Difference between revisions of "Cartesian square"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex done) |
||
| Line 1: | Line 1: | ||
| + | {{TEX|done}} | ||
| + | |||
''co-universal square, pull-back square, in a category'' | ''co-universal square, pull-back square, in a category'' | ||
The diagram | The diagram | ||
| − | + | $$ | |
| + | |||
| + | \begin{array}{ccl} | ||
| + | A \prod _ {S} B &\ \mathop \rightarrow \limits ^ { {p _ A}} \ & A \\ | ||
| + | p _ {B} \downarrow \ &{} &\downarrow \ \alpha \\ | ||
| + | B &\ \mathop \rightarrow \limits _ \beta \ &S . \\ | ||
| + | \end{array} | ||
| + | |||
| + | $$ | ||
| + | |||
| + | Here $ A \prod _ {S} B $( | ||
| + | the notation $ A \times _ {S} B $ | ||
| + | is also used) is the fibred product of the objects $ A $ | ||
| + | and $ B $, | ||
| + | which is associated with | ||
| + | |||
| + | $$ | ||
| + | \begin{array}{l} | ||
| + | {} \\ | ||
| + | {} \\ | ||
| + | B | ||
| + | \end{array} | ||
| + | |||
| + | \ \begin{array}{l} | ||
| + | {} \\ | ||
| + | {} \\ | ||
| + | \mathop \rightarrow \limits _ \beta | ||
| + | \end{array} | ||
| + | |||
| + | \ \begin{array}{l} | ||
| + | A \\ | ||
| + | \downarrow \alpha \\ | ||
| + | S , | ||
| + | \end{array} | ||
| + | |||
| + | $$ | ||
| + | |||
| + | and $ p _ {A} $ | ||
| + | and $ p _ {B} $ | ||
| + | are the canonical projections. The diagram | ||
| − | + | $$ | |
| + | \begin{array}{r} | ||
| + | P \\ | ||
| + | \gamma \downarrow \\ | ||
| + | B | ||
| + | \end{array} | ||
| − | + | \ \begin{array}{l} | |
| + | \mathop \rightarrow \limits ^ \delta \\ | ||
| + | {} \\ | ||
| + | \mathop \rightarrow \limits _ \beta | ||
| + | \end{array} | ||
| − | + | \ \begin{array}{l} | |
| + | A \\ | ||
| + | \downarrow \alpha \\ | ||
| + | S | ||
| + | \end{array} | ||
| − | + | $$ | |
| − | is a Cartesian square if and only if it is commutative and if for any pair of morphisms | + | is a Cartesian square if and only if it is commutative and if for any pair of morphisms $ \mu : \ V \rightarrow A $, |
| + | $ \nu : \ V \rightarrow B $ | ||
| + | such that $ \alpha \mu = \beta \nu $ | ||
| + | there exists a unique morphism $ \lambda : \ V \rightarrow P $ | ||
| + | which satisfies the conditions $ \mu = \delta \lambda $, | ||
| + | $ \nu = \gamma \lambda $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Bucur, A. Deleanu, "Introduction to the theory of categories and functors" , Wiley (1968)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Bucur, A. Deleanu, "Introduction to the theory of categories and functors" , Wiley (1968)</TD></TR></table> | ||
Latest revision as of 11:42, 8 February 2020
co-universal square, pull-back square, in a category
The diagram
$$ \begin{array}{ccl} A \prod _ {S} B &\ \mathop \rightarrow \limits ^ { {p _ A}} \ & A \\ p _ {B} \downarrow \ &{} &\downarrow \ \alpha \\ B &\ \mathop \rightarrow \limits _ \beta \ &S . \\ \end{array} $$
Here $ A \prod _ {S} B $( the notation $ A \times _ {S} B $ is also used) is the fibred product of the objects $ A $ and $ B $, which is associated with
$$ \begin{array}{l} {} \\ {} \\ B \end{array} \ \begin{array}{l} {} \\ {} \\ \mathop \rightarrow \limits _ \beta \end{array} \ \begin{array}{l} A \\ \downarrow \alpha \\ S , \end{array} $$
and $ p _ {A} $ and $ p _ {B} $ are the canonical projections. The diagram
$$ \begin{array}{r} P \\ \gamma \downarrow \\ B \end{array} \ \begin{array}{l} \mathop \rightarrow \limits ^ \delta \\ {} \\ \mathop \rightarrow \limits _ \beta \end{array} \ \begin{array}{l} A \\ \downarrow \alpha \\ S \end{array} $$
is a Cartesian square if and only if it is commutative and if for any pair of morphisms $ \mu : \ V \rightarrow A $, $ \nu : \ V \rightarrow B $ such that $ \alpha \mu = \beta \nu $ there exists a unique morphism $ \lambda : \ V \rightarrow P $ which satisfies the conditions $ \mu = \delta \lambda $, $ \nu = \gamma \lambda $.
References
| [1] | I. Bucur, A. Deleanu, "Introduction to the theory of categories and functors" , Wiley (1968) |
Cartesian square. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cartesian_square&oldid=13918