|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | A common eigenvector of a family of endomorphisms of a vector space or module. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s0841801.png" /> is a set of linear mappings of a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s0841802.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s0841803.png" />, a semi-invariant of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s0841804.png" /> is a vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s0841805.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s0841806.png" />, such that
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s0841807.png" /></td> </tr></table>
| + | A common eigenvector of a family of endomorphisms of a vector space or module. If $ G $ |
| + | is a set of linear mappings of a vector space $ V $ |
| + | over a field $ K $, |
| + | a semi-invariant of $ G $ |
| + | is a vector $ v \in V $, |
| + | $ v \neq 0 $, |
| + | such that $$ |
| + | g v = \chi ( g ) v , g \in G , |
| + | $$ |
| + | where $ \chi : \ G \rightarrow K $ |
| + | is a function, called the weight of the semi-invariant $ v $. |
| + | A semi-invariant of weight $ 1 $ |
| + | is also called an invariant. The most frequently considered case is that of a [[Linear group|linear group]] $ G \subset \mathop{\rm GL}\nolimits ( V ) $, |
| + | in which case $ \chi : \ G \rightarrow K ^{*} $ |
| + | is a character of $ G $ |
| + | and may be extended to a polynomial function on $ \mathop{\rm End}\nolimits \ V $. |
| + | If $ \phi : \ G \rightarrow \mathop{\rm GL}\nolimits (V) $ |
| + | is a [[Linear representation|linear representation]] of a group $ G $ |
| + | in $ V $, |
| + | then a semi-invariant of the group $ \phi ( G ) $ |
| + | is also called a semi-invariant of the representation $ \phi $( |
| + | cf. also [[Linear representation, invariant of a|Linear representation, invariant of a]]). Let $ G $ |
| + | be a [[Linear algebraic group|linear algebraic group]], $ H $ |
| + | a closed subgroup of $ G $ |
| + | and $ \mathfrak h \subset \mathfrak g $ |
| + | the Lie algebras of these groups. Then there exist a faithful rational linear representation $ \phi : \ G \rightarrow \mathop{\rm GL}\nolimits ( E ) $ |
| + | and a semi-invariant $ v \in E $ |
| + | of $ \phi ( H ) $ |
| + | such that $ H $ |
| + | and $ \mathfrak h $ |
| + | are the maximal subsets of $ G $ |
| + | and $ \mathfrak g $ |
| + | whose images in $ \mathop{\rm End}\nolimits \ V $ |
| + | have $ v $ |
| + | as semi-invariant. This implies that the mapping $ a H \mapsto K \phi ( a ) v $, |
| + | $ a \in G $, |
| + | defines an isomorphism of the algebraic homogeneous space $ G/H $ |
| + | onto the orbit of the straight line $ K v $ |
| + | in the projective space $ P ( E ) $. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s0841808.png" /> is a function, called the weight of the semi-invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s0841809.png" />. A semi-invariant of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418010.png" /> is also called an invariant. The most frequently considered case is that of a [[Linear group|linear group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418011.png" />, in which case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418012.png" /> is a character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418013.png" /> and may be extended to a polynomial function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418014.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418015.png" /> is a [[Linear representation|linear representation]] of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418016.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418017.png" />, then a semi-invariant of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418018.png" /> is also called a semi-invariant of the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418019.png" /> (cf. also [[Linear representation, invariant of a|Linear representation, invariant of a]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418020.png" /> be a [[Linear algebraic group|linear algebraic group]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418021.png" /> a closed subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418023.png" /> the Lie algebras of these groups. Then there exist a faithful rational linear representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418024.png" /> and a semi-invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418025.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418026.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418028.png" /> are the maximal subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418030.png" /> whose images in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418031.png" /> have <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418032.png" /> as semi-invariant. This implies that the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418034.png" />, defines an isomorphism of the algebraic homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418035.png" /> onto the orbit of the straight line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418036.png" /> in the projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418037.png" />.
| |
| | | |
− | The term semi-invariant of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418038.png" /> is sometimes applied to a polynomial function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418039.png" /> which is a semi-invariant of the set of linear mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418040.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418041.png" />, where | + | The term semi-invariant of a set $ G \subset \mathop{\rm End}\nolimits \ V $ |
− | | + | is sometimes applied to a polynomial function on $ \mathop{\rm End}\nolimits \ V $ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418042.png" /></td> </tr></table>
| + | which is a semi-invariant of the set of linear mappings $ \eta ( G ) $ |
− | | + | of the space $ K [ \mathop{\rm End}\nolimits \ V ] $, |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418043.png" /></td> </tr></table>
| + | where $$ |
− | | + | ( \eta ( g ) f \ ) ( X ) = f ( X g ) , |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418044.png" /> is a linear algebraic group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418045.png" /> is its Lie algebra, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418046.png" /> has semi-invariants | + | $$ |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418047.png" /></td> </tr></table>
| + | g \in G , f \in K [ \mathop{\rm End}\nolimits \ V ] , X \in \mathop{\rm End}\nolimits \ V . |
− | | + | $$ |
− | of the same weight such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418049.png" /> are the maximal subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418051.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084180/s08418052.png" /> are semi-invariants (Chevalley's theorem). | + | If $ G \subset \mathop{\rm GL}\nolimits ( V ) $ |
| + | is a linear algebraic group and $ \mathfrak g $ |
| + | is its Lie algebra, then $ G $ |
| + | has semi-invariants $$ |
| + | f _{1} \dots f _{n} \in K [ \mathop{\rm End}\nolimits \ V ] |
| + | $$ |
| + | of the same weight such that $ G $ |
| + | and $ \mathfrak g $ |
| + | are the maximal subsets of $ \mathop{\rm GL}\nolimits (V) $ |
| + | and $ \mathop{\rm End}\nolimits \ V $ |
| + | for which $ f _{1} \dots f _{n} $ |
| + | are semi-invariants (Chevalley's theorem). |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1975)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Chevalley, "Théorie des groupes de Lie" , '''2''' , Hermann (1951)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1975) {{MR|0396773}} {{ZBL|0325.20039}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Chevalley, "Théorie des groupes de Lie" , '''2''' , Hermann (1951) {{MR|0051242}} {{ZBL|0054.01303}} </TD></TR></table> |
A common eigenvector of a family of endomorphisms of a vector space or module. If $ G $
is a set of linear mappings of a vector space $ V $
over a field $ K $,
a semi-invariant of $ G $
is a vector $ v \in V $,
$ v \neq 0 $,
such that $$
g v = \chi ( g ) v , g \in G ,
$$
where $ \chi : \ G \rightarrow K $
is a function, called the weight of the semi-invariant $ v $.
A semi-invariant of weight $ 1 $
is also called an invariant. The most frequently considered case is that of a linear group $ G \subset \mathop{\rm GL}\nolimits ( V ) $,
in which case $ \chi : \ G \rightarrow K ^{*} $
is a character of $ G $
and may be extended to a polynomial function on $ \mathop{\rm End}\nolimits \ V $.
If $ \phi : \ G \rightarrow \mathop{\rm GL}\nolimits (V) $
is a linear representation of a group $ G $
in $ V $,
then a semi-invariant of the group $ \phi ( G ) $
is also called a semi-invariant of the representation $ \phi $(
cf. also Linear representation, invariant of a). Let $ G $
be a linear algebraic group, $ H $
a closed subgroup of $ G $
and $ \mathfrak h \subset \mathfrak g $
the Lie algebras of these groups. Then there exist a faithful rational linear representation $ \phi : \ G \rightarrow \mathop{\rm GL}\nolimits ( E ) $
and a semi-invariant $ v \in E $
of $ \phi ( H ) $
such that $ H $
and $ \mathfrak h $
are the maximal subsets of $ G $
and $ \mathfrak g $
whose images in $ \mathop{\rm End}\nolimits \ V $
have $ v $
as semi-invariant. This implies that the mapping $ a H \mapsto K \phi ( a ) v $,
$ a \in G $,
defines an isomorphism of the algebraic homogeneous space $ G/H $
onto the orbit of the straight line $ K v $
in the projective space $ P ( E ) $.
The term semi-invariant of a set $ G \subset \mathop{\rm End}\nolimits \ V $
is sometimes applied to a polynomial function on $ \mathop{\rm End}\nolimits \ V $
which is a semi-invariant of the set of linear mappings $ \eta ( G ) $
of the space $ K [ \mathop{\rm End}\nolimits \ V ] $,
where $$
( \eta ( g ) f \ ) ( X ) = f ( X g ) ,
$$
$$
g \in G , f \in K [ \mathop{\rm End}\nolimits \ V ] , X \in \mathop{\rm End}\nolimits \ V .
$$
If $ G \subset \mathop{\rm GL}\nolimits ( V ) $
is a linear algebraic group and $ \mathfrak g $
is its Lie algebra, then $ G $
has semi-invariants $$
f _{1} \dots f _{n} \in K [ \mathop{\rm End}\nolimits \ V ]
$$
of the same weight such that $ G $
and $ \mathfrak g $
are the maximal subsets of $ \mathop{\rm GL}\nolimits (V) $
and $ \mathop{\rm End}\nolimits \ V $
for which $ f _{1} \dots f _{n} $
are semi-invariants (Chevalley's theorem).
References