Namespaces
Variants
Actions

Difference between revisions of "Hilbert transform"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (→‎Comments: Link to wikipedia for other represantations of defining integral.)
m (tex done)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
''of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h0474301.png" />''
+
{{TEX|done}}
 +
 
 +
''of a function $f$''
  
 
The improper integral
 
The improper integral
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h0474302.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
\begin{equation}\label{eq:1}
 +
g\left(x\right) = \frac{1}{\pi} \int_{0}^{\infty}\frac{f\left(x+t\right)-f\left(x-t\right)}{t}\mathrm{d}t.
 +
\end{equation}
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h0474303.png" />, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h0474304.png" /> exists for almost-all values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h0474305.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h0474306.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h0474307.png" />, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h0474308.png" /> also belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h0474309.png" /> and the inversion formula
+
If $  f \in L ( - \infty ,\  \infty ) $,  
 +
the function $  g $
 +
exists for almost-all values of $  x $.  
 +
If $  f \in L _{p} (- \infty ,\  \infty ) $,
 +
$  p \in (1,\  \infty ) $,  
 +
the function $  g $
 +
also belongs to $  L _{p} (- \infty ,\  \infty ) $
 +
and the inversion formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743010.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2}
 +
f (x) \  = \
 +
- {
 +
\frac{1} \pi
 +
}
 +
\int\limits _{0} ^ \infty
 +
 
 +
\frac{g (x + t) - g (x - t)}{t}
 +
\  dt
 +
$$
  
 
is valid almost-everywhere. Here
 
is valid almost-everywhere. Here
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3}
 +
\int\limits _ {- \infty} ^ \infty | g (x) | ^{2} \  dx \  \leq \  M _{p} \int\limits _ {- \infty} ^ \infty | f (x) | ^{p} \  dx,
 +
$$
  
where the constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743012.png" /> depends only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743013.png" />.
+
where the constant $  M _{p} $
 +
depends only on $  p $.
  
 
Formulas (1) and (2) are equivalent to the formulas
 
Formulas (1) and (2) are equivalent to the formulas
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4}
 +
g (x) \  = \  {
 +
\frac{1} \pi
 +
}
 +
\int\limits _ {- \infty} ^ \infty
 +
\frac{f (t)}{t - x}
 +
\  dt,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743015.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5}
 +
f (x) \  = \  {
 +
\frac{1} \pi
 +
} \int\limits _ {- \infty} ^ \infty
 +
\frac{g (t)}{t - x}
 +
\  dt,
 +
$$
  
 
in which the integrals are understood in the sense of the principal value.
 
in which the integrals are understood in the sense of the principal value.
Line 25: Line 61:
 
The integral
 
The integral
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(6)</td></tr></table>
+
$$ \tag{6}
 +
g (x) \  = \  {
 +
\frac{1}{2 \pi}
 +
}
 +
\int\limits _{0} ^ {2 \pi}
 +
f (t) \  \mathop{\rm cotan}\nolimits \
 +
 
 +
\frac{t - x}{2}
 +
\  dt,
 +
$$
  
understood in the sense of its principal value, is also called the Hilbert transform of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743017.png" />. This integral is often called the [[Hilbert singular integral|Hilbert singular integral]]. In the theory of Fourier series the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743018.png" /> defined by (6) is said to be conjugate with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743019.png" />.
+
understood in the sense of its principal value, is also called the Hilbert transform of $  f $.  
 +
This integral is often called the [[Hilbert singular integral|Hilbert singular integral]]. In the theory of Fourier series the function $  g $
 +
defined by (6) is said to be conjugate with $  f $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743021.png" /> exists almost-everywhere, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743022.png" /> satisfies a Lipschitz condition of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743024.png" /> exists for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743025.png" /> and satisfies the same condition. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743027.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743028.png" /> has the same property, and an inequality analogous to (3) in which the integrals are taken over the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743029.png" /> is valid. Thus, the integral operators generated by the Hilbert transform are bounded (linear) operators on the respective spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743030.png" />.
+
If $  f \in L (0,\  2 \pi ) $,
 +
$  g $
 +
exists almost-everywhere, and if $  f $
 +
satisfies a Lipschitz condition of order $  \alpha \in (0,\  1) $,
 +
$  g $
 +
exists for any $  x $
 +
and satisfies the same condition. If $  f \in L _{p} (0,\  2 \pi ) $,
 +
$  p \in (1,\  \infty ) $,  
 +
then $  g $
 +
has the same property, and an inequality analogous to (3) in which the integrals are taken over the interval $  (0,\  2 \pi ) $
 +
is valid. Thus, the integral operators generated by the Hilbert transform are bounded (linear) operators on the respective spaces $  L _{p} $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743031.png" /> satisfies a Lipschitz condition, or if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743032.png" />, and also
+
If $  f $
 +
satisfies a Lipschitz condition, or if $  f \in L _{p} (0,\  2 \pi ) $,
 +
and also
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743033.png" /></td> </tr></table>
+
$$
 +
\int\limits _{0} ^ {2 \pi} g (x) \  dx \  = 0,
 +
$$
  
 
the following inversion formula is valid:
 
the following inversion formula is valid:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(7)</td></tr></table>
+
$$ \tag{7}
 +
f (x) \  = - {
 +
\frac{1}{2 \pi}
 +
}
 +
\int\limits _{0} ^ {2 \pi}
 +
g (t) \  \mathop{\rm cotan}\nolimits \ 
 +
\frac{t - x}{2}
 +
\  dt,
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743035.png" /></td> </tr></table>
+
$$
 +
\int\limits _{0} ^ {2 \pi} f (x) \  dx \  = 0.
 +
$$
  
In the class of functions which satisfy a Lipschitz condition, equation (7) is valid everywhere, and in the class of functions with integrable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743036.png" />-th power, it is valid almost-everywhere.
+
In the class of functions which satisfy a Lipschitz condition, equation (7) is valid everywhere, and in the class of functions with integrable $  p $-
 +
th power, it is valid almost-everywhere.
  
 
Each one of the pairs of formulas written above, such as (4) or (5), may be considered as an integral equation of the first kind, and the second formula yields the solution of this equation.
 
Each one of the pairs of formulas written above, such as (4) or (5), may be considered as an integral equation of the first kind, and the second formula yields the solution of this equation.
  
If the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743038.png" /> are considered as kernels of integral operators, they are often referred to as the [[Hilbert kernel|Hilbert kernel]] and as the [[Cauchy kernel|Cauchy kernel]]. In the case of the unit circle, there exists a simple relationship between these kernels:
+
If the functions $  \mathop{\rm cotan}\nolimits \{ (t - x)/2 \} $
 +
and $  {1/(t - x)} $
 +
are considered as kernels of integral operators, they are often referred to as the [[Hilbert kernel|Hilbert kernel]] and as the [[Cauchy kernel|Cauchy kernel]]. In the case of the unit circle, there exists a simple relationship between these kernels:
 +
 
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743039.png" /></td> </tr></table>
+
\frac{d \tau}{t - \xi}
 +
= \
 +
{
 +
\frac{1}{2}
 +
}
 +
\left (  \mathop{\rm cotan}\nolimits \  {
 +
\frac{t - x}{2}
 +
} + i \right ) \  dt,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047430/h04743041.png" />.
+
where $  \xi = e ^{ix} $,  
 +
$  \tau = e ^{it} $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D. Hilbert,  "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint  (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Riesz,  "Sur les fonctions conjugées"  ''Math. Z.'' , '''27'''  (1927)  pp. 218–244</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.C. Titchmarsh,  "Introduction to the theory of Fourier integrals" , Oxford Univ. Press  (1948)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.I. Muskhelishvili,  "Singular integral equations" , Wolters-Noordhoff  (1972)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D. Hilbert,  "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint  (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Riesz,  "Sur les fonctions conjugées"  ''Math. Z.'' , '''27'''  (1927)  pp. 218–244</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.C. Titchmarsh,  "Introduction to the theory of Fourier integrals" , Oxford Univ. Press  (1948)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.I. Muskhelishvili,  "Singular integral equations" , Wolters-Noordhoff  (1972)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 22:17, 28 January 2020


of a function $f$

The improper integral

\begin{equation}\label{eq:1} g\left(x\right) = \frac{1}{\pi} \int_{0}^{\infty}\frac{f\left(x+t\right)-f\left(x-t\right)}{t}\mathrm{d}t. \end{equation}

If $ f \in L ( - \infty ,\ \infty ) $, the function $ g $ exists for almost-all values of $ x $. If $ f \in L _{p} (- \infty ,\ \infty ) $, $ p \in (1,\ \infty ) $, the function $ g $ also belongs to $ L _{p} (- \infty ,\ \infty ) $ and the inversion formula

$$ \tag{2} f (x) \ = \ - { \frac{1} \pi } \int\limits _{0} ^ \infty \frac{g (x + t) - g (x - t)}{t} \ dt $$

is valid almost-everywhere. Here

$$ \tag{3} \int\limits _ {- \infty} ^ \infty | g (x) | ^{2} \ dx \ \leq \ M _{p} \int\limits _ {- \infty} ^ \infty | f (x) | ^{p} \ dx, $$

where the constant $ M _{p} $ depends only on $ p $.

Formulas (1) and (2) are equivalent to the formulas

$$ \tag{4} g (x) \ = \ { \frac{1} \pi } \int\limits _ {- \infty} ^ \infty \frac{f (t)}{t - x} \ dt, $$

$$ \tag{5} f (x) \ = \ { \frac{1} \pi } \int\limits _ {- \infty} ^ \infty \frac{g (t)}{t - x} \ dt, $$

in which the integrals are understood in the sense of the principal value.

The integral

$$ \tag{6} g (x) \ = \ { \frac{1}{2 \pi} } \int\limits _{0} ^ {2 \pi} f (t) \ \mathop{\rm cotan}\nolimits \ \frac{t - x}{2} \ dt, $$

understood in the sense of its principal value, is also called the Hilbert transform of $ f $. This integral is often called the Hilbert singular integral. In the theory of Fourier series the function $ g $ defined by (6) is said to be conjugate with $ f $.

If $ f \in L (0,\ 2 \pi ) $, $ g $ exists almost-everywhere, and if $ f $ satisfies a Lipschitz condition of order $ \alpha \in (0,\ 1) $, $ g $ exists for any $ x $ and satisfies the same condition. If $ f \in L _{p} (0,\ 2 \pi ) $, $ p \in (1,\ \infty ) $, then $ g $ has the same property, and an inequality analogous to (3) in which the integrals are taken over the interval $ (0,\ 2 \pi ) $ is valid. Thus, the integral operators generated by the Hilbert transform are bounded (linear) operators on the respective spaces $ L _{p} $.

If $ f $ satisfies a Lipschitz condition, or if $ f \in L _{p} (0,\ 2 \pi ) $, and also

$$ \int\limits _{0} ^ {2 \pi} g (x) \ dx \ = \ 0, $$

the following inversion formula is valid:

$$ \tag{7} f (x) \ = \ - { \frac{1}{2 \pi} } \int\limits _{0} ^ {2 \pi} g (t) \ \mathop{\rm cotan}\nolimits \ \frac{t - x}{2} \ dt, $$

and

$$ \int\limits _{0} ^ {2 \pi} f (x) \ dx \ = \ 0. $$

In the class of functions which satisfy a Lipschitz condition, equation (7) is valid everywhere, and in the class of functions with integrable $ p $- th power, it is valid almost-everywhere.

Each one of the pairs of formulas written above, such as (4) or (5), may be considered as an integral equation of the first kind, and the second formula yields the solution of this equation.

If the functions $ \mathop{\rm cotan}\nolimits \{ (t - x)/2 \} $ and $ {1/(t - x)} $ are considered as kernels of integral operators, they are often referred to as the Hilbert kernel and as the Cauchy kernel. In the case of the unit circle, there exists a simple relationship between these kernels:

$$ \frac{d \tau}{t - \xi} \ = \ { \frac{1}{2} } \left ( \mathop{\rm cotan}\nolimits \ { \frac{t - x}{2} } + i \right ) \ dt, $$

where $ \xi = e ^{ix} $, $ \tau = e ^{it} $.

References

[1] D. Hilbert, "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint (1953)
[2] M. Riesz, "Sur les fonctions conjugées" Math. Z. , 27 (1927) pp. 218–244
[3] E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948)
[4] N.I. Muskhelishvili, "Singular integral equations" , Wolters-Noordhoff (1972) (Translated from Russian)
[5] N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)

Comments

The defining integral could be represented in other ways. For further details one might refer to Wikipedia .

References

[a1] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988)
How to Cite This Entry:
Hilbert transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_transform&oldid=29531
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article