Difference between revisions of "Hilbert transform"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex done) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | ''of a function | + | {{TEX|done}} |
+ | |||
+ | ''of a function $f$'' | ||
The improper integral | The improper integral | ||
− | + | \begin{equation}\label{eq:1} | |
+ | g\left(x\right) = \frac{1}{\pi} \int_{0}^{\infty}\frac{f\left(x+t\right)-f\left(x-t\right)}{t}\mathrm{d}t. | ||
+ | \end{equation} | ||
+ | |||
+ | If $ f \in L ( - \infty ,\ \infty ) $, | ||
+ | the function $ g $ | ||
+ | exists for almost-all values of $ x $. | ||
+ | If $ f \in L _{p} (- \infty ,\ \infty ) $, | ||
+ | $ p \in (1,\ \infty ) $, | ||
+ | the function $ g $ | ||
+ | also belongs to $ L _{p} (- \infty ,\ \infty ) $ | ||
+ | and the inversion formula | ||
− | + | $$ \tag{2} | |
+ | f (x) \ = \ | ||
+ | - { | ||
+ | \frac{1} \pi | ||
+ | } | ||
+ | \int\limits _{0} ^ \infty | ||
− | + | \frac{g (x + t) - g (x - t)}{t} | |
+ | \ dt | ||
+ | $$ | ||
is valid almost-everywhere. Here | is valid almost-everywhere. Here | ||
− | + | $$ \tag{3} | |
+ | \int\limits _ {- \infty} ^ \infty | g (x) | ^{2} \ dx \ \leq \ M _{p} \int\limits _ {- \infty} ^ \infty | f (x) | ^{p} \ dx, | ||
+ | $$ | ||
− | where the constant | + | where the constant $ M _{p} $ |
+ | depends only on $ p $. | ||
Formulas (1) and (2) are equivalent to the formulas | Formulas (1) and (2) are equivalent to the formulas | ||
− | + | $$ \tag{4} | |
+ | g (x) \ = \ { | ||
+ | \frac{1} \pi | ||
+ | } | ||
+ | \int\limits _ {- \infty} ^ \infty | ||
+ | \frac{f (t)}{t - x} | ||
+ | \ dt, | ||
+ | $$ | ||
− | + | $$ \tag{5} | |
+ | f (x) \ = \ { | ||
+ | \frac{1} \pi | ||
+ | } \int\limits _ {- \infty} ^ \infty | ||
+ | \frac{g (t)}{t - x} | ||
+ | \ dt, | ||
+ | $$ | ||
in which the integrals are understood in the sense of the principal value. | in which the integrals are understood in the sense of the principal value. | ||
Line 25: | Line 61: | ||
The integral | The integral | ||
− | + | $$ \tag{6} | |
+ | g (x) \ = \ { | ||
+ | \frac{1}{2 \pi} | ||
+ | } | ||
+ | \int\limits _{0} ^ {2 \pi} | ||
+ | f (t) \ \mathop{\rm cotan}\nolimits \ | ||
+ | |||
+ | \frac{t - x}{2} | ||
+ | \ dt, | ||
+ | $$ | ||
− | understood in the sense of its principal value, is also called the Hilbert transform of | + | understood in the sense of its principal value, is also called the Hilbert transform of $ f $. |
+ | This integral is often called the [[Hilbert singular integral|Hilbert singular integral]]. In the theory of Fourier series the function $ g $ | ||
+ | defined by (6) is said to be conjugate with $ f $. | ||
− | If | + | If $ f \in L (0,\ 2 \pi ) $, |
+ | $ g $ | ||
+ | exists almost-everywhere, and if $ f $ | ||
+ | satisfies a Lipschitz condition of order $ \alpha \in (0,\ 1) $, | ||
+ | $ g $ | ||
+ | exists for any $ x $ | ||
+ | and satisfies the same condition. If $ f \in L _{p} (0,\ 2 \pi ) $, | ||
+ | $ p \in (1,\ \infty ) $, | ||
+ | then $ g $ | ||
+ | has the same property, and an inequality analogous to (3) in which the integrals are taken over the interval $ (0,\ 2 \pi ) $ | ||
+ | is valid. Thus, the integral operators generated by the Hilbert transform are bounded (linear) operators on the respective spaces $ L _{p} $. | ||
− | If | + | If $ f $ |
+ | satisfies a Lipschitz condition, or if $ f \in L _{p} (0,\ 2 \pi ) $, | ||
+ | and also | ||
− | + | $$ | |
+ | \int\limits _{0} ^ {2 \pi} g (x) \ dx \ = \ 0, | ||
+ | $$ | ||
the following inversion formula is valid: | the following inversion formula is valid: | ||
− | + | $$ \tag{7} | |
+ | f (x) \ = \ - { | ||
+ | \frac{1}{2 \pi} | ||
+ | } | ||
+ | \int\limits _{0} ^ {2 \pi} | ||
+ | g (t) \ \mathop{\rm cotan}\nolimits \ | ||
+ | \frac{t - x}{2} | ||
+ | \ dt, | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | \int\limits _{0} ^ {2 \pi} f (x) \ dx \ = \ 0. | ||
+ | $$ | ||
− | In the class of functions which satisfy a Lipschitz condition, equation (7) is valid everywhere, and in the class of functions with integrable | + | In the class of functions which satisfy a Lipschitz condition, equation (7) is valid everywhere, and in the class of functions with integrable $ p $- |
+ | th power, it is valid almost-everywhere. | ||
Each one of the pairs of formulas written above, such as (4) or (5), may be considered as an integral equation of the first kind, and the second formula yields the solution of this equation. | Each one of the pairs of formulas written above, such as (4) or (5), may be considered as an integral equation of the first kind, and the second formula yields the solution of this equation. | ||
− | If the functions | + | If the functions $ \mathop{\rm cotan}\nolimits \{ (t - x)/2 \} $ |
+ | and $ {1/(t - x)} $ | ||
+ | are considered as kernels of integral operators, they are often referred to as the [[Hilbert kernel|Hilbert kernel]] and as the [[Cauchy kernel|Cauchy kernel]]. In the case of the unit circle, there exists a simple relationship between these kernels: | ||
− | + | $$ | |
− | where | + | \frac{d \tau}{t - \xi} |
+ | \ = \ | ||
+ | { | ||
+ | \frac{1}{2} | ||
+ | } | ||
+ | \left ( \mathop{\rm cotan}\nolimits \ { | ||
+ | \frac{t - x}{2} | ||
+ | } + i \right ) \ dt, | ||
+ | $$ | ||
+ | |||
+ | where $ \xi = e ^{ix} $, | ||
+ | $ \tau = e ^{it} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Hilbert, "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Riesz, "Sur les fonctions conjugées" ''Math. Z.'' , '''27''' (1927) pp. 218–244</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.I. Muskhelishvili, "Singular integral equations" , Wolters-Noordhoff (1972) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Hilbert, "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Riesz, "Sur les fonctions conjugées" ''Math. Z.'' , '''27''' (1927) pp. 218–244</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.I. Muskhelishvili, "Singular integral equations" , Wolters-Noordhoff (1972) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | + | The defining integral could be represented in other ways. For further details one might refer to [http://en.wikipedia.org/wiki/Hilbert_transform Wikipedia] . | |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> |
Latest revision as of 22:17, 28 January 2020
of a function $f$
The improper integral
\begin{equation}\label{eq:1} g\left(x\right) = \frac{1}{\pi} \int_{0}^{\infty}\frac{f\left(x+t\right)-f\left(x-t\right)}{t}\mathrm{d}t. \end{equation}
If $ f \in L ( - \infty ,\ \infty ) $, the function $ g $ exists for almost-all values of $ x $. If $ f \in L _{p} (- \infty ,\ \infty ) $, $ p \in (1,\ \infty ) $, the function $ g $ also belongs to $ L _{p} (- \infty ,\ \infty ) $ and the inversion formula
$$ \tag{2} f (x) \ = \ - { \frac{1} \pi } \int\limits _{0} ^ \infty \frac{g (x + t) - g (x - t)}{t} \ dt $$
is valid almost-everywhere. Here
$$ \tag{3} \int\limits _ {- \infty} ^ \infty | g (x) | ^{2} \ dx \ \leq \ M _{p} \int\limits _ {- \infty} ^ \infty | f (x) | ^{p} \ dx, $$
where the constant $ M _{p} $ depends only on $ p $.
Formulas (1) and (2) are equivalent to the formulas
$$ \tag{4} g (x) \ = \ { \frac{1} \pi } \int\limits _ {- \infty} ^ \infty \frac{f (t)}{t - x} \ dt, $$
$$ \tag{5} f (x) \ = \ { \frac{1} \pi } \int\limits _ {- \infty} ^ \infty \frac{g (t)}{t - x} \ dt, $$
in which the integrals are understood in the sense of the principal value.
The integral
$$ \tag{6} g (x) \ = \ { \frac{1}{2 \pi} } \int\limits _{0} ^ {2 \pi} f (t) \ \mathop{\rm cotan}\nolimits \ \frac{t - x}{2} \ dt, $$
understood in the sense of its principal value, is also called the Hilbert transform of $ f $. This integral is often called the Hilbert singular integral. In the theory of Fourier series the function $ g $ defined by (6) is said to be conjugate with $ f $.
If $ f \in L (0,\ 2 \pi ) $, $ g $ exists almost-everywhere, and if $ f $ satisfies a Lipschitz condition of order $ \alpha \in (0,\ 1) $, $ g $ exists for any $ x $ and satisfies the same condition. If $ f \in L _{p} (0,\ 2 \pi ) $, $ p \in (1,\ \infty ) $, then $ g $ has the same property, and an inequality analogous to (3) in which the integrals are taken over the interval $ (0,\ 2 \pi ) $ is valid. Thus, the integral operators generated by the Hilbert transform are bounded (linear) operators on the respective spaces $ L _{p} $.
If $ f $ satisfies a Lipschitz condition, or if $ f \in L _{p} (0,\ 2 \pi ) $, and also
$$ \int\limits _{0} ^ {2 \pi} g (x) \ dx \ = \ 0, $$
the following inversion formula is valid:
$$ \tag{7} f (x) \ = \ - { \frac{1}{2 \pi} } \int\limits _{0} ^ {2 \pi} g (t) \ \mathop{\rm cotan}\nolimits \ \frac{t - x}{2} \ dt, $$
and
$$ \int\limits _{0} ^ {2 \pi} f (x) \ dx \ = \ 0. $$
In the class of functions which satisfy a Lipschitz condition, equation (7) is valid everywhere, and in the class of functions with integrable $ p $- th power, it is valid almost-everywhere.
Each one of the pairs of formulas written above, such as (4) or (5), may be considered as an integral equation of the first kind, and the second formula yields the solution of this equation.
If the functions $ \mathop{\rm cotan}\nolimits \{ (t - x)/2 \} $ and $ {1/(t - x)} $ are considered as kernels of integral operators, they are often referred to as the Hilbert kernel and as the Cauchy kernel. In the case of the unit circle, there exists a simple relationship between these kernels:
$$ \frac{d \tau}{t - \xi} \ = \ { \frac{1}{2} } \left ( \mathop{\rm cotan}\nolimits \ { \frac{t - x}{2} } + i \right ) \ dt, $$
where $ \xi = e ^{ix} $, $ \tau = e ^{it} $.
References
[1] | D. Hilbert, "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint (1953) |
[2] | M. Riesz, "Sur les fonctions conjugées" Math. Z. , 27 (1927) pp. 218–244 |
[3] | E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948) |
[4] | N.I. Muskhelishvili, "Singular integral equations" , Wolters-Noordhoff (1972) (Translated from Russian) |
[5] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
Comments
The defining integral could be represented in other ways. For further details one might refer to Wikipedia .
References
[a1] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
Hilbert transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_transform&oldid=14091