|
|
Line 1: |
Line 1: |
− | An affine algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d0315501.png" /> that is isomorphic to a closed subgroup of an [[Algebraic torus|algebraic torus]]. Thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d0315502.png" /> is isomorphic to a closed subgroup of a multiplicative group of all diagonal matrices of given size. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d0315503.png" /> is defined over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d0315504.png" /> and the isomorphism is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d0315505.png" />, the diagonalizable algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d0315506.png" /> is said to be split (or decomposable) over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d0315507.png" />. | + | {{TEX|done}} |
| + | An affine algebraic group $ G $ |
| + | that is isomorphic to a closed subgroup of an [[Algebraic torus|algebraic torus]]. Thus, $ G $ |
| + | is isomorphic to a closed subgroup of a multiplicative group of all diagonal matrices of given size. If $ G $ |
| + | is defined over a field $ k $ |
| + | and the isomorphism is defined over $ k $ , |
| + | the diagonalizable algebraic group $ G $ |
| + | is said to be split (or decomposable) over $ k $ . |
| | | |
− | Any closed subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d0315508.png" /> in a diagonalizable algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d0315509.png" />, as well as the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155010.png" /> under an arbitrary rational homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155011.png" />, is a diagonalizable algebraic group. If, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155012.png" /> is defined and split over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155013.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155014.png" /> is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155015.png" />, then both <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155017.png" /> are defined and split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155018.png" />.
| |
| | | |
− | A diagonalizable algebraic group is split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155019.png" /> if and only if elements in the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155020.png" /> of its rational characters are rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155021.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155022.png" /> contains no non-unit elements rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155023.png" />, the diagonalizable algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155024.png" /> is said to be anisotropic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155025.png" />. Any diagonalizable algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155026.png" /> defined over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155027.png" /> is split over some finite separable extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155028.png" />.
| + | Any closed subgroup $ H $ |
| + | in a diagonalizable algebraic group $ G $ , |
| + | as well as the image of $ G $ |
| + | under an arbitrary rational homomorphism $ \phi $ , |
| + | is a diagonalizable algebraic group. If, in addition, $ G $ |
| + | is defined and split over a field $ k $ , |
| + | while $ \phi $ |
| + | is defined over $ k $ , |
| + | then both $ H $ |
| + | and $ \phi (G) $ |
| + | are defined and split over $ k $ . |
| | | |
− | A diagonalizable algebraic group is connected if and only if it is an algebraic torus. The connectedness of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155029.png" /> is also equivalent to the absence of torsion in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155030.png" />. For any diagonalizable algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155031.png" /> defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155032.png" />, the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155033.png" /> is a finitely-generated Abelian group without <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155034.png" />-torsion, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155035.png" /> is the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155036.png" />.
| |
| | | |
− | Any diagonalizable algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155037.png" /> which is defined and split over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155038.png" /> is the direct product of a finite Abelian group and an algebraic torus defined and split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155039.png" />. Any diagonalizable algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155040.png" /> which is connected and defined over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155041.png" /> contains a largest anisotropic subtorus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155042.png" /> and a largest subtorus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155043.png" /> which is split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155044.png" />; for these, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155045.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155046.png" /> is a finite set.
| + | A diagonalizable algebraic group is split over $ k $ |
| + | if and only if elements in the group $ \widehat{G} $ |
| + | of its rational characters are rational over $ k $ . |
| + | If $ \widehat{G} $ |
| + | contains no non-unit elements rational over $ k $ , |
| + | the diagonalizable algebraic group $ G $ |
| + | is said to be anisotropic over $ k $ . |
| + | Any diagonalizable algebraic group $ G $ |
| + | defined over the field $ k $ |
| + | is split over some finite separable extension of $ k $ . |
| | | |
− | If a diagonalizable algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155047.png" /> is defined over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155049.png" /> is the Galois group of the separable closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155050.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155051.png" /> is endowed with a continuous action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155052.png" />. If, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155053.png" /> is a rational homomorphism between diagonalizable algebraic groups, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155056.png" /> are defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155057.png" />, then the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155058.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155060.png" />-equivariant (i.e. is a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155061.png" />-modules). The resulting contravariant functor from the category of diagonalizable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155062.png" />-groups and their <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155063.png" />-morphisms into the category of finitely-generated Abelian groups without <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155064.png" />-torsion with a continuous action of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155065.png" /> and their <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155066.png" />-equivariant homomorphisms is an equivalence of these categories.
| + | |
| + | A diagonalizable algebraic group is connected if and only if it is an algebraic torus. The connectedness of $ G $ |
| + | is also equivalent to the absence of torsion in $ \widehat{G} $ . |
| + | For any diagonalizable algebraic group $ G $ |
| + | defined over $ k $ , |
| + | the group $ \widehat{G} $ |
| + | is a finitely-generated Abelian group without $ p $ - |
| + | torsion, where $ p $ |
| + | is the characteristic of $ k $ . |
| + | |
| + | |
| + | Any diagonalizable algebraic group $ G $ |
| + | which is defined and split over a field $ k $ |
| + | is the direct product of a finite Abelian group and an algebraic torus defined and split over $ k $ . |
| + | Any diagonalizable algebraic group $ G $ |
| + | which is connected and defined over a field $ k $ |
| + | contains a largest anisotropic subtorus $ G _{a} $ |
| + | and a largest subtorus $ G _{d} $ |
| + | which is split over $ k $ ; |
| + | for these, $ G = G _{a} G _{d} $ , |
| + | and $ G _{a} \cap G _{d} $ |
| + | is a finite set. |
| + | |
| + | If a diagonalizable algebraic group $ G $ |
| + | is defined over a field $ k $ |
| + | and $ \Gamma $ |
| + | is the Galois group of the separable closure of $ k $ , |
| + | then $ \widehat{G} $ |
| + | is endowed with a continuous action of $ \Gamma $ . |
| + | If, in addition, $ \phi : \ G \rightarrow H $ |
| + | is a rational homomorphism between diagonalizable algebraic groups, while $ G $ , |
| + | $ H $ |
| + | and $ \phi $ |
| + | are defined over $ k $ , |
| + | then the homomorphism $ \widehat \phi : \ \widehat{H} \rightarrow \widehat{G} $ |
| + | is $ \Gamma $ - |
| + | equivariant (i.e. is a homomorphism of $ \Gamma $ - |
| + | modules). The resulting contravariant functor from the category of diagonalizable $ \Gamma $ - |
| + | groups and their $ k $ - |
| + | morphisms into the category of finitely-generated Abelian groups without $ k $ - |
| + | torsion with a continuous action of the group $ p $ |
| + | and their $ \Gamma $ - |
| + | equivariant homomorphisms is an equivalence of these categories. |
| | | |
| ====References==== | | ====References==== |
An affine algebraic group $ G $
that is isomorphic to a closed subgroup of an algebraic torus. Thus, $ G $
is isomorphic to a closed subgroup of a multiplicative group of all diagonal matrices of given size. If $ G $
is defined over a field $ k $
and the isomorphism is defined over $ k $ ,
the diagonalizable algebraic group $ G $
is said to be split (or decomposable) over $ k $ .
Any closed subgroup $ H $
in a diagonalizable algebraic group $ G $ ,
as well as the image of $ G $
under an arbitrary rational homomorphism $ \phi $ ,
is a diagonalizable algebraic group. If, in addition, $ G $
is defined and split over a field $ k $ ,
while $ \phi $
is defined over $ k $ ,
then both $ H $
and $ \phi (G) $
are defined and split over $ k $ .
A diagonalizable algebraic group is split over $ k $
if and only if elements in the group $ \widehat{G} $
of its rational characters are rational over $ k $ .
If $ \widehat{G} $
contains no non-unit elements rational over $ k $ ,
the diagonalizable algebraic group $ G $
is said to be anisotropic over $ k $ .
Any diagonalizable algebraic group $ G $
defined over the field $ k $
is split over some finite separable extension of $ k $ .
A diagonalizable algebraic group is connected if and only if it is an algebraic torus. The connectedness of $ G $
is also equivalent to the absence of torsion in $ \widehat{G} $ .
For any diagonalizable algebraic group $ G $
defined over $ k $ ,
the group $ \widehat{G} $
is a finitely-generated Abelian group without $ p $ -
torsion, where $ p $
is the characteristic of $ k $ .
Any diagonalizable algebraic group $ G $
which is defined and split over a field $ k $
is the direct product of a finite Abelian group and an algebraic torus defined and split over $ k $ .
Any diagonalizable algebraic group $ G $
which is connected and defined over a field $ k $
contains a largest anisotropic subtorus $ G _{a} $
and a largest subtorus $ G _{d} $
which is split over $ k $ ;
for these, $ G = G _{a} G _{d} $ ,
and $ G _{a} \cap G _{d} $
is a finite set.
If a diagonalizable algebraic group $ G $
is defined over a field $ k $
and $ \Gamma $
is the Galois group of the separable closure of $ k $ ,
then $ \widehat{G} $
is endowed with a continuous action of $ \Gamma $ .
If, in addition, $ \phi : \ G \rightarrow H $
is a rational homomorphism between diagonalizable algebraic groups, while $ G $ ,
$ H $
and $ \phi $
are defined over $ k $ ,
then the homomorphism $ \widehat \phi : \ \widehat{H} \rightarrow \widehat{G} $
is $ \Gamma $ -
equivariant (i.e. is a homomorphism of $ \Gamma $ -
modules). The resulting contravariant functor from the category of diagonalizable $ \Gamma $ -
groups and their $ k $ -
morphisms into the category of finitely-generated Abelian groups without $ k $ -
torsion with a continuous action of the group $ p $
and their $ \Gamma $ -
equivariant homomorphisms is an equivalence of these categories.
References
References