Difference between revisions of "Cartan subgroup"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex done) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | ''of a group | + | {{TEX|done}} |
+ | ''of a group $ G $ '' | ||
− | |||
− | + | A maximal nilpotent subgroup $ C $ | |
+ | of $ G $ | ||
+ | each normal subgroup of finite index of which has finite index in its normalizer in $ G $ . | ||
+ | If $ G $ | ||
+ | is a connected linear algebraic group over a field of characteristic zero, then a Cartan subgroup of $ G $ | ||
+ | can also be defined as a closed connected subgroup whose Lie algebra is a [[Cartan subalgebra|Cartan subalgebra]] of the Lie algebra of $ G $ . | ||
+ | An example of a Cartan subgroup is the subgroup $ D $ | ||
+ | of all diagonal matrices in the group $ \mathop{\rm GL}\nolimits _{n} (k) $ | ||
+ | of all non-singular matrices. | ||
− | + | In a connected linear algebraic group $ G $ , | |
+ | a Cartan subgroup can also be defined as the centralizer of a maximal torus of $ G $ , | ||
+ | or as a connected closed nilpotent subgroup $ C $ | ||
+ | which coincides with the connected component of the identity (the identity component) of its normalizer in $ G $ . | ||
+ | The sets $ C _{s} $ | ||
+ | and $ C _{u} $ | ||
+ | of all semi-simple and unipotent elements of $ C $ ( | ||
+ | see [[Jordan decomposition|Jordan decomposition]]) are closed subgroups in $ C $ , | ||
+ | and $ C = C _{s} \times C _{u} $ . | ||
+ | In addition, $ C _{s} $ | ||
+ | is the unique maximal torus of $ G $ | ||
+ | lying in $ C $ . | ||
+ | The dimension of a Cartan subgroup of $ G $ | ||
+ | is called the rank of $ G $ . | ||
+ | The union of all Cartan subgroups of $ G $ | ||
+ | contains an open subset of $ G $ | ||
+ | with respect to the Zariski topology (but is not, in general, the whole of $ G $ ). | ||
+ | Every semi-simple element of $ G $ | ||
+ | lies in at least one Cartan subgroup, and every regular element in precisely one Cartan subgroup. If $ \phi : \ G \rightarrow G ^ \prime $ | ||
+ | is a surjective morphism of linear algebraic groups, then the Cartan subgroups of $ G ^ \prime $ | ||
+ | are images with respect to $ \phi $ | ||
+ | of Cartan subgroups of $ G $ . | ||
+ | Any two Cartan subgroups of $ G $ | ||
+ | are conjugate. A Cartan subgroup of a connected semi-simple (or, more generally, reductive) group $ G $ | ||
+ | is a maximal torus in $ G $ . | ||
− | Let | + | |
+ | Let the group $ G $ | ||
+ | be defined over a field $ k $ . | ||
+ | Then there exists in $ G $ | ||
+ | a Cartan subgroup which is also defined over $ k $ ; | ||
+ | in fact, $ G $ | ||
+ | is generated by its Cartan subgroups defined over $ k $ . | ||
+ | Two Cartan subgroups of $ G $ | ||
+ | defined over $ k $ | ||
+ | need not be conjugate over $ k $ ( | ||
+ | but in the case when $ G $ | ||
+ | is a solvable group, they are conjugate). The variety of Cartan subgroups of $ G $ | ||
+ | is rational over $ k $ . | ||
+ | |||
+ | |||
+ | Let $ G $ | ||
+ | be a connected real Lie group with Lie algebra $ \mathfrak g $ . | ||
+ | Then the Cartan subgroups of $ G $ | ||
+ | are closed in $ G $ ( | ||
+ | but not necessarily connected) and their Lie algebras are Cartan subalgebras of $ \mathfrak g $ . | ||
+ | If $ G $ | ||
+ | is an analytic subgroup in $ \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $ | ||
+ | and $ \overline{G} $ | ||
+ | is the smallest algebraic subgroup of $ \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $ | ||
+ | containing $ G $ , | ||
+ | then the Cartan subgroups of $ G $ | ||
+ | are intersections of $ G $ | ||
+ | with the Cartan subgroups of $ \overline{G} $ . | ||
+ | In the case when $ G $ | ||
+ | is compact, the Cartan subgroups are connected, Abelian (being maximal tori) and conjugate to one another, and every element of $ G $ | ||
+ | lies in some Cartan subgroup. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> C. Chevalley, "Theory of Lie groups" , '''1''' , Princeton Univ. Press (1946)</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> C. Chevalley, "Théorie des groupes de Lie" , '''2–3''' , Hermann (1951–1955)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Borel, J. Tits, "Groupes réductifs" ''Publ. Math. IHES'' , '''27''' (1965) pp. 55–150</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M. Demazure, A. Grothendieck, "Schémas en groupes I-III" , ''Lect. notes in math.'' , '''151–153''' , Springer (1970)</TD></TR></table> | + | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> C. Chevalley, "Theory of Lie groups" , '''1''' , Princeton Univ. Press (1946) {{MR|0082628}} {{MR|0015396}} {{ZBL|0063.00842}} </TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> C. Chevalley, "Théorie des groupes de Lie" , '''2–3''' , Hermann (1951–1955) {{MR|0068552}} {{MR|0051242}} {{MR|0019623}} {{ZBL|0186.33104}} {{ZBL|0054.01303}} {{ZBL|0063.00843}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Borel, J. Tits, "Groupes réductifs" ''Publ. Math. IHES'' , '''27''' (1965) pp. 55–150 {{MR|0207712}} {{ZBL|0145.17402}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M. Demazure, A. Grothendieck, "Schémas en groupes I-III" , ''Lect. notes in math.'' , '''151–153''' , Springer (1970) {{MR|}} {{ZBL|}} </TD></TR></table> |
Line 18: | Line 80: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Borel, T.A. Springer, "Rationality properties of linear algebraic groups" ''Tohoku Math. J. (2)'' , '''20''' (1968) pp. 443–497</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Borel, T.A. Springer, "Rationality properties of linear algebraic groups" ''Tohoku Math. J. (2)'' , '''20''' (1968) pp. 443–497 {{MR|0244259}} {{ZBL|0211.53302}} </TD></TR></table> |
Latest revision as of 10:47, 17 December 2019
of a group $ G $
A maximal nilpotent subgroup $ C $
of $ G $
each normal subgroup of finite index of which has finite index in its normalizer in $ G $ .
If $ G $
is a connected linear algebraic group over a field of characteristic zero, then a Cartan subgroup of $ G $
can also be defined as a closed connected subgroup whose Lie algebra is a Cartan subalgebra of the Lie algebra of $ G $ .
An example of a Cartan subgroup is the subgroup $ D $
of all diagonal matrices in the group $ \mathop{\rm GL}\nolimits _{n} (k) $
of all non-singular matrices.
In a connected linear algebraic group $ G $ , a Cartan subgroup can also be defined as the centralizer of a maximal torus of $ G $ , or as a connected closed nilpotent subgroup $ C $ which coincides with the connected component of the identity (the identity component) of its normalizer in $ G $ . The sets $ C _{s} $ and $ C _{u} $ of all semi-simple and unipotent elements of $ C $ ( see Jordan decomposition) are closed subgroups in $ C $ , and $ C = C _{s} \times C _{u} $ . In addition, $ C _{s} $ is the unique maximal torus of $ G $ lying in $ C $ . The dimension of a Cartan subgroup of $ G $ is called the rank of $ G $ . The union of all Cartan subgroups of $ G $ contains an open subset of $ G $ with respect to the Zariski topology (but is not, in general, the whole of $ G $ ). Every semi-simple element of $ G $ lies in at least one Cartan subgroup, and every regular element in precisely one Cartan subgroup. If $ \phi : \ G \rightarrow G ^ \prime $ is a surjective morphism of linear algebraic groups, then the Cartan subgroups of $ G ^ \prime $ are images with respect to $ \phi $ of Cartan subgroups of $ G $ . Any two Cartan subgroups of $ G $ are conjugate. A Cartan subgroup of a connected semi-simple (or, more generally, reductive) group $ G $ is a maximal torus in $ G $ .
Let the group $ G $
be defined over a field $ k $ .
Then there exists in $ G $
a Cartan subgroup which is also defined over $ k $ ;
in fact, $ G $
is generated by its Cartan subgroups defined over $ k $ .
Two Cartan subgroups of $ G $
defined over $ k $
need not be conjugate over $ k $ (
but in the case when $ G $
is a solvable group, they are conjugate). The variety of Cartan subgroups of $ G $
is rational over $ k $ .
Let $ G $
be a connected real Lie group with Lie algebra $ \mathfrak g $ .
Then the Cartan subgroups of $ G $
are closed in $ G $ (
but not necessarily connected) and their Lie algebras are Cartan subalgebras of $ \mathfrak g $ .
If $ G $
is an analytic subgroup in $ \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $
and $ \overline{G} $
is the smallest algebraic subgroup of $ \mathop{\rm GL}\nolimits _{n} ( \mathbf R ) $
containing $ G $ ,
then the Cartan subgroups of $ G $
are intersections of $ G $
with the Cartan subgroups of $ \overline{G} $ .
In the case when $ G $
is compact, the Cartan subgroups are connected, Abelian (being maximal tori) and conjugate to one another, and every element of $ G $
lies in some Cartan subgroup.
References
[1a] | C. Chevalley, "Theory of Lie groups" , 1 , Princeton Univ. Press (1946) MR0082628 MR0015396 Zbl 0063.00842 |
[1b] | C. Chevalley, "Théorie des groupes de Lie" , 2–3 , Hermann (1951–1955) MR0068552 MR0051242 MR0019623 Zbl 0186.33104 Zbl 0054.01303 Zbl 0063.00843 |
[2] | A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201 |
[3] | A. Borel, J. Tits, "Groupes réductifs" Publ. Math. IHES , 27 (1965) pp. 55–150 MR0207712 Zbl 0145.17402 |
[4] | M. Demazure, A. Grothendieck, "Schémas en groupes I-III" , Lect. notes in math. , 151–153 , Springer (1970) |
Comments
References
[a1] | A. Borel, T.A. Springer, "Rationality properties of linear algebraic groups" Tohoku Math. J. (2) , 20 (1968) pp. 443–497 MR0244259 Zbl 0211.53302 |
Cartan subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cartan_subgroup&oldid=11216