759
+
299. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093560/t09356020.png ; $\phi ( x y ) = \phi ( y x )$ ; confidence 0.997
  
300. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520378.png ; $( Q , \Lambda ) \equiv q _ { 1 } \lambda _ { 1 } + \ldots + q _ { n } \lambda _ { n } = 0$ ; confidence 0.976
+
300. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260136.png ; $\tau : B \rightarrow Q ( A )$ ; confidence 0.997

Revision as of 00:10, 13 February 2020

List

1. s13050015.png ; $f _ { k } : = | F _ { k } |$ ; confidence 0.998

2. m12009030.png ; $y ^ { \prime \prime } + b y ^ { \prime } + c y = 0$ ; confidence 0.998

3. e12027025.png ; $n = m + 1$ ; confidence 0.998

4. e120190189.png ; $\Phi _ { 1 } = \Phi _ { 2 }$ ; confidence 0.998

5. c120170138.png ; $M ( n ) ( \geq 0 )$ ; confidence 0.998

6. z13003043.png ; $( Z f ) ( t , w + 1 ) = ( Z f ) ( t , w )$ ; confidence 0.998

7. h13006062.png ; $( X , D )$ ; confidence 0.998

8. n12011071.png ; $F ( R )$ ; confidence 0.998

9. h120120158.png ; $\pi : T ( H ( Y ) ) \rightarrow H ( Y )$ ; confidence 0.998

10. b120420171.png ; $D ( H )$ ; confidence 0.998

11. s12018020.png ; $\alpha , \beta \in K$ ; confidence 0.998

12. a12011016.png ; $A ( 0 , n ) = n + 1$ ; confidence 0.998

13. f12023070.png ; $[ P + A , P + A ] ^ { \wedge } = 2 [ P , A ] ^ { \wedge } + [ A , A ] ^ { \wedge } = 0$ ; confidence 0.998

14. a12004021.png ; $\tau > 0$ ; confidence 0.998

15. s1304907.png ; $r ( q ) = r ( p ) + 1$ ; confidence 0.998

16. e12026023.png ; $( \mu ) \rightarrow F ( \mu )$ ; confidence 0.998

17. f12001027.png ; $f ^ { 2 } \simeq f$ ; confidence 0.998

18. d0338605.png ; $e ^ { 2 } = 0$ ; confidence 0.998

19. d12031020.png ; $h ( T ) = g ( f ( T ) )$ ; confidence 0.998

20. l1100106.png ; $\{ A ; \preceq \}$ ; confidence 0.998

21. h13002035.png ; $F ( S )$ ; confidence 0.998

22. t12021048.png ; $p ( M ; \lambda )$ ; confidence 0.998

23. f12008032.png ; $\varphi \in B ( G )$ ; confidence 0.998

24. b13026020.png ; $f : M \rightarrow N$ ; confidence 0.998

25. a12020020.png ; $q ( T ) \neq 0$ ; confidence 0.998

26. m120120114.png ; $A , B \in F$ ; confidence 0.998

27. m13014061.png ; $n < 12$ ; confidence 0.998

28. b1301505.png ; $\Gamma ^ { \prime } = \Gamma$ ; confidence 0.998

29. b110130219.png ; $\lambda \in T$ ; confidence 0.998

30. f12005042.png ; $\operatorname { deg } f = 1$ ; confidence 0.998

31. a12008068.png ; $L ( H ^ { 1 } ( \Omega ) , L ^ { 2 } ( \Omega ) )$ ; confidence 0.998

32. c02691076.png ; $\lambda ^ { \prime }$ ; confidence 0.998

33. q12002024.png ; $1 \leq t \leq n - k$ ; confidence 0.998

34. d03027024.png ; $0 \leq \theta < 1$ ; confidence 0.998

35. d1301103.png ; $\alpha y$ ; confidence 0.998

36. o13001025.png ; $A ( \alpha ^ { \prime } , \alpha , k ) = A ( - \alpha , - \alpha ^ { \prime } , k )$ ; confidence 0.998

37. c120170155.png ; $Z ^ { k } = p ( Z , Z )$ ; confidence 0.998

38. b12022095.png ; $\varepsilon = 0$ ; confidence 0.998

39. t09408016.png ; $A , B \subset X$ ; confidence 0.998

40. e12002080.png ; $\varphi : X \rightarrow Y$ ; confidence 0.998

41. l057000202.png ; $\rho ^ { \prime } ( y ) = \rho ( y )$ ; confidence 0.998

42. e13007072.png ; $K = 2 ^ { k - 1 }$ ; confidence 0.998

43. c13014060.png ; $\left( \begin{array} { l l } { 3 } & { 2 } \\ { 2 } & { 3 } \end{array} \right)$ ; confidence 0.998

44. a0103307.png ; $F ( x )$ ; confidence 0.998

45. n12010039.png ; $\varphi ( \xi )$ ; confidence 0.998

46. c130070124.png ; $g \geq 0$ ; confidence 0.998

47. f12015061.png ; $E \in B ( X ) = B ( X , X )$ ; confidence 0.998

48. a12008036.png ; $S ( 0 ) = 1$ ; confidence 0.998

49. b017330200.png ; $\zeta \in \Gamma$ ; confidence 0.998

50. m06222040.png ; $( h , h , 3 ) ^ { 2 }$ ; confidence 0.998

51. c13016098.png ; $f \in F ( L )$ ; confidence 0.998

52. v12002029.png ; $f ^ { - 1 } ( Y _ { 0 } ) = X _ { 0 }$ ; confidence 0.998

53. w12007071.png ; $\sigma ( \xi , x )$ ; confidence 0.998

54. v12004028.png ; $r \geq ( \sqrt { 7 } - 1 ) n \approx 1.647 n$ ; confidence 0.998

55. c11020031.png ; $f \in A ( D )$ ; confidence 0.998

56. a12018016.png ; $\lambda \neq 0,1$ ; confidence 0.998

57. b12012010.png ; $X ^ { \prime \prime } ( t ) + R ( t ) \circ X ( t ) = 0$ ; confidence 0.998

58. a01137074.png ; $1 \leq i \leq m$ ; confidence 0.998

59. m130180146.png ; $\chi ( L ; \lambda )$ ; confidence 0.998

60. l120090123.png ; $( A , A ^ { * } )$ ; confidence 0.998

61. o07034081.png ; $h ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998

62. m130250105.png ; $r < 3 n / 2$ ; confidence 0.998

63. c022660149.png ; $I ( f )$ ; confidence 0.998

64. w12018065.png ; $G ( \partial A )$ ; confidence 0.998

65. d12030040.png ; $( Z ( t ) , t \in [ 0 , T ] )$ ; confidence 0.998

66. c02154010.png ; $\phi ( x ) = \lambda f ( x )$ ; confidence 0.998

67. s13004037.png ; $H _ { 1 } = H$ ; confidence 0.998

68. m13026097.png ; $\overline { \alpha } : M ( A ) \rightarrow M ( B )$ ; confidence 0.998

69. c120170142.png ; $p ( Z , Z ) = 0$ ; confidence 0.998

70. f130100107.png ; $\phi \subset U$ ; confidence 0.998

71. r08232027.png ; $J ( p )$ ; confidence 0.998

72. a13007043.png ; $\sigma ( d ) / d < \alpha$ ; confidence 0.998

73. a1201806.png ; $( T _ { n } )$ ; confidence 0.998

74. a130080102.png ; $f = \operatorname { max } f ( x )$ ; confidence 0.998

75. d13013013.png ; $B _ { r } = g / r ^ { 2 }$ ; confidence 0.998

76. k055840328.png ; $U ( T )$ ; confidence 0.998

77. l13001048.png ; $[ ( n + 2 ) / 2 ]$ ; confidence 0.998

78. d1202504.png ; $f : U \rightarrow f [ U ]$ ; confidence 0.998

79. e12007085.png ; $p \in P ( k )$ ; confidence 0.998

80. c02256036.png ; $[ A ]$ ; confidence 0.998

81. f12014014.png ; $\frac { 1 } { \lambda } = \operatorname { sup } \frac { | D ( h ) - D ^ { * } ( h ) | } { D ( h ) + D ^ { * } ( h ) }$ ; confidence 0.998

82. a12013038.png ; $\gamma _ { n } = 1 / n$ ; confidence 0.998

83. v09690086.png ; $T \in A ^ { + }$ ; confidence 0.998

84. b13007091.png ; $g ^ { \prime }$ ; confidence 0.998

85. e1100302.png ; $( X , d )$ ; confidence 0.998

86. l120170264.png ; $H _ { 1 } ( B ) = 0$ ; confidence 0.998

87. d12003060.png ; $E \subset [ 0,1 ]$ ; confidence 0.998

88. k12010074.png ; $w ( Z ( K ) )$ ; confidence 0.998

89. a1200804.png ; $( x , t ) \in \partial \Omega \times [ 0 , T ]$ ; confidence 0.998

90. v12002015.png ; $H _ { 0 } ( M , G ) \cong G$ ; confidence 0.998

91. b01672055.png ; $\partial f$ ; confidence 0.998

92. b1100405.png ; $\theta \in \Theta _ { 0 }$ ; confidence 0.998

93. a12008018.png ; $u ( x , t )$ ; confidence 0.998

94. s12025028.png ; $\operatorname { log } h / \sqrt { 1 - x ^ { 2 } } \in L _ { 1 } [ - 1,1 ]$ ; confidence 0.998

95. j13002044.png ; $p = \Omega ( n ^ { - 1 / 2 } )$ ; confidence 0.998

96. w120090229.png ; $\nabla ( \lambda ) ^ { * }$ ; confidence 0.998

97. n1300308.png ; $A \phi = \lambda \phi$ ; confidence 0.998

98. a12027092.png ; $W ( \rho ) = W ( \overline { \rho } )$ ; confidence 0.998

99. b12027026.png ; $U ( t + h ) - U ( t )$ ; confidence 0.998

100. d03025013.png ; $h = b - a$ ; confidence 0.998

101. t12013056.png ; $\tau ( x , y ) = \tau ( x - y )$ ; confidence 0.998

102. g12004061.png ; $u \in D ^ { \prime } ( \Omega )$ ; confidence 0.998

103. b120430113.png ; $\gamma \delta = \delta \gamma + ( 1 - q ^ { - 2 } ) \gamma \alpha$ ; confidence 0.998

104. b11016016.png ; $\pi f ( x )$ ; confidence 0.998

105. y12001023.png ; $R _ { 12 } R _ { 23 } R _ { 12 } = R _ { 23 } R _ { 12 } R _ { 23 }$ ; confidence 0.998

106. f120150155.png ; $\alpha ( A - K ) < \infty$ ; confidence 0.998

107. c12004026.png ; $f \in H ^ { 1 } ( D )$ ; confidence 0.998

108. b1205506.png ; $\gamma : [ 0 , \infty ) \rightarrow M$ ; confidence 0.998

109. f1301003.png ; $p ^ { \prime } = p / p - 1$ ; confidence 0.998

110. p13010079.png ; $H ^ { \infty } ( \Delta )$ ; confidence 0.998

111. w12021026.png ; $M N ^ { T } = N M ^ { T }$ ; confidence 0.998

112. w120090360.png ; $G _ { K } ( V ) = G$ ; confidence 0.998

113. l05700059.png ; $( F A ) B = B A$ ; confidence 0.998

114. b120040171.png ; $\theta = 1 - 1 / p = 1 / p ^ { \prime }$ ; confidence 0.998

115. r081430201.png ; $\Gamma _ { A }$ ; confidence 0.998

116. e13004030.png ; $( \Omega _ { + } - 1 ) \psi ( t )$ ; confidence 0.998

117. q12001070.png ; $H = \{ g \in G : \tau ( g ) = g \}$ ; confidence 0.998

118. w12011077.png ; $X , Y \in \Phi$ ; confidence 0.998

119. o130060182.png ; $( \xi _ { 1 } , \xi _ { 2 } )$ ; confidence 0.998

120. i13003073.png ; $\pi : Y \rightarrow B$ ; confidence 0.998

121. e12009015.png ; $\sigma = 0,1,2,3$ ; confidence 0.998

122. a120050100.png ; $L ( Y , X )$ ; confidence 0.998

123. a011600262.png ; $> 0$ ; confidence 0.998

124. i1200501.png ; $N ( \alpha , \beta , \theta )$ ; confidence 0.998

125. b12053012.png ; $( \Omega , A , \mu )$ ; confidence 0.998

126. e13006064.png ; $r : R \rightarrow B$ ; confidence 0.998

127. a13023012.png ; $U + V$ ; confidence 0.998

128. k055840160.png ; $z _ { 0 } \in \rho ( A )$ ; confidence 0.998

129. h12013016.png ; $X ( i ) \times I ^ { k }$ ; confidence 0.998

130. d11022051.png ; $( p y ^ { \prime } ) ^ { \prime } + q y = 0 , p > 0$ ; confidence 0.998

131. s12034047.png ; $g ( \omega , J )$ ; confidence 0.998

132. f120150138.png ; $\alpha ( A - S ) < \infty$ ; confidence 0.998

133. f130290113.png ; $( X , \tau )$ ; confidence 0.998

134. s12023063.png ; $X _ { 1 } ( p \times ( n - m ) )$ ; confidence 0.998

135. a12025025.png ; $q = 32$ ; confidence 0.998

136. g13001051.png ; $( n , q ) = ( 3,4 )$ ; confidence 0.998

137. h11026033.png ; $\beta \geq 0$ ; confidence 0.998

138. v12004053.png ; $\chi ^ { \prime } ( G ) = \chi _ { l } ^ { \prime } ( G )$ ; confidence 0.998

139. g13001037.png ; $z ^ { \sigma }$ ; confidence 0.998

140. a011480121.png ; $g ( x )$ ; confidence 0.998

141. c12008051.png ; $\alpha , \beta \in C$ ; confidence 0.998

142. a12012048.png ; $( x , y ) \in J$ ; confidence 0.998

143. h120020141.png ; $s > 1 / p$ ; confidence 0.998

144. f12008047.png ; $\xi , \eta \in L _ { 2 } ( G )$ ; confidence 0.998

145. e12011055.png ; $B = \nabla \times A$ ; confidence 0.998

146. i13005064.png ; $L ^ { 1 } ( x , \infty )$ ; confidence 0.998

147. r13007094.png ; $f , g \in H ^ { 0 }$ ; confidence 0.998

148. b12024021.png ; $f - ( \{ \infty \} )$ ; confidence 0.998

149. t12003017.png ; $\| \varphi \| = \int \int _ { R } | \varphi ( z ) | d x d y$ ; confidence 0.998

150. h11001025.png ; $\operatorname { exp } ( i A ( x ) ) + o ( 1 )$ ; confidence 0.998

151. q12005080.png ; $\theta = \frac { \phi - 1 } { \phi - 1 - \phi \mu }$ ; confidence 0.998

152. l06003036.png ; $0 < \alpha < \pi / 2$ ; confidence 0.998

153. h12002052.png ; $\psi \in H ^ { \infty }$ ; confidence 0.998

154. f04045035.png ; $f ( U )$ ; confidence 0.998

155. f120080168.png ; $B _ { p } ( G , G )$ ; confidence 0.998

156. z13004029.png ; $c \leq 1 / 4$ ; confidence 0.998

157. o130060110.png ; $\xi _ { 1 } A _ { 1 } + \xi _ { 2 } A _ { 2 }$ ; confidence 0.998

158. d12003054.png ; $f ( x _ { n } ) = 0$ ; confidence 0.998

159. b1202702.png ; $( t , t + h ]$ ; confidence 0.998

160. m1100702.png ; $k = 1,2$ ; confidence 0.998

161. h120020120.png ; $\phi \in B _ { p } ^ { 1 / p }$ ; confidence 0.998

162. a12023073.png ; $f \in C ( \Gamma ) \cap L ^ { 1 } ( \Gamma )$ ; confidence 0.998

163. c12004014.png ; $H ^ { 1 } ( D )$ ; confidence 0.998

164. v13005052.png ; $D : V \rightarrow V$ ; confidence 0.998

165. a13007050.png ; $b > 1$ ; confidence 0.998

166. r130070166.png ; $L ^ { * } = L ^ { - 1 }$ ; confidence 0.998

167. h12012051.png ; $( Y , d )$ ; confidence 0.998

168. b13029071.png ; $1 \leq i \leq j \leq d$ ; confidence 0.998

169. b1302507.png ; $\angle \Omega A B$ ; confidence 0.998

170. s12033052.png ; $( 176,50,14 )$ ; confidence 0.998

171. b12009022.png ; $0 < \tau \leq 1$ ; confidence 0.998

172. q12005073.png ; $\phi = 1$ ; confidence 0.998

173. w12009091.png ; $R ( t ^ { \lambda } )$ ; confidence 0.998

174. a12017015.png ; $b ( t )$ ; confidence 0.998

175. f13001027.png ; $\operatorname { deg } f _ { i } > i$ ; confidence 0.998

176. m06222046.png ; $( h - 1 )$ ; confidence 0.998

177. i13005028.png ; $g ( x , k )$ ; confidence 0.998

178. s13062065.png ; $B \lambda$ ; confidence 0.998

179. s13037022.png ; $D _ { E } [ 0 , \infty )$ ; confidence 0.998

180. m120030110.png ; $\rho ( - u ) = \rho ( u )$ ; confidence 0.998

181. k13005018.png ; $V = \frac { 4 } { 3 } \pi \sigma ^ { 2 } N$ ; confidence 0.998

182. h12005010.png ; $( \partial _ { t } + \Delta ) u = 0$ ; confidence 0.998

183. d12030039.png ; $( Y ( t ) , t \in [ 0 , T ] )$ ; confidence 0.998

184. e12023023.png ; $\sigma ( x ) = ( x , y ( x ) )$ ; confidence 0.998

185. s12035017.png ; $D _ { M }$ ; confidence 0.998

186. w12017031.png ; $\omega ( G ) \neq 1$ ; confidence 0.998

187. l05700058.png ; $F \equiv ( \lambda x ( \lambda y ( y x ) ) )$ ; confidence 0.998

188. s130510117.png ; $V ^ { f } = \{ u \in V : \gamma ( u ) < \infty \}$ ; confidence 0.998

189. a120280160.png ; $\pi : A \rightarrow B ( H )$ ; confidence 0.998

190. p13010082.png ; $f ( T ) \subset K$ ; confidence 0.998

191. m12003059.png ; $\Psi ( x , \sigma ) = \chi ( x / \sigma )$ ; confidence 0.998

192. b12055048.png ; $\partial \iota ( M )$ ; confidence 0.998

193. t12013049.png ; $\tau _ { 0 } = 1$ ; confidence 0.998

194. b130200200.png ; $\Lambda = 0$ ; confidence 0.998

195. j12002068.png ; $A \in M ^ { 1 }$ ; confidence 0.998

196. m130180134.png ; $F - \operatorname { dim } E$ ; confidence 0.998

197. f13019032.png ; $d u / d t = L u$ ; confidence 0.998

198. b13010064.png ; $T ( z ) \rightarrow 0$ ; confidence 0.998

199. f120110144.png ; $1 / ( 1 - e ^ { 2 \pi i z } )$ ; confidence 0.998

200. a01209055.png ; $J ( R )$ ; confidence 0.998

201. a01029012.png ; $f : X \rightarrow Y$ ; confidence 0.998

202. c02211032.png ; $p _ { 1 } ( \theta ) + \ldots + p _ { k } ( \theta ) = 1$ ; confidence 0.998

203. a1201202.png ; $( A , B )$ ; confidence 0.998

204. t12021013.png ; $t ( M ) = 1$ ; confidence 0.998

205. k055840142.png ; $T = T ^ { + }$ ; confidence 0.998

206. p13009030.png ; $\Omega \times \partial \Omega$ ; confidence 0.998

207. s130510132.png ; $c ( w ) < c ( u )$ ; confidence 0.998

208. d12031014.png ; $\alpha f ( T ) + \beta g ( T ) = ( \alpha f + \beta g ) ( T )$ ; confidence 0.998

209. o1300408.png ; $\phi : [ 0 , T ] \rightarrow M$ ; confidence 0.998

210. m130260159.png ; $b _ { 1 } b _ { 2 } = 0$ ; confidence 0.998

211. b01675013.png ; $y \in C$ ; confidence 0.998

212. s12022024.png ; $( M , \Delta )$ ; confidence 0.998

213. i05023098.png ; $\eta > 0$ ; confidence 0.998

214. h1300501.png ; $\frac { \partial u } { \partial t } = \frac { \partial ^ { 3 } } { \partial x ^ { 3 } } ( \frac { 1 } { \sqrt { u } } )$ ; confidence 0.998

215. a12006054.png ; $L ( X , Y )$ ; confidence 0.998

216. w12003032.png ; $P _ { \alpha } P _ { \beta } = P _ { \beta } P _ { \alpha } = P _ { \alpha }$ ; confidence 0.998

217. a12025060.png ; $q > n + 1$ ; confidence 0.998

218. s120340166.png ; $U _ { i } = \varphi _ { i } ( ( \pm \infty , 0 ) \times S ^ { 1 } )$ ; confidence 0.998

219. a12023039.png ; $\partial \Omega \in C ^ { 2 }$ ; confidence 0.998

220. p13007047.png ; $( z _ { 1 } , z _ { 2 } ) \in \partial D$ ; confidence 0.998

221. b12009011.png ; $\frac { \partial f ( z , t ) } { \partial t } = - f ( z , t ) p ( f , t )$ ; confidence 0.998

222. e120260139.png ; $( v ^ { \prime } , p ^ { \prime } )$ ; confidence 0.998

223. d13013096.png ; $n = - 1$ ; confidence 0.998

224. t12003062.png ; $\equiv K$ ; confidence 0.998

225. p13014032.png ; $f \in C ^ { 2 } ( U )$ ; confidence 0.998

226. d1202509.png ; $1 ^ { 2 }$ ; confidence 0.998

227. e120260141.png ; $\alpha ( d \theta ) = d \theta$ ; confidence 0.998

228. k12005034.png ; $B = \sum _ { j = 1 } ^ { t } B _ { j }$ ; confidence 0.998

229. b13019061.png ; $b ( m )$ ; confidence 0.998

230. a12025091.png ; $k \leq ( n - 1 ) q + n$ ; confidence 0.998

231. f12010047.png ; $\tau ( m n ) = \tau ( m ) \tau ( n )$ ; confidence 0.998

232. v11006022.png ; $( x , y , 0 )$ ; confidence 0.998

233. w13008096.png ; $M < 2 N$ ; confidence 0.998

234. b11002042.png ; $b ( u , v ) = ( B u , v )$ ; confidence 0.998

235. a0134906.png ; $k > 0$ ; confidence 0.998

236. a12025094.png ; $n = q + 1$ ; confidence 0.998

237. g04496018.png ; $\chi ^ { \prime } ( G )$ ; confidence 0.998

238. e13007033.png ; $f ( n ) = \alpha n ^ { k }$ ; confidence 0.998

239. i130060180.png ; $A ( y ) : = A ( 0 , y ) = 0$ ; confidence 0.998

240. f11001012.png ; $z \in A ^ { + }$ ; confidence 0.998

241. f12015046.png ; $( Y ^ { \prime } , X ^ { \prime } )$ ; confidence 0.998

242. s1304803.png ; $D : \Gamma ( \alpha ) \rightarrow \Gamma ( \beta )$ ; confidence 0.998

243. f12023067.png ; $[ P , P ] ^ { \wedge } = 0$ ; confidence 0.998

244. b1202207.png ; $\int \phi ( v ) Q ( f ) ( v ) d v = 0$ ; confidence 0.998

245. c02154017.png ; $f ( x ) = \chi ( \pi ( x ) )$ ; confidence 0.998

246. e120240120.png ; $f : E \rightarrow Y _ { 1 } ( N )$ ; confidence 0.998

247. w1100601.png ; $B ( t , \omega )$ ; confidence 0.998

248. q12001016.png ; $g [ f ] ( x ) = f ( g ^ { - 1 } x )$ ; confidence 0.998

249. p12011016.png ; $2$ ; confidence 0.998

250. b13029098.png ; $h _ { 0 } = h _ { 1 } = 0$ ; confidence 0.998

251. e13002011.png ; $E ^ { \prime } ( \Omega )$ ; confidence 0.998

252. e12027018.png ; $( \operatorname { log } m )$ ; confidence 0.998

253. c130160142.png ; $[ s ( n ) , t ( n )$ ; confidence 0.998

254. p13013059.png ; $\epsilon ( \lambda ) = 0$ ; confidence 0.998

255. d13013075.png ; $H$ ; confidence 0.998

256. b12018061.png ; $\chi \rightarrow \psi$ ; confidence 0.998

257. e12026066.png ; $\theta _ { 1 } = m / \sigma ^ { 2 }$ ; confidence 0.998

258. b12042024.png ; $1$ ; confidence 0.998

259. d12020023.png ; $\{ A \}$ ; confidence 0.998

260. s13049055.png ; $c ( p , q )$ ; confidence 0.998

261. e12019039.png ; $\{ a , x \} \equiv \{ b , x \}$ ; confidence 0.998

262. w13004037.png ; $N : M \rightarrow S ^ { 2 }$ ; confidence 0.998

263. o13006038.png ; $( E , \sigma _ { 1 } , \sigma _ { 2 } )$ ; confidence 0.998

264. s1306507.png ; $\Phi _ { - 1 } ( z ) = 0$ ; confidence 0.998

265. n1200106.png ; $\psi : ( u , v ) \rightarrow ( 2 u , 2 v )$ ; confidence 0.998

266. b13010040.png ; $T _ { \varphi } f = P ( \varphi f )$ ; confidence 0.997

267. t12013079.png ; $\dot { y } = A x$ ; confidence 0.997

268. a13008031.png ; $\frac { f ^ { \prime } ( L ) } { f ( L ) } = \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) }$ ; confidence 0.997

269. s130620162.png ; $y ( x , \lambda ) = \frac { \operatorname { sin } x } { 1 + ( 2 x - \operatorname { sin } 2 x ) ^ { 2 } }$ ; confidence 0.997

270. w12003014.png ; $L _ { \infty } [ 0,1 ]$ ; confidence 0.997

271. f12024041.png ; $t - h ( t ) \rightarrow \infty$ ; confidence 0.997

272. f13001010.png ; $\sigma : R \rightarrow R$ ; confidence 0.997

273. f12014034.png ; $z ( \zeta )$ ; confidence 0.997

274. r08232019.png ; $g ( x , y ; H )$ ; confidence 0.997

275. w12006080.png ; $F \xi$ ; confidence 0.997

276. w120110142.png ; $\iota = 2 \pi i$ ; confidence 0.997

277. a13032011.png ; $X _ { k } = 1$ ; confidence 0.997

278. p12014056.png ; $m = 0$ ; confidence 0.997

279. w120070117.png ; $\xi A$ ; confidence 0.997

280. a11044012.png ; $f _ { 1 }$ ; confidence 0.997

281. f12014019.png ; $D ^ { * } ( h )$ ; confidence 0.997

282. s13045046.png ; $( x _ { 1 } - x _ { 2 } ) ( y _ { 1 } - y _ { 2 } ) < 0$ ; confidence 0.997

283. c13016059.png ; $[ s ( n ) ]$ ; confidence 0.997

284. t120200186.png ; $\phi ( z ) \neq 0$ ; confidence 0.997

285. g04468026.png ; $\phi = 0$ ; confidence 0.997

286. d12018047.png ; $L ^ { \infty } ( X , m )$ ; confidence 0.997

287. w13004052.png ; $\eta ( W ) d g ( W ) \in R$ ; confidence 0.997

288. b13012033.png ; $| t | > 2$ ; confidence 0.997

289. a130180149.png ; $n > 2$ ; confidence 0.997

290. f120080119.png ; $\Gamma \varphi ( x , y ) = \varphi ( x y ^ { - 1 } )$ ; confidence 0.997

291. b12030036.png ; $y , \xi \in R ^ { N }$ ; confidence 0.997

292. t12003043.png ; $R ^ { \prime } \backslash E ^ { \prime }$ ; confidence 0.997

293. e120230153.png ; $\sigma _ { t } = \phi _ { t } \circ \sigma$ ; confidence 0.997

294. m12025010.png ; $H : U ^ { \prime } \times I \rightarrow U$ ; confidence 0.997

295. l12006030.png ; $G _ { 0 } ( z ) = ( z - H _ { 0 } ) ^ { - 1 }$ ; confidence 0.997

296. r1301109.png ; $\xi ( s ) : = \frac { 1 } { 2 } s ( s - 1 ) \pi ^ { - s / 2 } \Gamma ( \frac { s } { 2 } ) \zeta ( s )$ ; confidence 0.997

297. e110070172.png ; $\alpha = - 1$ ; confidence 0.997

298. f120230144.png ; $[ A , A ] = 0$ ; confidence 0.997

299. t09356020.png ; $\phi ( x y ) = \phi ( y x )$ ; confidence 0.997

300. m130260136.png ; $\tau : B \rightarrow Q ( A )$ ; confidence 0.997

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/8. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/8&oldid=44418