Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/Algebraic Groups/3"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 3 out of 12 with 300 lines: Updated image/latex database (currently 3466 images latexified; order by Length, ascending: False.)
 
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007011.png ; $1 \leq i \leq n - 1$ ; confidence 0.993
+
1. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763026.png ; $V = \oplus _ { \chi \in P _ { \phi } } V ( \chi )$ ; confidence 0.914
  
2. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820115.png ; $f ^ { - 1 } ( f ( Z ) ) = Z$ ; confidence 0.993
+
2. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023720/c02372058.png ; $\Gamma = \{ z \in \overline { C } : | z | = 1 \}$ ; confidence 0.985
  
3. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033110/d03311035.png ; $i > j$ ; confidence 0.993
+
3. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301306.png ; $T _ { 0 } , T _ { 1 } \in \operatorname { add } T$ ; confidence 0.822
  
4. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010760/a01076016.png ; $p , q$ ; confidence 0.993
+
4. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014054.png ; $v = ( v _ { j } ) _ { j \in Q _ { 0 } } \in N ^ { Q _ { 0 } }$ ; confidence 0.787
  
5. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120564.png ; $f _ { i } ( x ) \leq y _ { i }$ ; confidence 0.993
+
5. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t1301407.png ; $x = ( x _ { i } ) _ { i \in Q _ { 0 } } \in Z ^ { Q _ { 0 } }$ ; confidence 0.557
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a0116402.png ; $f ( x _ { 0 } , x _ { 1 } , x _ { 2 } , x _ { 3 } ) = 0$ ; confidence 0.993
+
6. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090223.png ; $V ^ { * } = \operatorname { Hom } _ { K } ( V , K )$ ; confidence 0.975
  
7. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r07764041.png ; $x ^ { n + 1 } + y ^ { 2 } + z ^ { 2 }$ ; confidence 0.993
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174031.png ; $\operatorname { Aut } _ { T } ( X \times T )$ ; confidence 0.916
  
8. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030093.png ; $i \geq 1$ ; confidence 0.993
+
8. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031550/d03155045.png ; $G = G _ { \mathscr { L } } G _ { \mathscr { G } }$ ; confidence 0.052
  
9. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140127.png ; $q _ { R } ( v ) > 0$ ; confidence 0.993
+
9. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830290.png ; $A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$ ; confidence 0.523
  
10. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040161.png ; $\epsilon = 0$ ; confidence 0.993
+
10. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830138.png ; $B ( \eta _ { 1 } , \ldots , \eta _ { n } ) \neq 0$ ; confidence 0.425
  
11. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120282.png ; $G \in O ^ { F }$ ; confidence 0.993
+
11. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249036.png ; $\omega _ { \eta } / F = \omega _ { \zeta / F }$ ; confidence 0.463
  
12. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150069.png ; $p = 0$ ; confidence 0.992
+
12. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249023.png ; $F = G _ { 0 } \subset G _ { 1 } \subset \ldots$ ; confidence 0.888
  
13. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267028.png ; $k ( k ) = \operatorname { Pic } ( X )$ ; confidence 0.992
+
13. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120252.png ; $\operatorname { Re } ( z e ^ { - i \phi } ) > c$ ; confidence 0.886
  
14. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b1202001.png ; $H ^ { 2 }$ ; confidence 0.992
+
14. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d03412068.png ; $\{ H ^ { \gamma } ( X , A ) , f ^ { * } , \delta \}$ ; confidence 0.761
  
15. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120398.png ; $y \in G$ ; confidence 0.992
+
15. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120471.png ; $\operatorname { lim } _ { n } f ( x _ { n } ) = 0$ ; confidence 0.651
  
16. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417032.png ; $M = H$ ; confidence 0.992
+
16. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960196.png ; $( F \{ \eta _ { 1 } , \ldots , \eta _ { n } ) / F )$ ; confidence 0.134
  
17. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861062.png ; $\operatorname { pin } ( n )$ ; confidence 0.992
+
17. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960192.png ; $\alpha _ { 1 } , \ldots , \alpha _ { n } \in F$ ; confidence 0.053
  
18. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145058.png ; $g = \frac { ( m - 1 ) ( m - 2 ) } { 2 } - d$ ; confidence 0.992
+
18. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040370/f04037018.png ; $p \leq k \leq \operatorname { prof } F - q$ ; confidence 0.505
  
19. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065570/m0655709.png ; $f ( v ) \neq 0$ ; confidence 0.992
+
19. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055028.png ; $V _ { 1 } \subset \ldots \subset V _ { n - 1 }$ ; confidence 0.899
  
20. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120271.png ; $\infty \in G$ ; confidence 0.992
+
20. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769037.png ; $M \supset y \Leftrightarrow g H \in G / H$ ; confidence 0.473
  
21. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868041.png ; $\pi _ { 1 } ( G ) \cong \Gamma ( G ) / \Gamma _ { 0 }$ ; confidence 0.992
+
21. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797043.png ; $P _ { U ( \mathfrak { g } ) } = \mathfrak { g }$ ; confidence 0.817
  
22. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017045.png ; $S _ { T }$ ; confidence 0.992
+
22. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235057.png ; $\phi = F ( \phi _ { 1 } , \ldots , \phi _ { m } )$ ; confidence 0.556
  
23. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771091.png ; $\alpha _ { i } ( x ) = 0$ ; confidence 0.992
+
23. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510194.png ; $\mathfrak { g } 0 = \mathfrak { s p } ( n , R )$ ; confidence 0.335
  
24. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009012.png ; $E = K ^ { x }$ ; confidence 0.992
+
24. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301089.png ; $F ( x _ { 1 } h _ { 1 } + \ldots + x _ { n } h _ { n } ) =$ ; confidence 0.983
  
25. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450201.png ; $x = \phi ( z )$ ; confidence 0.992
+
25. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451074.png ; $\operatorname { pec } Z [ 1 / n , \xi _ { n } ]$ ; confidence 0.133
  
26. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040114.png ; $\alpha , \beta \in F$ ; confidence 0.992
+
26. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080900/r08090014.png ; $S \subset \operatorname { Ker } \alpha$ ; confidence 0.262
  
27. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763027.png ; $P _ { \phi } \subset X ( T )$ ; confidence 0.992
+
27. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590390.png ; $\delta _ { x } = \operatorname { dim } A / A$ ; confidence 0.580
  
28. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851073.png ; $n ( i , j ) = \alpha _ { j } ( H _ { i } ) = \frac { 2 ( \alpha _ { i } , \alpha _ { j } ) } { ( \alpha _ { j } , \alpha _ { j } ) }$ ; confidence 0.992
+
28. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087060/s08706017.png ; $Nrd _ { R } : R ^ { * } \rightarrow Z ( R ) ^ { * }$ ; confidence 0.683
  
29. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120103.png ; $( n - p )$ ; confidence 0.992
+
29. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524012.png ; $X = \sum _ { n = 1 } ^ { \infty } X _ { n } 2 ^ { - n }$ ; confidence 0.978
  
30. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n0669005.png ; $C ^ { 1 }$ ; confidence 0.992
+
30. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700173.png ; $X ^ { \prime } \rightarrow R ^ { \prime }$ ; confidence 0.999
  
31. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820187.png ; $[ p ] ( X ) = 0$ ; confidence 0.992
+
31. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830139.png ; $B _ { 0 } \in F \{ Y _ { 1 } , \ldots , Y _ { k } \}$ ; confidence 0.707
  
32. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183021.png ; $\tau = \operatorname { deg } \omega _ { V }$ ; confidence 0.992
+
32. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249011.png ; $p \subset F \{ Y _ { 1 } , \ldots , Y _ { N } \}$ ; confidence 0.193
  
33. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030109.png ; $\alpha \in \Delta ( \gamma ) \cap O _ { \gamma }$ ; confidence 0.992
+
33. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120226.png ; $\Gamma ( Y , O _ { X } / \Gamma ( X , O _ { X } ) )$ ; confidence 0.989
  
34. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427042.png ; $H ( C _ { 3 } , J _ { 1 } )$ ; confidence 0.992
+
34. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002021.png ; $( \alpha , b ) \in ( Q \backslash Z ) ^ { 2 }$ ; confidence 0.548
  
35. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s130530120.png ; $B N$ ; confidence 0.992
+
35. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970144.png ; $\mu : A \rightarrow A \otimes \cdots A$ ; confidence 0.562
  
36. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s0855907.png ; $f _ { \zeta } = f _ { \zeta } ( z ) = \sum _ { k = 0 } ^ { \infty } c _ { k } ( z - \zeta ) ^ { k }$ ; confidence 0.992
+
36. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510191.png ; $\mathfrak { g } = \mathfrak { s p } ( n , C )$ ; confidence 0.532
  
37. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030050.png ; $f ( m , n )$ ; confidence 0.992
+
37. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851058.png ; $\{ \alpha _ { 1 } , \dots , \alpha _ { n } \}$ ; confidence 0.463
  
38. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235025.png ; $\Delta = 3 b ^ { 2 } c ^ { 2 } + 6 a b c d - 4 b ^ { 3 } d - 4 a c ^ { 3 } - a ^ { 2 } d ^ { 2 }$ ; confidence 0.992
+
38. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876012.png ; $x = ( x _ { 1 } , \ldots , x _ { x } ) \in \Omega$ ; confidence 0.694
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417072.png ; $| \phi ( x ) | \geq | \phi ( x _ { 0 } ) |$ ; confidence 0.992
+
39. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072140/p07214067.png ; $\Phi _ { 1 } ( s _ { 0 } ) = \Phi _ { 2 } ( s _ { 0 } )$ ; confidence 0.814
  
40. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014061.png ; $( v _ { i } \times v _ { j } )$ ; confidence 0.991
+
40. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004056.png ; $\overline { D } = \overline { D } _ { S }$ ; confidence 0.978
  
41. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047700/h04770012.png ; $\psi : G / H \rightarrow X$ ; confidence 0.991
+
41. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590492.png ; $X ( x _ { 0 } , y _ { 0 } ) = Y ( x _ { 0 } , y _ { 0 } ) = 0$ ; confidence 0.915
  
42. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235028.png ; $f ( x , y ) = a x ^ { 3 } + 3 b x ^ { 2 } y + 3 c x y ^ { 2 } + d y ^ { 3 }$ ; confidence 0.991
+
42. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590408.png ; $\{ n , \beta _ { 1 } , \dots , \beta _ { g } \}$ ; confidence 0.568
  
43. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559024.png ; $L _ { 1 } : z = \phi _ { 1 } ( t )$ ; confidence 0.991
+
43. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590437.png ; $f : C ^ { x + 1 } \rightarrow D ( \epsilon )$ ; confidence 0.168
  
44. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235059.png ; $t _ { i } = \phi _ { i }$ ; confidence 0.991
+
44. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590616.png ; $\| \partial y ^ { i } / \partial x ^ { j } \|$ ; confidence 0.969
  
45. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859071.png ; $z ( s ) = x ( \sqrt { s } ) y ( \sqrt { s } ) x ( \sqrt { s } ) ^ { - 1 } y ( \sqrt { s } ) ^ { - 1 }$ ; confidence 0.991
+
45. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559053.png ; $z = \phi _ { 2 } ( \tau ^ { \prime \prime } )$ ; confidence 0.994
  
46. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082089.png ; $\operatorname { dim } F = n$ ; confidence 0.991
+
46. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130113.png ; $K ^ { b } ( F _ { \Lambda } ) ^ { ( T , T [ i ] ) } = 0$ ; confidence 0.257
  
47. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o07001069.png ; $G \rightarrow G ( x )$ ; confidence 0.991
+
47. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145093.png ; $l ( D ) = \operatorname { deg } ( D ) - g + 1$ ; confidence 0.995
  
48. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593040.png ; $\phi ^ { * } ( g )$ ; confidence 0.991
+
48. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150074.png ; $z \rightarrow ( \alpha z + b ) f ( c z + d )$ ; confidence 0.402
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a01295056.png ; $p = 2$ ; confidence 0.991
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417023.png ; $\{ z \in C : \operatorname { Im } z > 0 \}$ ; confidence 0.951
  
50. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690080.png ; $\delta \alpha = d \alpha - \frac { 1 } { 2 } [ \alpha , \alpha ]$ ; confidence 0.991
+
50. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333013.png ; $\prod _ { i \in I } X _ { i } \rightarrow Y$ ; confidence 0.946
  
51. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763056.png ; $\phi \mapsto \delta _ { \phi }$ ; confidence 0.991
+
51. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593057.png ; $( d \phi ( X ) ( x ) , y ) = - ( x , d \psi ( X ) y )$ ; confidence 0.843
  
52. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797023.png ; $\mu ^ { * } : A ^ { * } \rightarrow A ^ { * } \otimes A ^ { * }$ ; confidence 0.991
+
52. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593022.png ; $( \phi ( g ) x , y ) = ( x , \psi ( g ^ { - 1 } ) y )$ ; confidence 0.983
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165072.png ; $G \times G \rightarrow G$ ; confidence 0.991
+
53. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120557.png ; $f _ { i } : X \rightarrow \overline { R }$ ; confidence 0.983
  
54. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900107.png ; $( m , \phi )$ ; confidence 0.991
+
54. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f0405508.png ; $V _ { 1 } \subset \ldots \subset V _ { k }$ ; confidence 0.965
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417013.png ; $M = D$ ; confidence 0.991
+
55. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082045.png ; $H ( B ) = \operatorname { nil } ( B ) ^ { n }$ ; confidence 0.784
  
56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008080.png ; $n = 3$ ; confidence 0.991
+
56. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082088.png ; $\alpha : F ( X , Y ) \rightarrow G ( X , Y )$ ; confidence 1.000
  
57. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301073.png ; $p = n / 2$ ; confidence 0.991
+
57. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h047410110.png ; $\operatorname { Tr } _ { K / k } ( \beta )$ ; confidence 0.968
  
58. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120506.png ; $F = \prod _ { \alpha } F _ { \alpha }$ ; confidence 0.991
+
58. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h0474108.png ; $t _ { 1 } ^ { 0 } , \ldots , t _ { x } ^ { 0 } \in Q$ ; confidence 0.199
  
59. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057060.png ; $\overline { \partial } f = g$ ; confidence 0.991
+
59. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h047690120.png ; $\operatorname { Sp } ( k ) \times U ( 1 )$ ; confidence 0.901
  
60. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872087.png ; $\operatorname { Der } _ { k } ( A )$ ; confidence 0.991
+
60. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769082.png ; $\pi : G \times _ { H } F \rightarrow G / H$ ; confidence 0.775
  
61. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868033.png ; $\Gamma _ { 0 } \subset \Gamma ( G ) \subset \Gamma _ { 1 }$ ; confidence 0.991
+
61. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797063.png ; $\Delta ( \alpha ) = ( \alpha , \alpha )$ ; confidence 0.595
  
62. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080900/r0809004.png ; $C _ { G } ( S )$ ; confidence 0.991
+
62. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797022.png ; $\epsilon ^ { * } : K \rightarrow A ^ { * }$ ; confidence 0.996
  
63. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009054.png ; $\Lambda ^ { + } ( n , r )$ ; confidence 0.990
+
63. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j0542701.png ; $x y = y x , \quad ( x ^ { 2 } y ) x = x ^ { 2 } ( y x )$ ; confidence 0.973
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174037.png ; $y ^ { \prime } = c y + f ( x )$ ; confidence 0.990
+
64. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590178.png ; $H ^ { 1 } ( R , \operatorname { Aut } ( G ) )$ ; confidence 0.711
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240494.png ; $k = 1$ ; confidence 0.990
+
65. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876031.png ; $i = 1 , \ldots , r , \quad j = 1 , \ldots , n$ ; confidence 0.616
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450110.png ; $l ( D ) \geq 1$ ; confidence 0.990
+
66. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876038.png ; $1 \leq i , j \leq r , \quad 1 \leq l \leq n$ ; confidence 0.955
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152030.png ; $G ( x )$ ; confidence 0.990
+
67. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451033.png ; $\phi : M ( pt ) \rightarrow h _ { M } ( pt )$ ; confidence 0.886
  
68. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590593.png ; $h ( x ) = \frac { \rho X ( x ) } { \| X ( x ) \| }$ ; confidence 0.990
+
68. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r0776408.png ; $\pi * : \omega Y \rightarrow \omega X$ ; confidence 0.746
  
69. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700235.png ; $\operatorname { dim } V = n$ ; confidence 0.990
+
69. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103091.png ; $n _ { \alpha } \alpha \in \Phi _ { k } ( G )$ ; confidence 0.368
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a014170150.png ; $X = K \backslash G$ ; confidence 0.990
+
70. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590370.png ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863
  
71. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820126.png ; $\gamma ( T )$ ; confidence 0.990
+
71. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590593.png ; $h ( x ) = \frac { \rho X ( x ) } { \| X ( x ) \| }$ ; confidence 0.990
  
72. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012080.png ; $t \geq 0$ ; confidence 0.990
+
72. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559011.png ; $L : [ 0,1 ] \rightarrow \overline { C }$ ; confidence 0.994
  
73. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r07764081.png ; $s = f ( x )$ ; confidence 0.990
+
73. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590364.png ; $f ( x _ { 0 } , \ldots , x _ { x } ) = \epsilon$ ; confidence 0.572
  
74. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427036.png ; $J _ { 1 } : X \rightarrow X ^ { \prime }$ ; confidence 0.990
+
74. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094200/t09420027.png ; $\operatorname { ad } _ { x } ( y ) = [ x , y ]$ ; confidence 0.196
  
75. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090357.png ; $G _ { K } ( V )$ ; confidence 0.990
+
75. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005024.png ; $\alpha 1 , \ldots , \alpha _ { \gamma }$ ; confidence 0.371
  
76. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085210/s08521033.png ; $1 > 3$ ; confidence 0.990
+
76. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450116.png ; $\operatorname { deg } ( D ) \geq 2 g + 1$ ; confidence 0.999
  
77. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771067.png ; $N _ { G } ( T ) / Z _ { G } ( T )$ ; confidence 0.990
+
77. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164054.png ; $I = \operatorname { deg } ( c _ { 2 } ) - 4$ ; confidence 0.490
  
78. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120298.png ; $F = \overline { C } \backslash G$ ; confidence 0.990
+
78. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023470/c02347029.png ; $g \notin \operatorname { Ker } \rho$ ; confidence 0.676
  
79. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690057.png ; $\delta ( b ) ( g , h ) = b ( g ) ^ { - 1 } b ( g h ) ( b ( h ) ^ { g } ) ^ { - 1 }$ ; confidence 0.990
+
79. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830151.png ; $F , G \in F \{ Y _ { 1 } , \ldots , Y _ { n } \}$ ; confidence 0.749
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149038.png ; $x _ { 0 } \in G$ ; confidence 0.990
+
80. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183094.png ; $F , A \in F \{ Y _ { 1 } , \ldots , Y _ { n } \}$ ; confidence 0.665
  
81. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g0446706.png ; $A _ { x } = 0$ ; confidence 0.990
+
81. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082078.png ; $\phi _ { F } ^ { * } F _ { u } ( X , Y ) = F ( X , Y )$ ; confidence 0.958
  
82. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590438.png ; $D ( \epsilon )$ ; confidence 0.990
+
82. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300208.png ; $\operatorname { log } \alpha = i \pi$ ; confidence 0.977
  
83. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427051.png ; $J = N + W$ ; confidence 0.990
+
83. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970142.png ; $1 \otimes X _ { i } \in A \otimes \sim A$ ; confidence 0.699
  
84. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120468.png ; $f \in ( F ^ { \prime } , \sigma ( F ^ { \prime } , F ) ) \square ^ { \prime }$ ; confidence 0.990
+
84. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851047.png ; $X _ { \alpha } \in \mathfrak { g } _ { Q }$ ; confidence 0.651
  
85. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120522.png ; $\| f | H \| = \operatorname { dist } ( f , H ^ { 0 } ) , \quad f \in F ^ { * }$ ; confidence 0.990
+
85. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590172.png ; $\operatorname { spin } ( f _ { 2 n + 1 } )$ ; confidence 0.457
  
86. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081370/r0813704.png ; $V = H$ ; confidence 0.990
+
86. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590192.png ; $f ^ { - 1 } ( u ) f ^ { - 1 } ( v ) = f ^ { - 1 } ( u v )$ ; confidence 0.994
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013180/a01318024.png ; $( u , v )$ ; confidence 0.990
+
87. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590159.png ; $G _ { 2 } , F _ { 4 } , E _ { 6 } , E _ { 7 } , E _ { 8 }$ ; confidence 0.956
  
88. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a014170145.png ; $f ( k g \gamma ) = \rho ( k ) f ( g )$ ; confidence 0.990
+
88. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451022.png ; $h _ { M } = \operatorname { Hom } ( S , M )$ ; confidence 0.426
  
89. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970134.png ; $( C , A )$ ; confidence 0.989
+
89. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451090.png ; $( S , \operatorname { Pic } ^ { 0 } X / S )$ ; confidence 0.966
  
90. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110070/k1100709.png ; $\pi : G \rightarrow$ ; confidence 0.989
+
90. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900111.png ; $g ) = \phi ( g _ { 1 } ) ( m ( g _ { 2 } , g _ { 3 } )$ ; confidence 0.237
  
91. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082090.png ; $\operatorname { dim } G = m$ ; confidence 0.989
+
91. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822
  
92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050293.png ; $n \rightarrow \infty$ ; confidence 0.989
+
92. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590276.png ; $\operatorname { lim } f ( z ) = \infty$ ; confidence 0.998
  
93. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004070.png ; $X = \Gamma \backslash D$ ; confidence 0.989
+
93. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590599.png ; $w , w ^ { \prime } , \ldots , w ^ { ( x - 1 ) }$ ; confidence 0.604
  
94. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w12009053.png ; $\Lambda ( n , r )$ ; confidence 0.989
+
94. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054016.png ; $x _ { i j } ( a ) x _ { j } ( b ) = x _ { i j } ( a + b )$ ; confidence 0.234
  
95. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r07764023.png ; $h ^ { 1 } ( O _ { D } ) = 0$ ; confidence 0.989
+
95. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092900/t09290048.png ; $\{ P n : B \leq P < G , \square n \in N \} g$ ; confidence 0.485
  
96. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427064.png ; $J / R$ ; confidence 0.989
+
96. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014047.png ; $\chi _ { Q } : K _ { 0 } ( Q ) \rightarrow Z$ ; confidence 0.972
  
97. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120132.png ; $H _ { r } ( A , X )$ ; confidence 0.989
+
97. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140164.png ; $q _ { \Lambda } : Z ^ { n } \rightarrow Z$ ; confidence 0.561
  
98. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065570/m06557011.png ; $L = k v$ ; confidence 0.989
+
98. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140172.png ; $q _ { C } : Z ^ { ( l _ { C } ) } \rightarrow Z$ ; confidence 0.490
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145085.png ; $l ( D ) - 1$ ; confidence 0.989
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145072.png ; $\operatorname { deg } K _ { X } = 2 g - 2$ ; confidence 0.913
  
100. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120226.png ; $\Gamma ( Y , O _ { X } / \Gamma ( X , O _ { X } ) )$ ; confidence 0.989
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450136.png ; $\phi _ { K } : X \rightarrow P ^ { g - 1 }$ ; confidence 0.974
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420143.png ; $1$ ; confidence 0.989
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a0116402.png ; $f ( x _ { 0 } , x _ { 1 } , x _ { 2 } , x _ { 3 } ) = 0$ ; confidence 0.993
  
102. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087080/s08708042.png ; $I ( T , \aleph _ { 1 } ) = 1$ ; confidence 0.989
+
102. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164058.png ; $\pi = \{ ( D ^ { 2 } ) + ( D K _ { V } ) \} / 2 + 1$ ; confidence 0.997
  
103. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l058720145.png ; $p = 7$ ; confidence 0.989
+
103. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c0259308.png ; $\phi ^ { * } ( g ) = \phi ( g ^ { - 1 } ) ^ { * }$ ; confidence 0.989
  
104. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797078.png ; $\Delta x$ ; confidence 0.989
+
104. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070053.png ; $\gamma ( \xi ) = [ \xi , \xi ] + \ldots$ ; confidence 0.841
  
105. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021016.png ; $L ( \lambda )$ ; confidence 0.989
+
105. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830122.png ; $( \zeta _ { 1 } , \ldots , \zeta _ { n } )$ ; confidence 0.478
  
106. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016150/b01615014.png ; $n \leq 6$ ; confidence 0.989
+
106. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830147.png ; $\zeta _ { k + 1 } , \ldots , \zeta _ { x }$ ; confidence 0.483
  
107. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031610/d03161042.png ; $f x$ ; confidence 0.989
+
107. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830337.png ; $A = \{ A _ { 1 } , \ldots , A _ { \cdot } \}$ ; confidence 0.354
  
108. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057065.png ; $H ^ { p + 1 } ( X , S ) \rightarrow$ ; confidence 0.989
+
108. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830343.png ; $k \leq \operatorname { min } ( r , s )$ ; confidence 0.999
  
109. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590135.png ; $V ( \infty ) = \{ z \in \overline { C } : | z | > R \}$ ; confidence 0.989
+
109. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120304.png ; $A ( f ) = \int _ { \gamma } f ( z ) g ( z ) d z$ ; confidence 0.997
  
110. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120386.png ; $\omega ( \zeta )$ ; confidence 0.989
+
110. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120413.png ; $( x , x ^ { \prime } ) = x ^ { \prime } ( x )$ ; confidence 0.998
  
111. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120521.png ; $F ^ { * } / H ^ { 0 }$ ; confidence 0.989
+
111. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960148.png ; $\operatorname { GL } ( 1 , K ) = K ^ { * }$ ; confidence 0.533
  
112. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c0259308.png ; $\phi ^ { * } ( g ) = \phi ( g ^ { - 1 } ) ^ { * }$ ; confidence 0.989
+
112. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696099.png ; $\eta _ { 1 } , \ldots , \eta _ { n } \in G$ ; confidence 0.669
  
113. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450105.png ; $l ( D ) = r$ ; confidence 0.989
+
113. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820135.png ; $V _ { n } \gamma ( T ) = \gamma ( T ^ { x } )$ ; confidence 0.168
  
114. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095400/u09540022.png ; $p ^ { t }$ ; confidence 0.989
+
114. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479705.png ; $\delta : A \rightarrow A \otimes A$ ; confidence 0.996
  
115. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590224.png ; $f _ { \zeta } = f _ { \zeta } ( z ) =$ ; confidence 0.988
+
115. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427036.png ; $J _ { 1 } : X \rightarrow X ^ { \prime }$ ; confidence 0.990
  
116. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541041.png ; $U _ { i } / U _ { i + 1 }$ ; confidence 0.988
+
116. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003011.png ; $\operatorname { Ric } ( \omega ) = 0$ ; confidence 0.997
  
117. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590284.png ; $P = \{ z = ( z _ { 1 } , z _ { 2 } ) \in C ^ { 2 } : z _ { 2 } = 0 \}$ ; confidence 0.988
+
117. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851020.png ; $( \text { Aut } \mathfrak { g } ) ^ { 0 }$ ; confidence 0.717
  
118. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d03412070.png ; $H _ { r } ( X , A )$ ; confidence 0.988
+
118. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510199.png ; $\operatorname { su } ( 2 p , 2 ( n - p ) )$ ; confidence 0.801
  
119. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i05306040.png ; $K \times A \times N$ ; confidence 0.988
+
119. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510175.png ; $90 = \operatorname { su } ^ { x } ( 2 n )$ ; confidence 0.349
  
120. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900122.png ; $( m , \phi ) \rightarrow \phi$ ; confidence 0.988
+
120. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852015.png ; $\mathscr { C } _ { 0 } = \mathfrak { g }$ ; confidence 0.191
  
121. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852070.png ; $x = s + n$ ; confidence 0.988
+
121. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868023.png ; $\Gamma ( G ) \subset \mathfrak { h }$ ; confidence 0.891
  
122. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771019.png ; $N _ { G } ( T _ { 0 } )$ ; confidence 0.988
+
122. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900109.png ; $\phi : G \rightarrow \text { Aut } A$ ; confidence 0.720
  
123. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925051.png ; $( V )$ ; confidence 0.988
+
123. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690059.png ; $H ^ { 0 } ( G , A ) = H ^ { 0 } ( C ^ { * } ( G , A ) )$ ; confidence 0.986
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041057.png ; $n \geq 3$ ; confidence 0.988
+
124. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690033.png ; $H ^ { i } ( C ^ { * } ( \mathfrak { U } , F ) )$ ; confidence 0.769
  
125. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590149.png ; $\operatorname { lim } f ( z )$ ; confidence 0.988
+
125. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690063.png ; $H ^ { 1 } ( G , A ) = H ^ { 1 } ( C ^ { * } ( G , A ) )$ ; confidence 0.973
  
126. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851080.png ; $\beta - p \alpha \in \Sigma$ ; confidence 0.988
+
126. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690015.png ; $\delta : C ^ { 1 } \rightarrow C ^ { 2 }$ ; confidence 0.985
  
127. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472044.png ; $H ^ { 1 } ( S , O _ { S } )$ ; confidence 0.988
+
127. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267042.png ; $\operatorname { Pic } _ { X / k } ^ { 0 }$ ; confidence 0.272
  
128. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851074.png ; $[ X _ { \alpha } , X _ { \beta } ] = \left\{ \begin{array} { l l } { N _ { \alpha , \beta } X _ { \alpha + \beta } } & { \text { if } \alpha + \beta \in \Sigma } \\ { 0 } & { \text { if } \alpha + \beta \notin \Sigma } \end{array} \right.$ ; confidence 0.988
+
128. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267044.png ; $\operatorname { Pic } _ { K / k } ^ { Q }$ ; confidence 0.366
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012290/a0122904.png ; $( x , y ) \rightarrow x y ^ { - 1 }$ ; confidence 0.988
+
129. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631070.png ; $\delta \operatorname { lg } = \phi$ ; confidence 0.586
  
130. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b1204003.png ; $G \times E \rightarrow E$ ; confidence 0.988
+
130. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q0763106.png ; $\Delta : A \rightarrow A \otimes A$ ; confidence 0.996
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010180/a0101802.png ; $n \geq 5$ ; confidence 0.988
+
131. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081370/r08137025.png ; $\{ \rho ^ { \alpha } : \alpha \in I \}$ ; confidence 0.999
  
132. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o07001044.png ; $( g f ) ( u , v ) = f ( g ^ { - 1 } ( u ) , g ^ { - 1 } ( v ) ) \quad \text { for any } u , v \in V$ ; confidence 0.987
+
132. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004021.png ; $\operatorname { Im } ( \gamma z ) > 1$ ; confidence 0.951
  
133. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427031.png ; $\Gamma = \operatorname { diag } \{ \gamma _ { 1 } , \gamma _ { 2 } , \gamma _ { 3 } \} , \quad \gamma _ { i } \neq 0 , \quad \gamma _ { i } \in F$ ; confidence 0.987
+
133. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004025.png ; $( \Gamma \cap P ) \backslash H ^ { 1 }$ ; confidence 1.000
  
134. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120528.png ; $x : f \rightarrow f ( x )$ ; confidence 0.987
+
134. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004038.png ; $X _ { g } ^ { * } = \cup _ { r \leq g } X _ { r }$ ; confidence 0.386
  
135. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080900/r08090019.png ; $C _ { G } ( s )$ ; confidence 0.987
+
135. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590511.png ; $\dot { i } _ { 0 } \in \{ 1 , \ldots , n \}$ ; confidence 0.377
  
136. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540110.png ; $K _ { 1 } R$ ; confidence 0.987
+
136. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590228.png ; $R = \{ R _ { 1 } > 0 , \ldots , R _ { n } > 0 \}$ ; confidence 0.785
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164049.png ; $q ( V ) = \operatorname { dim } _ { k } H ^ { 1 } ( V , O _ { V } )$ ; confidence 0.987
+
137. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590359.png ; $C \{ x _ { 0 } , \ldots , x _ { x } \} / J ( f )$ ; confidence 0.320
  
138. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110070/k11007035.png ; $H ^ { 0 } ( G / B , L _ { \chi } )$ ; confidence 0.987
+
138. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590271.png ; $\phi _ { a } ( z ) = \psi _ { a x } ( z ) f ( z )$ ; confidence 0.163
  
139. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027190/c0271904.png ; $( n = 2 )$ ; confidence 0.987
+
139. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590613.png ; $f : M ^ { \aleph } \rightarrow N ^ { x }$ ; confidence 0.136
  
140. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h047410142.png ; $( x , y ) = \{ ( \xi , \eta ) : F ( x , y , \xi , \eta ) \leq 1 \}$ ; confidence 0.987
+
140. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087060/s08706014.png ; $K _ { 1 } ( R [ t _ { 1 } , \ldots , t _ { x } ] )$ ; confidence 0.460
  
141. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058480/l05848094.png ; $Y \mapsto X Y$ ; confidence 0.987
+
141. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054035.png ; $h ( \alpha ) = w ( \alpha ) w ( 1 ) ^ { - 1 }$ ; confidence 0.731
  
142. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103026.png ; $W _ { k } ( S , G )$ ; confidence 0.987
+
142. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140108.png ; $\sum _ { i , j \in Q _ { 0 } } e _ { j } I _ { e }$ ; confidence 0.361
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a1101003.png ; $V$ ; confidence 0.987
+
143. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090195.png ; $\operatorname { PSL } _ { \eta } ( K )$ ; confidence 0.528
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152036.png ; $V ^ { 1 }$ ; confidence 0.987
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145043.png ; $Cl ( P ^ { 1 } ) = Z , Cl ^ { 0 } ( P ^ { 1 } ) = 0$ ; confidence 0.119
  
145. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541013.png ; $U _ { n } ( K )$ ; confidence 0.987
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152034.png ; $\tau : G \times V \rightarrow V$ ; confidence 0.995
  
146. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427035.png ; $H ( F _ { n } , J _ { 1 } )$ ; confidence 0.987
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164016.png ; $\operatorname { lim } | K _ { i } | + 1$ ; confidence 0.865
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050210.png ; $G _ { K }$ ; confidence 0.987
+
147. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164065.png ; $H ^ { \prime } ( V , O _ { V } ( D + n H ) ) = 0$ ; confidence 0.983
  
148. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023470/c02347047.png ; $m _ { i j } ^ { \alpha } ( g )$ ; confidence 0.987
+
148. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a014170107.png ; $j : X \times \Gamma \rightarrow H$ ; confidence 0.927
  
149. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472075.png ; $( x y ) ^ { \gamma } = x ^ { \gamma } y ^ { \gamma }$ ; confidence 0.987
+
149. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056028.png ; $\phi : G \rightarrow G ^ { \prime }$ ; confidence 0.985
  
150. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797067.png ; $H ^ { n } ( G , K )$ ; confidence 0.987
+
150. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070065.png ; $H ^ { 0 } ( X _ { s } , \Theta _ { X _ { S } } )$ ; confidence 0.295
  
151. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590379.png ; $x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 3 } + x _ { 2 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.987
+
151. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700128.png ; $\hat { \mathscr { O } } _ { S , s _ { 0 } }$ ; confidence 0.480
  
152. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092900/t09290043.png ; $( G , B , N , S )$ ; confidence 0.987
+
152. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830281.png ; $A \in R \{ y _ { 1 } , \ldots , y _ { n } \}$ ; confidence 0.345
  
153. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110080/c11008039.png ; $f ^ { - 1 }$ ; confidence 0.986
+
153. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830315.png ; $F \in R \{ y _ { 1 } , \ldots , y _ { n } \}$ ; confidence 0.267
  
154. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690059.png ; $H ^ { 0 } ( G , A ) = H ^ { 0 } ( C ^ { * } ( G , A ) )$ ; confidence 0.986
+
154. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830137.png ; $B \in F \{ Y _ { 1 } , \ldots , Y _ { N } \}$ ; confidence 0.377
  
155. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a014170130.png ; $X \times V \rightarrow X$ ; confidence 0.986
+
155. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183092.png ; $A \in F \{ Y _ { 1 } , \ldots , Y _ { N } \}$ ; confidence 0.404
  
156. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n066900124.png ; $H ^ { 2 } ( G , A )$ ; confidence 0.986
+
156. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120346.png ; $\Lambda _ { \zeta , n } F ( z , \zeta )$ ; confidence 0.511
  
157. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859083.png ; $\operatorname { exp } : L ( G ) \rightarrow G$ ; confidence 0.986
+
157. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120561.png ; $y \in \overline { R } \square ^ { m }$ ; confidence 0.544
  
158. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590482.png ; $( \frac { \partial F ( x , y , \lambda ) } { \partial x } , \frac { \partial F ( x , y , \lambda ) } { \partial y } )$ ; confidence 0.986
+
158. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960158.png ; $\delta _ { i } \alpha = \alpha _ { i }$ ; confidence 0.862
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022020.png ; $\epsilon > 0$ ; confidence 0.986
+
159. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082085.png ; $\psi : L \rightarrow L ^ { \prime }$ ; confidence 1.000
  
160. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851053.png ; $\alpha , \beta \in \Sigma$ ; confidence 0.986
+
160. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082022.png ; $H ( B _ { 1 } ) \rightarrow H ( B _ { 2 } )$ ; confidence 0.997
  
161. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074640/p07464037.png ; $B \rightarrow G$ ; confidence 0.986
+
161. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h047410112.png ; $\beta = \alpha - \sigma ( \alpha )$ ; confidence 0.999
  
162. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120514.png ; $\prod _ { \alpha } F _ { \alpha }$ ; confidence 0.986
+
162. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797060.png ; $\Delta : G \rightarrow G \times G$ ; confidence 0.998
  
163. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q0763108.png ; $\epsilon : A \rightarrow k$ ; confidence 0.986
+
163. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797024.png ; $\iota ^ { * } : A ^ { * } \rightarrow K$ ; confidence 0.977
  
164. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235024.png ; $f ( x , y ) = a x ^ { 2 } + 2 b x y + c y ^ { 2 }$ ; confidence 0.986
+
164. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797018.png ; $A ^ { * } = \sum _ { n \in Z } A _ { n } ^ { * }$ ; confidence 0.525
  
165. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472041.png ; $\Gamma = \Gamma _ { \alpha , S }$ ; confidence 0.986
+
165. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i0523503.png ; $y \rightarrow \gamma x + \delta y$ ; confidence 0.885
  
166. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070097.png ; $( S , \delta )$ ; confidence 0.985
+
166. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510183.png ; $g = \operatorname { so } ( 2 n + 1 , C )$ ; confidence 0.198
  
167. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797068.png ; $\mu = \Delta ^ { * }$ ; confidence 0.985
+
167. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859095.png ; $L ( G _ { 1 } ) \rightarrow L ( G _ { 2 } )$ ; confidence 0.996
  
168. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a1101606.png ; $( n \times n )$ ; confidence 0.985
+
168. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l0585902.png ; $\mu : ( x , y ) \rightarrow x y ^ { - 1 }$ ; confidence 0.998
  
169. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r07764037.png ; $h ^ { 1 } ( O _ { Z } ) = 0$ ; confidence 0.985
+
169. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058680/l05868042.png ; $Z _ { g } = \Gamma _ { 1 } / \Gamma _ { 0 }$ ; confidence 0.875
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022023.png ; $p = 1$ ; confidence 0.985
+
170. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872023.png ; $( x , y ) \rightarrow [ x , y ] = x y - y x$ ; confidence 0.997
  
171. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023720/c02372058.png ; $\Gamma = \{ z \in \overline { C } : | z | = 1 \}$ ; confidence 0.985
+
171. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451040.png ; $\overline { \mathfrak { M } } _ { g }$ ; confidence 0.963
  
172. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l05843089.png ; $\mathfrak { g } _ { \alpha } \neq 0$ ; confidence 0.985
+
172. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o070010110.png ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245
  
173. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970126.png ; $( A , m , e , \mu , \epsilon )$ ; confidence 0.985
+
173. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267030.png ; $\operatorname { Pic } _ { X / k } ( k )$ ; confidence 0.713
  
174. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m064510123.png ; $\overline { M } \backslash M$ ; confidence 0.985
+
174. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310135.png ; $A \rightarrow \text { Mat } ( n , k )$ ; confidence 0.772
  
175. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n0669009.png ; $C ^ { 2 }$ ; confidence 0.985
+
175. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310120.png ; $R = \sum _ { i } x _ { i } \otimes y _ { i }$ ; confidence 0.487
  
176. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120321.png ; $\Lambda \equiv 0$ ; confidence 0.985
+
176. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r077630107.png ; $\alpha \mapsto \alpha ^ { p ^ { i } }$ ; confidence 0.478
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240545.png ; $2$ ; confidence 0.985
+
177. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763052.png ; $( \delta _ { \phi } , \alpha ) \geq 0$ ; confidence 0.999
  
178. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h04769070.png ; $f$ ; confidence 0.985
+
178. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077670/r0776707.png ; $L = K ( \sqrt { \alpha } , \sqrt { b } )$ ; confidence 0.629
  
179. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058480/l05848036.png ; $( G ) \rightarrow L ( G )$ ; confidence 0.985
+
179. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590325.png ; $H ^ { i } ( X , O _ { \overline { X } } ) = 0$ ; confidence 0.534
  
180. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700138.png ; $O \rightarrow \Lambda$ ; confidence 0.985
+
180. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590453.png ; $f _ { \lambda } ( z ) = F ( z , \lambda )$ ; confidence 0.997
  
181. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020560/c02056028.png ; $\phi : G \rightarrow G ^ { \prime }$ ; confidence 0.985
+
181. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590327.png ; $H ^ { n - 1 } ( X , O _ { \overline { X } } )$ ; confidence 0.718
  
182. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700297.png ; $D ( A \times I )$ ; confidence 0.985
+
182. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590403.png ; $y = \sum _ { i } \alpha _ { i } x ^ { i / n }$ ; confidence 0.722
  
183. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690015.png ; $\delta : C ^ { 1 } \rightarrow C ^ { 2 }$ ; confidence 0.985
+
183. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087060/s08706047.png ; $n \geq \operatorname { sr } ( R ) + 1$ ; confidence 0.511
  
184. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590383.png ; $x _ { 0 } ^ { 5 } + x _ { 1 } ^ { 3 } + x _ { 2 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.985
+
184. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087060/s08706046.png ; $K _ { 1 } ( R ) = GL _ { n } ( R ) / E _ { n } ( R )$ ; confidence 0.156
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680209.png ; $n \geq 4$ ; confidence 0.984
+
185. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130106.png ; $T _ { i } \in \operatorname { add } T$ ; confidence 0.665
  
186. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690021.png ; $Z ^ { 1 } = \delta ^ { - 1 } ( e ) \subseteq C ^ { 1 }$ ; confidence 0.984
+
186. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095400/u09540036.png ; $\lambda = ( m _ { 1 } , \dots , m _ { s } )$ ; confidence 0.450
  
187. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h047410135.png ; $( \dot { x } , \dot { y } )$ ; confidence 0.984
+
187. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759011.png ; $I = \operatorname { ind } _ { k } ( D )$ ; confidence 0.955
  
188. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690095.png ; $\rightarrow H ^ { 1 } ( G , B ) \rightarrow H ^ { 1 } ( G , A )$ ; confidence 0.984
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164094.png ; $b _ { 2 } ( V ) \geq \rho + 2 p _ { g } ( V )$ ; confidence 0.767
  
189. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820114.png ; $f ( Z )$ ; confidence 0.984
+
189. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a014170114.png ; $f ( x ) = j ( x , \gamma ) f ( x \gamma )$ ; confidence 0.623
  
190. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590559.png ; $\lambda _ { 1 } \lambda _ { 2 } > 0$ ; confidence 0.984
+
190. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417072.png ; $| \phi ( x ) | \geq | \phi ( x _ { 0 } ) |$ ; confidence 0.992
  
191. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083020/s08302022.png ; $\lambda _ { 1 } \lambda _ { 2 } < 0$ ; confidence 0.984
+
191. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593092.png ; $\Lambda \in \mathfrak { g } ^ { * }$ ; confidence 0.899
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011520/a01152012.png ; $G , V$ ; confidence 0.984
+
192. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070025.png ; $\phi : \tilde { X } \rightarrow X$ ; confidence 0.732
  
193. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035300/e03530041.png ; $J _ { m } ( \lambda )$ ; confidence 0.984
+
193. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070055.png ; $H ^ { * } ( X _ { \diamond } , \Theta )$ ; confidence 0.861
  
194. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174024.png ; $n \geq 2$ ; confidence 0.984
+
194. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700202.png ; $M X _ { 0 } , \alpha \subset M X _ { 0 }$ ; confidence 0.868
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145090.png ; $l ( K - D ) > 0$ ; confidence 0.983
+
195. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021460/c0214607.png ; $( \eta _ { 1 } , \ldots , \eta _ { n } )$ ; confidence 0.232
  
196. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016920/b01692064.png ; $2 ^ { n }$ ; confidence 0.983
+
196. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830255.png ; $\partial _ { i } : R \rightarrow R$ ; confidence 0.993
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164065.png ; $H ^ { \prime } ( V , O _ { V } ( D + n H ) ) = 0$ ; confidence 0.983
+
197. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830390.png ; $A \in k \{ y _ { 1 } , \dots , y _ { n } \}$ ; confidence 0.407
  
198. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120557.png ; $f _ { i } : X \rightarrow \overline { R }$ ; confidence 0.983
+
198. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d03183027.png ; $a _ { \tau \langle V \rangle } ( V )$ ; confidence 0.402
  
199. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820140.png ; $( A )$ ; confidence 0.983
+
199. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120227.png ; $\Gamma ( X \backslash Y , O _ { X } )$ ; confidence 0.983
  
200. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235072.png ; $A \cap L$ ; confidence 0.983
+
200. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025020/c02502011.png ; $f : X \rightarrow \overline { R }$ ; confidence 0.994
  
201. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016150/b01615019.png ; $n = 6$ ; confidence 0.983
+
201. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d03412066.png ; $\{ H _ { r } ( X , A ) , f * , \partial \}$ ; confidence 0.923
  
202. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830167.png ; $\alpha \in U$ ; confidence 0.983
+
202. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120506.png ; $F = \prod _ { \alpha } F _ { \alpha }$ ; confidence 0.991
  
203. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590647.png ; $y = y ( u , v )$ ; confidence 0.983
+
203. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027270/c0272709.png ; $g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } \neq 0$ ; confidence 0.254
  
204. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590101.png ; $\Gamma = \{ z \in \overline { C } : | z - \zeta | = R \}$ ; confidence 0.983
+
204. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960198.png ; $y ^ { \prime } + \alpha _ { 1 } y = 0$ ; confidence 0.639
  
205. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057067.png ; $H ^ { p } ( X , S ) = 0 , \quad p \geq 1$ ; confidence 0.983
+
205. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082093.png ; $\alpha ( Z _ { 1 } , \ldots , Z _ { n } )$ ; confidence 0.480
  
206. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062110/m06211054.png ; $n \leq 5$ ; confidence 0.983
+
206. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820169.png ; $\alpha + b = F _ { \pi } ( \alpha , b )$ ; confidence 0.393
  
207. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040370/f04037019.png ; $H _ { c } ^ { k } ( X , F )$ ; confidence 0.983
+
207. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489024.png ; $\beta _ { 1 } , \ldots , \beta _ { n }$ ; confidence 0.525
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a0114501.png ; $A _ { k } ^ { 2 }$ ; confidence 0.983
+
208. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i0523504.png ; $\alpha \delta - \beta \gamma = 1$ ; confidence 0.999
  
209. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830344.png ; $\operatorname { rank } ( A _ { i } ) = \operatorname { rank } ( B _ { i } )$ ; confidence 0.983
+
209. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i0523502.png ; $X \rightarrow \alpha X + \beta y$ ; confidence 0.474
  
210. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249024.png ; $s \in Z$ ; confidence 0.983
+
210. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427089.png ; $Kan ^ { - 1 } ( g ) = \mathfrak { g } - 1$ ; confidence 0.529
  
211. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590343.png ; $\pi _ { 1 } ( S \backslash D )$ ; confidence 0.983
+
211. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k1200301.png ; $\operatorname { Ric } ( \omega )$ ; confidence 0.997
  
212. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593022.png ; $( \phi ( g ) x , y ) = ( x , \psi ( g ^ { - 1 } ) y )$ ; confidence 0.983
+
212. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058430/l05843089.png ; $\mathfrak { g } _ { \alpha } \neq 0$ ; confidence 0.985
  
213. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601030.png ; $n \geq 6$ ; confidence 0.983
+
213. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058480/l05848090.png ; $L ( G ) \subset \mathfrak { d } ( V )$ ; confidence 0.673
  
214. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030020/d030020120.png ; $\pi : X \rightarrow Y$ ; confidence 0.983
+
214. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l0587208.png ; $( x ^ { [ p ] } ) = ( \text { ad } x ) ^ { p }$ ; confidence 0.500
  
215. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063010/m06301089.png ; $F ( x _ { 1 } h _ { 1 } + \ldots + x _ { n } h _ { n } ) =$ ; confidence 0.983
+
215. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925088.png ; $\operatorname { dim } ( 1 - t ) V = 1$ ; confidence 0.998
  
216. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120227.png ; $\Gamma ( X \backslash Y , O _ { X } )$ ; confidence 0.983
+
216. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451037.png ; $\chi : h _ { M } \rightarrow h _ { N }$ ; confidence 0.488
  
217. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120353.png ; $F ( z , \zeta ) = e ^ { z \zeta }$ ; confidence 0.983
+
217. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267028.png ; $k ( k ) = \operatorname { Pic } ( X )$ ; confidence 0.992
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450219.png ; $| N - q - 1 | \leq 2 g \sqrt { q }$ ; confidence 0.983
+
218. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631033.png ; $x _ { i l } | x _ { k j } = x _ { k } ; x _ { i l }$ ; confidence 0.069
  
219. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472027.png ; $H ^ { 1 } ( S _ { T } , \Gamma )$ ; confidence 0.982
+
219. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r07764012.png ; $\sum _ { i = 1 } ^ { n } k _ { i } ^ { - 1 } > 1$ ; confidence 0.994
  
220. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130010/s13001052.png ; $M _ { K }$ ; confidence 0.982
+
220. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030102.png ; $\Delta \backslash \Delta _ { 0 }$ ; confidence 0.556
  
221. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700313.png ; $r : X \rightarrow X _ { 1 }$ ; confidence 0.982
+
221. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590274.png ; $\phi _ { \alpha } ( \alpha ) \neq 0$ ; confidence 0.873
  
222. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c0205705.png ; $[ h _ { i } , h _ { j } ] = 0$ ; confidence 0.982
+
222. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590223.png ; $( U ^ { n } ( \zeta , R ) , f _ { \zeta } )$ ; confidence 0.977
  
223. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087080/s08708055.png ; $I ( T , \lambda ) = 2 ^ { \lambda }$ ; confidence 0.982
+
223. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524066.png ; $0 \leq a \leq \{ n a \} \leq b \leq 1$ ; confidence 0.463
  
224. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590462.png ; $D _ { \mu }$ ; confidence 0.982
+
224. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090110.png ; $\lambda \in \Lambda ^ { + } ( n , r )$ ; confidence 1.000
  
225. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058650/l0586508.png ; $g \mapsto g ^ { - 1 }$ ; confidence 0.982
+
225. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145036.png ; $\operatorname { iv } ( X ) / P ( X )$ ; confidence 0.590
  
226. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700271.png ; $\phi _ { i } : V \rightarrow V$ ; confidence 0.982
+
226. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011530/a01153014.png ; $\alpha 1 , \ldots , \alpha _ { x }$ ; confidence 0.154
  
227. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h047690118.png ; $n = 2 k - 1$ ; confidence 0.982
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011530/a0115307.png ; $f ( b _ { 1 } , \dots , b _ { n } ) \neq 0$ ; confidence 0.554
  
228. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077640/r07764058.png ; $X = C ^ { 2 } / G \subset C ^ { 3 }$ ; confidence 0.982
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164059.png ; $| D | \geq n - \pi + p _ { x } ( V ) + 1 - i$ ; confidence 0.785
  
229. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631061.png ; $\phi : \mathfrak { g } \rightarrow \mathfrak { g } \otimes \mathfrak { g }$ ; confidence 0.982
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174012.png ; $\operatorname { PLG } ( n + 1 , k )$ ; confidence 0.708
  
230. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541025.png ; $U _ { n } ( k )$ ; confidence 0.982
+
230. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417028.png ; $\{ z \rightarrow z + n : n \in Z \}$ ; confidence 0.948
  
231. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031640/d03164028.png ; $( F , V )$ ; confidence 0.981
+
231. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023470/c02347040.png ; $\{ R ^ { \alpha } : \alpha \in I \}$ ; confidence 0.997
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600196.png ; $K / k$ ; confidence 0.981
+
232. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120298.png ; $F = \overline { C } \backslash G$ ; confidence 0.990
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010021.png ; $C ( X )$ ; confidence 0.981
+
233. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120344.png ; $\Lambda _ { \zeta } F ( z , \zeta )$ ; confidence 0.938
  
234. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876017.png ; $\xi _ { i j } ( x ) = \partial f _ { j } / \partial g ( e , x )$ ; confidence 0.981
+
234. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120518.png ; $\alpha \text { pr } F _ { \alpha }$ ; confidence 0.862
  
235. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002012.png ; $( d / d z ) e ^ { z } = e ^ { z }$ ; confidence 0.981
+
235. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120242.png ; $H ^ { p } ( X , F ) = H ^ { p + 1 } ( X , F ) = 0$ ; confidence 0.996
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417027.png ; $e ^ { 2 \pi i z }$ ; confidence 0.981
+
236. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960169.png ; $( F \langle \alpha \rangle / F )$ ; confidence 0.388
  
237. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559036.png ; $z = \phi _ { 2 } ( t )$ ; confidence 0.981
+
237. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055041.png ; $G _ { n , n _ { 1 } } = Gr _ { n _ { 1 } } ( V )$ ; confidence 0.649
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640132.png ; $0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$ ; confidence 0.981
+
238. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h0479703.png ; $\mu : A \otimes A \rightarrow A$ ; confidence 0.952
  
239. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004017.png ; $\infty \in H ^ { * }$ ; confidence 0.981
+
239. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970118.png ; $\mu : A \rightarrow A \otimes A$ ; confidence 0.952
  
240. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300202.png ; $\operatorname { log } \alpha$ ; confidence 0.981
+
240. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235024.png ; $f ( x , y ) = a x ^ { 2 } + 2 b x y + c y ^ { 2 }$ ; confidence 0.986
  
241. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851046.png ; $\alpha ( H _ { \alpha } ) = 2$ ; confidence 0.980
+
241. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427061.png ; $\{ a b c \} = ( a b ) c + ( b c ) a - ( c a ) b$ ; confidence 0.872
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150012.png ; $( x , \sqrt { f ( x ) } ) \oplus ( c , \sqrt { f ( c ) } ) = ( y , \sqrt { f ( y ) } )$ ; confidence 0.980
+
242. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054270/j05427080.png ; $[ \alpha , \mathfrak { g } - 1 ] = 0$ ; confidence 0.882
  
243. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820153.png ; $\gamma ( T ) \in C ( F ; A )$ ; confidence 0.980
+
243. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003036.png ; $F _ { M } : G \rightarrow C ^ { * }$ ; confidence 0.933
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024051.png ; $p \geq 0$ ; confidence 0.980
+
244. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003017.png ; $c _ { 1 } ( S ) ^ { 2 } \leq 3 _ { C 2 } ( S )$ ; confidence 0.319
  
245. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145045.png ; $\pi = \operatorname { dim } H ^ { 1 } ( X , O _ { X } )$ ; confidence 0.980
+
245. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510234.png ; $\alpha _ { j i } = \alpha _ { i j } = 0$ ; confidence 0.722
  
246. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120120.png ; $H _ { n - r } ( M ^ { n } , X ^ { * } )$ ; confidence 0.980
+
246. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510118.png ; $g = \operatorname { so } ( 2 n , k )$ ; confidence 0.273
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110700/a11070038.png ; $p \geq 2$ ; confidence 0.980
+
247. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510201.png ; $g = \operatorname { so } ( 2 n , C )$ ; confidence 0.268
  
248. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040550/f04055042.png ; $F ( 1 ) ( V )$ ; confidence 0.980
+
248. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852018.png ; $\mathfrak { g } _ { i } ^ { \prime }$ ; confidence 0.212
  
249. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097590/w09759045.png ; $E ( Q )$ ; confidence 0.980
+
249. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503014.png ; $\operatorname { lim } V _ { k } = k$ ; confidence 0.978
  
250. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797053.png ; $\{ e \} \rightarrow G$ ; confidence 0.980
+
250. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872087.png ; $\operatorname { Der } _ { k } ( A )$ ; confidence 0.991
  
251. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031640/d0316408.png ; $\omega V _ { M } ( m ) = V _ { M } ( \omega ^ { ( p ) } m )$ ; confidence 0.979
+
251. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451089.png ; $( S , \operatorname { Pic } X / S )$ ; confidence 0.976
  
252. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640116.png ; $p _ { 12 } > 1$ ; confidence 0.979
+
252. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451011.png ; $\{ X _ { S } : s \in S , X _ { S } \in A \}$ ; confidence 0.842
  
253. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150029.png ; $\Omega ^ { \tau } [ X ]$ ; confidence 0.979
+
253. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451017.png ; $f ^ { * } : M ( S ) \rightarrow M ( T )$ ; confidence 0.973
  
254. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696032.png ; $F _ { 0 } \subset F$ ; confidence 0.979
+
254. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451092.png ; $\operatorname { Pic } ^ { 0 } X / S$ ; confidence 0.620
  
255. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300205.png ; $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ ; confidence 0.979
+
255. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451031.png ; $S = \operatorname { Spec } K = pt$ ; confidence 0.383
  
256. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058660/l05866027.png ; $G \subset N ( F )$ ; confidence 0.979
+
256. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070010/o07001018.png ; $\pi _ { X , G } : X \rightarrow X / G$ ; confidence 0.693
  
257. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033790/d03379012.png ; $D \backslash K$ ; confidence 0.979
+
257. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472082.png ; $\Gamma \times E \rightarrow E$ ; confidence 0.998
  
258. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450202.png ; $y = \psi ( z )$ ; confidence 0.979
+
258. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631031.png ; $x _ { j } ; x _ { k } j = q x _ { k } ; x _ { j }$ ; confidence 0.084
  
259. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590522.png ; $x _ { 0 } \in H$ ; confidence 0.979
+
259. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631017.png ; $m ( \alpha \otimes b ) = \alpha b$ ; confidence 0.443
  
260. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590646.png ; $x = x ( u , v )$ ; confidence 0.979
+
260. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080900/r0809006.png ; $\lambda : G _ { m } \rightarrow S$ ; confidence 0.380
  
261. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700177.png ; $H ^ { 0 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.979
+
261. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004033.png ; $G = \operatorname { Sp } ( 2 g , R )$ ; confidence 0.940
  
262. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095400/u09540020.png ; $K = p > 0$ ; confidence 0.978
+
262. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220076.png ; $\alpha \in C ^ { \prime \prime }$ ; confidence 0.154
  
263. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045030/g04503014.png ; $\operatorname { lim } V _ { k } = k$ ; confidence 0.978
+
263. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559025.png ; $\alpha = \phi _ { 1 } ( \tau _ { 1 } )$ ; confidence 0.853
  
264. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090164.png ; $E ^ { \otimes r } \rightarrow \Delta ( \lambda )$ ; confidence 0.978
+
264. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559029.png ; $\alpha = \phi _ { 2 } ( \tau _ { 2 } )$ ; confidence 0.777
  
265. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797062.png ; $p : G \rightarrow \{ e \}$ ; confidence 0.978
+
265. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590323.png ; $H ^ { i } ( X , O _ { \overline { X } } )$ ; confidence 0.623
  
266. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925094.png ; $| K | = 2,3$ ; confidence 0.978
+
266. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054070.png ; $K _ { 2 } Q = \coprod _ { p } \mu _ { p }$ ; confidence 0.907
  
267. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095240/u09524012.png ; $X = \sum _ { n = 1 } ^ { \infty } X _ { n } 2 ^ { - n }$ ; confidence 0.978
+
267. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090248.png ; $\Phi = \Phi ^ { + } \cup \Phi ^ { - }$ ; confidence 0.997
  
268. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210133.png ; $g = 1$ ; confidence 0.978
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145057.png ; $\pi = \frac { ( m - 1 ) ( m - 2 ) } { 2 }$ ; confidence 0.999
  
269. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032490/d03249015.png ; $d ( p )$ ; confidence 0.978
+
269. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a01145058.png ; $g = \frac { ( m - 1 ) ( m - 2 ) } { 2 } - d$ ; confidence 0.992
  
270. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763080.png ; $\phi _ { 1 } \otimes \ldots \otimes \phi _ { d }$ ; confidence 0.978
+
270. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057067.png ; $H ^ { p } ( X , S ) = 0 , \quad p \geq 1$ ; confidence 0.983
  
271. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110450/c11045018.png ; $2 ^ { \lambda }$ ; confidence 0.978
+
271. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700177.png ; $H ^ { 0 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.979
  
272. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081370/r08137017.png ; $\phi ^ { a }$ ; confidence 0.978
+
272. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700232.png ; $K = \operatorname { Comm } ( V )$ ; confidence 0.897
  
273. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004056.png ; $\overline { D } = \overline { D } _ { S }$ ; confidence 0.978
+
273. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700197.png ; $H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.977
  
274. https://www.encyclopediaofmath.org/legacyimages/u/u095/u095410/u09541052.png ; $g ^ { p } = e$ ; confidence 0.978
+
274. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070039.png ; $f : S ^ { \prime } \rightarrow S$ ; confidence 0.500
  
275. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015085.png ; $S ( A )$ ; confidence 0.978
+
275. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700154.png ; $H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.958
  
276. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120492.png ; $X ^ { \prime } = F$ ; confidence 0.977
+
276. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070027.png ; $\pi \circ \phi = \tilde { \pi }$ ; confidence 0.616
  
277. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h04797024.png ; $\iota ^ { * } : A ^ { * } \rightarrow K$ ; confidence 0.977
+
277. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830371.png ; $\partial A / \partial u \neq 0$ ; confidence 0.824
  
278. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120502.png ; $\{ H , G / H ^ { 0 } \}$ ; confidence 0.977
+
278. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830375.png ; $\partial A / \partial v \neq 0$ ; confidence 0.669
  
279. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004014.png ; $H ^ { L } = \{ z \in H : \operatorname { Im } z > L \} \text { for } L > 0$ ; confidence 0.977
+
279. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830198.png ; $\partial F / \partial Y _ { i j }$ ; confidence 0.903
  
280. https://www.encyclopediaofmath.org/legacyimages/i/i053/i053060/i0530603.png ; $g = k a n$ ; confidence 0.977
+
280. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830338.png ; $B = \{ B _ { 1 } , \ldots , B _ { s } \}$ ; confidence 0.684
  
281. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090322.png ; $\Lambda ( V )$ ; confidence 0.977
+
281. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830297.png ; $= \partial A / \partial u _ { A }$ ; confidence 0.942
  
282. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872010.png ; $( x + y ) ^ { [ p ] } = x ^ { [ p ] } + y ^ { [ p ] } + \Lambda _ { p } ( x , y )$ ; confidence 0.977
+
282. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120445.png ; $( F , \sigma ( F , G ) ) ^ { \prime }$ ; confidence 0.998
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164040.png ; $q ( V )$ ; confidence 0.977
+
283. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120514.png ; $\prod _ { \alpha } F _ { \alpha }$ ; confidence 0.986
  
284. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120030/k12003040.png ; $E = \emptyset$ ; confidence 0.977
+
284. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120469.png ; $\operatorname { ln } x _ { x } = 0$ ; confidence 0.810
  
285. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820167.png ; $F _ { \pi } ( \overline { m } )$ ; confidence 0.977
+
285. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696090.png ; $c \in F \{ ( y _ { j } ) _ { j \in J } \}$ ; confidence 0.942
  
286. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876024.png ; $\psi _ { k i } ( e ) = \delta _ { k i }$ ; confidence 0.977
+
286. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696068.png ; $F _ { 0 } \{ ( y _ { j } ) _ { j \in J } \}$ ; confidence 0.745
  
287. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300208.png ; $\operatorname { log } \alpha = i \pi$ ; confidence 0.977
+
287. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820112.png ; $F ( X , Y ) = f ^ { - 1 } ( f ( X ) + f ( Y ) )$ ; confidence 0.999
  
288. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590223.png ; $( U ^ { n } ( \zeta , R ) , f _ { \zeta } )$ ; confidence 0.977
+
288. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g1300202.png ; $\operatorname { log } \alpha$ ; confidence 0.981
  
289. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590525.png ; $( a x + b y ) d y = ( c x + e y ) d x$ ; confidence 0.977
+
289. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002015.png ; $F ( z ) = P ( e ^ { z } , e ^ { \beta z } )$ ; confidence 0.998
  
290. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700197.png ; $H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.977
+
290. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047410/h047410131.png ; $F = F ( x , y , \dot { x } , \dot { y } )$ ; confidence 0.994
  
291. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120383.png ; $F ^ { * } ( z )$ ; confidence 0.977
+
291. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h047690123.png ; $G = \operatorname { Spin } ( 7 )$ ; confidence 0.999
  
292. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820148.png ; $F \mapsto C ( F ; A )$ ; confidence 0.977
+
292. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047970/h047970140.png ; $A = K [ [ X _ { 1 } , \dots , X _ { x } ] ]$ ; confidence 0.230
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130054.png ; $M ( k )$ ; confidence 0.977
+
293. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050100/i0501008.png ; $\phi ( x _ { 1 } , \ldots , x _ { x } )$ ; confidence 0.259
  
294. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031640/d0316409.png ; $F _ { M } ( V _ { M } ( m ) ) = V _ { M } ( F _ { M } ( m ) ) = p m$ ; confidence 0.976
+
294. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031850/d031850348.png ; $\phi _ { 1 } , \ldots , \phi _ { m }$ ; confidence 0.611
  
295. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451089.png ; $( S , \operatorname { Pic } X / S )$ ; confidence 0.976
+
295. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058760/l05876024.png ; $\psi _ { k i } ( e ) = \delta _ { k i }$ ; confidence 0.977
  
296. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859082.png ; $\operatorname { exp } X = \sum _ { m = 0 } ^ { \infty } \frac { 1 } { m ! } X ^ { m }$ ; confidence 0.976
+
296. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267035.png ; $S = \operatorname { Spec } ( k )$ ; confidence 0.869
  
297. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164048.png ; $= \chi ( V , O _ { V } ) - 1$ ; confidence 0.976
+
297. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074720/p07472041.png ; $\Gamma = \Gamma _ { \alpha , S }$ ; confidence 0.986
  
298. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s1300405.png ; $X = \Gamma \backslash H$ ; confidence 0.976
+
298. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763082.png ; $\phi _ { 1 } , \ldots , \phi _ { d }$ ; confidence 0.566
  
299. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l05851030.png ; $\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$ ; confidence 0.976
+
299. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763048.png ; $\delta _ { \phi } \in P _ { \phi }$ ; confidence 0.999
  
300. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030620/d03062025.png ; $R = \infty$ ; confidence 0.976
+
300. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763081.png ; $\chi _ { 1 } + \ldots + \chi _ { d }$ ; confidence 0.362

Latest revision as of 16:00, 26 October 2019

List

1. r07763026.png ; $V = \oplus _ { \chi \in P _ { \phi } } V ( \chi )$ ; confidence 0.914

2. c02372058.png ; $\Gamma = \{ z \in \overline { C } : | z | = 1 \}$ ; confidence 0.985

3. t1301306.png ; $T _ { 0 } , T _ { 1 } \in \operatorname { add } T$ ; confidence 0.822

4. t13014054.png ; $v = ( v _ { j } ) _ { j \in Q _ { 0 } } \in N ^ { Q _ { 0 } }$ ; confidence 0.787

5. t1301407.png ; $x = ( x _ { i } ) _ { i \in Q _ { 0 } } \in Z ^ { Q _ { 0 } }$ ; confidence 0.557

6. w120090223.png ; $V ^ { * } = \operatorname { Hom } _ { K } ( V , K )$ ; confidence 0.975

7. a01174031.png ; $\operatorname { Aut } _ { T } ( X \times T )$ ; confidence 0.916

8. d03155045.png ; $G = G _ { \mathscr { L } } G _ { \mathscr { G } }$ ; confidence 0.052

9. d031830290.png ; $A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$ ; confidence 0.523

10. d031830138.png ; $B ( \eta _ { 1 } , \ldots , \eta _ { n } ) \neq 0$ ; confidence 0.425

11. d03249036.png ; $\omega _ { \eta } / F = \omega _ { \zeta / F }$ ; confidence 0.463

12. d03249023.png ; $F = G _ { 0 } \subset G _ { 1 } \subset \ldots$ ; confidence 0.888

13. d034120252.png ; $\operatorname { Re } ( z e ^ { - i \phi } ) > c$ ; confidence 0.886

14. d03412068.png ; $\{ H ^ { \gamma } ( X , A ) , f ^ { * } , \delta \}$ ; confidence 0.761

15. d034120471.png ; $\operatorname { lim } _ { n } f ( x _ { n } ) = 0$ ; confidence 0.651

16. e036960196.png ; $( F \{ \eta _ { 1 } , \ldots , \eta _ { n } ) / F )$ ; confidence 0.134

17. e036960192.png ; $\alpha _ { 1 } , \ldots , \alpha _ { n } \in F$ ; confidence 0.053

18. f04037018.png ; $p \leq k \leq \operatorname { prof } F - q$ ; confidence 0.505

19. f04055028.png ; $V _ { 1 } \subset \ldots \subset V _ { n - 1 }$ ; confidence 0.899

20. h04769037.png ; $M \supset y \Leftrightarrow g H \in G / H$ ; confidence 0.473

21. h04797043.png ; $P _ { U ( \mathfrak { g } ) } = \mathfrak { g }$ ; confidence 0.817

22. i05235057.png ; $\phi = F ( \phi _ { 1 } , \ldots , \phi _ { m } )$ ; confidence 0.556

23. l058510194.png ; $\mathfrak { g } 0 = \mathfrak { s p } ( n , R )$ ; confidence 0.335

24. m06301089.png ; $F ( x _ { 1 } h _ { 1 } + \ldots + x _ { n } h _ { n } ) =$ ; confidence 0.983

25. m06451074.png ; $\operatorname { pec } Z [ 1 / n , \xi _ { n } ]$ ; confidence 0.133

26. r08090014.png ; $S \subset \operatorname { Ker } \alpha$ ; confidence 0.262

27. s085590390.png ; $\delta _ { x } = \operatorname { dim } A / A$ ; confidence 0.580

28. s08706017.png ; $Nrd _ { R } : R ^ { * } \rightarrow Z ( R ) ^ { * }$ ; confidence 0.683

29. u09524012.png ; $X = \sum _ { n = 1 } ^ { \infty } X _ { n } 2 ^ { - n }$ ; confidence 0.978

30. d030700173.png ; $X ^ { \prime } \rightarrow R ^ { \prime }$ ; confidence 0.999

31. d031830139.png ; $B _ { 0 } \in F \{ Y _ { 1 } , \ldots , Y _ { k } \}$ ; confidence 0.707

32. d03249011.png ; $p \subset F \{ Y _ { 1 } , \ldots , Y _ { N } \}$ ; confidence 0.193

33. d034120226.png ; $\Gamma ( Y , O _ { X } / \Gamma ( X , O _ { X } ) )$ ; confidence 0.989

34. g13002021.png ; $( \alpha , b ) \in ( Q \backslash Z ) ^ { 2 }$ ; confidence 0.548

35. h047970144.png ; $\mu : A \rightarrow A \otimes \cdots A$ ; confidence 0.562

36. l058510191.png ; $\mathfrak { g } = \mathfrak { s p } ( n , C )$ ; confidence 0.532

37. l05851058.png ; $\{ \alpha _ { 1 } , \dots , \alpha _ { n } \}$ ; confidence 0.463

38. l05876012.png ; $x = ( x _ { 1 } , \ldots , x _ { x } ) \in \Omega$ ; confidence 0.694

39. p07214067.png ; $\Phi _ { 1 } ( s _ { 0 } ) = \Phi _ { 2 } ( s _ { 0 } )$ ; confidence 0.814

40. s13004056.png ; $\overline { D } = \overline { D } _ { S }$ ; confidence 0.978

41. s085590492.png ; $X ( x _ { 0 } , y _ { 0 } ) = Y ( x _ { 0 } , y _ { 0 } ) = 0$ ; confidence 0.915

42. s085590408.png ; $\{ n , \beta _ { 1 } , \dots , \beta _ { g } \}$ ; confidence 0.568

43. s085590437.png ; $f : C ^ { x + 1 } \rightarrow D ( \epsilon )$ ; confidence 0.168

44. s085590616.png ; $\| \partial y ^ { i } / \partial x ^ { j } \|$ ; confidence 0.969

45. s08559053.png ; $z = \phi _ { 2 } ( \tau ^ { \prime \prime } )$ ; confidence 0.994

46. t130130113.png ; $K ^ { b } ( F _ { \Lambda } ) ^ { ( T , T [ i ] ) } = 0$ ; confidence 0.257

47. a01145093.png ; $l ( D ) = \operatorname { deg } ( D ) - g + 1$ ; confidence 0.995

48. a01150074.png ; $z \rightarrow ( \alpha z + b ) f ( c z + d )$ ; confidence 0.402

49. a01417023.png ; $\{ z \in C : \operatorname { Im } z > 0 \}$ ; confidence 0.951

50. c02333013.png ; $\prod _ { i \in I } X _ { i } \rightarrow Y$ ; confidence 0.946

51. c02593057.png ; $( d \phi ( X ) ( x ) , y ) = - ( x , d \psi ( X ) y )$ ; confidence 0.843

52. c02593022.png ; $( \phi ( g ) x , y ) = ( x , \psi ( g ^ { - 1 } ) y )$ ; confidence 0.983

53. d034120557.png ; $f _ { i } : X \rightarrow \overline { R }$ ; confidence 0.983

54. f0405508.png ; $V _ { 1 } \subset \ldots \subset V _ { k }$ ; confidence 0.965

55. f04082045.png ; $H ( B ) = \operatorname { nil } ( B ) ^ { n }$ ; confidence 0.784

56. f04082088.png ; $\alpha : F ( X , Y ) \rightarrow G ( X , Y )$ ; confidence 1.000

57. h047410110.png ; $\operatorname { Tr } _ { K / k } ( \beta )$ ; confidence 0.968

58. h0474108.png ; $t _ { 1 } ^ { 0 } , \ldots , t _ { x } ^ { 0 } \in Q$ ; confidence 0.199

59. h047690120.png ; $\operatorname { Sp } ( k ) \times U ( 1 )$ ; confidence 0.901

60. h04769082.png ; $\pi : G \times _ { H } F \rightarrow G / H$ ; confidence 0.775

61. h04797063.png ; $\Delta ( \alpha ) = ( \alpha , \alpha )$ ; confidence 0.595

62. h04797022.png ; $\epsilon ^ { * } : K \rightarrow A ^ { * }$ ; confidence 0.996

63. j0542701.png ; $x y = y x , \quad ( x ^ { 2 } y ) x = x ^ { 2 } ( y x )$ ; confidence 0.973

64. l058590178.png ; $H ^ { 1 } ( R , \operatorname { Aut } ( G ) )$ ; confidence 0.711

65. l05876031.png ; $i = 1 , \ldots , r , \quad j = 1 , \ldots , n$ ; confidence 0.616

66. l05876038.png ; $1 \leq i , j \leq r , \quad 1 \leq l \leq n$ ; confidence 0.955

67. m06451033.png ; $\phi : M ( pt ) \rightarrow h _ { M } ( pt )$ ; confidence 0.886

68. r0776408.png ; $\pi * : \omega Y \rightarrow \omega X$ ; confidence 0.746

69. r08103091.png ; $n _ { \alpha } \alpha \in \Phi _ { k } ( G )$ ; confidence 0.368

70. s085590370.png ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863

71. s085590593.png ; $h ( x ) = \frac { \rho X ( x ) } { \| X ( x ) \| }$ ; confidence 0.990

72. s08559011.png ; $L : [ 0,1 ] \rightarrow \overline { C }$ ; confidence 0.994

73. s085590364.png ; $f ( x _ { 0 } , \ldots , x _ { x } ) = \epsilon$ ; confidence 0.572

74. t09420027.png ; $\operatorname { ad } _ { x } ( y ) = [ x , y ]$ ; confidence 0.196

75. f11005024.png ; $\alpha 1 , \ldots , \alpha _ { \gamma }$ ; confidence 0.371

76. a011450116.png ; $\operatorname { deg } ( D ) \geq 2 g + 1$ ; confidence 0.999

77. a01164054.png ; $I = \operatorname { deg } ( c _ { 2 } ) - 4$ ; confidence 0.490

78. c02347029.png ; $g \notin \operatorname { Ker } \rho$ ; confidence 0.676

79. d031830151.png ; $F , G \in F \{ Y _ { 1 } , \ldots , Y _ { n } \}$ ; confidence 0.749

80. d03183094.png ; $F , A \in F \{ Y _ { 1 } , \ldots , Y _ { n } \}$ ; confidence 0.665

81. f04082078.png ; $\phi _ { F } ^ { * } F _ { u } ( X , Y ) = F ( X , Y )$ ; confidence 0.958

82. g1300208.png ; $\operatorname { log } \alpha = i \pi$ ; confidence 0.977

83. h047970142.png ; $1 \otimes X _ { i } \in A \otimes \sim A$ ; confidence 0.699

84. l05851047.png ; $X _ { \alpha } \in \mathfrak { g } _ { Q }$ ; confidence 0.651

85. l058590172.png ; $\operatorname { spin } ( f _ { 2 n + 1 } )$ ; confidence 0.457

86. l058590192.png ; $f ^ { - 1 } ( u ) f ^ { - 1 } ( v ) = f ^ { - 1 } ( u v )$ ; confidence 0.994

87. l058590159.png ; $G _ { 2 } , F _ { 4 } , E _ { 6 } , E _ { 7 } , E _ { 8 }$ ; confidence 0.956

88. m06451022.png ; $h _ { M } = \operatorname { Hom } ( S , M )$ ; confidence 0.426

89. m06451090.png ; $( S , \operatorname { Pic } ^ { 0 } X / S )$ ; confidence 0.966

90. n066900111.png ; $g ) = \phi ( g _ { 1 } ) ( m ( g _ { 2 } , g _ { 3 } )$ ; confidence 0.237

91. s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822

92. s085590276.png ; $\operatorname { lim } f ( z ) = \infty$ ; confidence 0.998

93. s085590599.png ; $w , w ^ { \prime } , \ldots , w ^ { ( x - 1 ) }$ ; confidence 0.604

94. s13054016.png ; $x _ { i j } ( a ) x _ { j } ( b ) = x _ { i j } ( a + b )$ ; confidence 0.234

95. t09290048.png ; $\{ P n : B \leq P < G , \square n \in N \} g$ ; confidence 0.485

96. t13014047.png ; $\chi _ { Q } : K _ { 0 } ( Q ) \rightarrow Z$ ; confidence 0.972

97. t130140164.png ; $q _ { \Lambda } : Z ^ { n } \rightarrow Z$ ; confidence 0.561

98. t130140172.png ; $q _ { C } : Z ^ { ( l _ { C } ) } \rightarrow Z$ ; confidence 0.490

99. a01145072.png ; $\operatorname { deg } K _ { X } = 2 g - 2$ ; confidence 0.913

100. a011450136.png ; $\phi _ { K } : X \rightarrow P ^ { g - 1 }$ ; confidence 0.974

101. a0116402.png ; $f ( x _ { 0 } , x _ { 1 } , x _ { 2 } , x _ { 3 } ) = 0$ ; confidence 0.993

102. a01164058.png ; $\pi = \{ ( D ^ { 2 } ) + ( D K _ { V } ) \} / 2 + 1$ ; confidence 0.997

103. c0259308.png ; $\phi ^ { * } ( g ) = \phi ( g ^ { - 1 } ) ^ { * }$ ; confidence 0.989

104. d03070053.png ; $\gamma ( \xi ) = [ \xi , \xi ] + \ldots$ ; confidence 0.841

105. d031830122.png ; $( \zeta _ { 1 } , \ldots , \zeta _ { n } )$ ; confidence 0.478

106. d031830147.png ; $\zeta _ { k + 1 } , \ldots , \zeta _ { x }$ ; confidence 0.483

107. d031830337.png ; $A = \{ A _ { 1 } , \ldots , A _ { \cdot } \}$ ; confidence 0.354

108. d031830343.png ; $k \leq \operatorname { min } ( r , s )$ ; confidence 0.999

109. d034120304.png ; $A ( f ) = \int _ { \gamma } f ( z ) g ( z ) d z$ ; confidence 0.997

110. d034120413.png ; $( x , x ^ { \prime } ) = x ^ { \prime } ( x )$ ; confidence 0.998

111. e036960148.png ; $\operatorname { GL } ( 1 , K ) = K ^ { * }$ ; confidence 0.533

112. e03696099.png ; $\eta _ { 1 } , \ldots , \eta _ { n } \in G$ ; confidence 0.669

113. f040820135.png ; $V _ { n } \gamma ( T ) = \gamma ( T ^ { x } )$ ; confidence 0.168

114. h0479705.png ; $\delta : A \rightarrow A \otimes A$ ; confidence 0.996

115. j05427036.png ; $J _ { 1 } : X \rightarrow X ^ { \prime }$ ; confidence 0.990

116. k12003011.png ; $\operatorname { Ric } ( \omega ) = 0$ ; confidence 0.997

117. l05851020.png ; $( \text { Aut } \mathfrak { g } ) ^ { 0 }$ ; confidence 0.717

118. l058510199.png ; $\operatorname { su } ( 2 p , 2 ( n - p ) )$ ; confidence 0.801

119. l058510175.png ; $90 = \operatorname { su } ^ { x } ( 2 n )$ ; confidence 0.349

120. l05852015.png ; $\mathscr { C } _ { 0 } = \mathfrak { g }$ ; confidence 0.191

121. l05868023.png ; $\Gamma ( G ) \subset \mathfrak { h }$ ; confidence 0.891

122. n066900109.png ; $\phi : G \rightarrow \text { Aut } A$ ; confidence 0.720

123. n06690059.png ; $H ^ { 0 } ( G , A ) = H ^ { 0 } ( C ^ { * } ( G , A ) )$ ; confidence 0.986

124. n06690033.png ; $H ^ { i } ( C ^ { * } ( \mathfrak { U } , F ) )$ ; confidence 0.769

125. n06690063.png ; $H ^ { 1 } ( G , A ) = H ^ { 1 } ( C ^ { * } ( G , A ) )$ ; confidence 0.973

126. n06690015.png ; $\delta : C ^ { 1 } \rightarrow C ^ { 2 }$ ; confidence 0.985

127. p07267042.png ; $\operatorname { Pic } _ { X / k } ^ { 0 }$ ; confidence 0.272

128. p07267044.png ; $\operatorname { Pic } _ { K / k } ^ { Q }$ ; confidence 0.366

129. q07631070.png ; $\delta \operatorname { lg } = \phi$ ; confidence 0.586

130. q0763106.png ; $\Delta : A \rightarrow A \otimes A$ ; confidence 0.996

131. r08137025.png ; $\{ \rho ^ { \alpha } : \alpha \in I \}$ ; confidence 0.999

132. s13004021.png ; $\operatorname { Im } ( \gamma z ) > 1$ ; confidence 0.951

133. s13004025.png ; $( \Gamma \cap P ) \backslash H ^ { 1 }$ ; confidence 1.000

134. s13004038.png ; $X _ { g } ^ { * } = \cup _ { r \leq g } X _ { r }$ ; confidence 0.386

135. s085590511.png ; $\dot { i } _ { 0 } \in \{ 1 , \ldots , n \}$ ; confidence 0.377

136. s085590228.png ; $R = \{ R _ { 1 } > 0 , \ldots , R _ { n } > 0 \}$ ; confidence 0.785

137. s085590359.png ; $C \{ x _ { 0 } , \ldots , x _ { x } \} / J ( f )$ ; confidence 0.320

138. s085590271.png ; $\phi _ { a } ( z ) = \psi _ { a x } ( z ) f ( z )$ ; confidence 0.163

139. s085590613.png ; $f : M ^ { \aleph } \rightarrow N ^ { x }$ ; confidence 0.136

140. s08706014.png ; $K _ { 1 } ( R [ t _ { 1 } , \ldots , t _ { x } ] )$ ; confidence 0.460

141. s13054035.png ; $h ( \alpha ) = w ( \alpha ) w ( 1 ) ^ { - 1 }$ ; confidence 0.731

142. t130140108.png ; $\sum _ { i , j \in Q _ { 0 } } e _ { j } I _ { e }$ ; confidence 0.361

143. w120090195.png ; $\operatorname { PSL } _ { \eta } ( K )$ ; confidence 0.528

144. a01145043.png ; $Cl ( P ^ { 1 } ) = Z , Cl ^ { 0 } ( P ^ { 1 } ) = 0$ ; confidence 0.119

145. a01152034.png ; $\tau : G \times V \rightarrow V$ ; confidence 0.995

146. a01164016.png ; $\operatorname { lim } | K _ { i } | + 1$ ; confidence 0.865

147. a01164065.png ; $H ^ { \prime } ( V , O _ { V } ( D + n H ) ) = 0$ ; confidence 0.983

148. a014170107.png ; $j : X \times \Gamma \rightarrow H$ ; confidence 0.927

149. c02056028.png ; $\phi : G \rightarrow G ^ { \prime }$ ; confidence 0.985

150. d03070065.png ; $H ^ { 0 } ( X _ { s } , \Theta _ { X _ { S } } )$ ; confidence 0.295

151. d030700128.png ; $\hat { \mathscr { O } } _ { S , s _ { 0 } }$ ; confidence 0.480

152. d031830281.png ; $A \in R \{ y _ { 1 } , \ldots , y _ { n } \}$ ; confidence 0.345

153. d031830315.png ; $F \in R \{ y _ { 1 } , \ldots , y _ { n } \}$ ; confidence 0.267

154. d031830137.png ; $B \in F \{ Y _ { 1 } , \ldots , Y _ { N } \}$ ; confidence 0.377

155. d03183092.png ; $A \in F \{ Y _ { 1 } , \ldots , Y _ { N } \}$ ; confidence 0.404

156. d034120346.png ; $\Lambda _ { \zeta , n } F ( z , \zeta )$ ; confidence 0.511

157. d034120561.png ; $y \in \overline { R } \square ^ { m }$ ; confidence 0.544

158. e036960158.png ; $\delta _ { i } \alpha = \alpha _ { i }$ ; confidence 0.862

159. f04082085.png ; $\psi : L \rightarrow L ^ { \prime }$ ; confidence 1.000

160. f04082022.png ; $H ( B _ { 1 } ) \rightarrow H ( B _ { 2 } )$ ; confidence 0.997

161. h047410112.png ; $\beta = \alpha - \sigma ( \alpha )$ ; confidence 0.999

162. h04797060.png ; $\Delta : G \rightarrow G \times G$ ; confidence 0.998

163. h04797024.png ; $\iota ^ { * } : A ^ { * } \rightarrow K$ ; confidence 0.977

164. h04797018.png ; $A ^ { * } = \sum _ { n \in Z } A _ { n } ^ { * }$ ; confidence 0.525

165. i0523503.png ; $y \rightarrow \gamma x + \delta y$ ; confidence 0.885

166. l058510183.png ; $g = \operatorname { so } ( 2 n + 1 , C )$ ; confidence 0.198

167. l05859095.png ; $L ( G _ { 1 } ) \rightarrow L ( G _ { 2 } )$ ; confidence 0.996

168. l0585902.png ; $\mu : ( x , y ) \rightarrow x y ^ { - 1 }$ ; confidence 0.998

169. l05868042.png ; $Z _ { g } = \Gamma _ { 1 } / \Gamma _ { 0 }$ ; confidence 0.875

170. l05872023.png ; $( x , y ) \rightarrow [ x , y ] = x y - y x$ ; confidence 0.997

171. m06451040.png ; $\overline { \mathfrak { M } } _ { g }$ ; confidence 0.963

172. o070010110.png ; $X = \cup _ { \alpha } X _ { \alpha }$ ; confidence 0.245

173. p07267030.png ; $\operatorname { Pic } _ { X / k } ( k )$ ; confidence 0.713

174. q076310135.png ; $A \rightarrow \text { Mat } ( n , k )$ ; confidence 0.772

175. q076310120.png ; $R = \sum _ { i } x _ { i } \otimes y _ { i }$ ; confidence 0.487

176. r077630107.png ; $\alpha \mapsto \alpha ^ { p ^ { i } }$ ; confidence 0.478

177. r07763052.png ; $( \delta _ { \phi } , \alpha ) \geq 0$ ; confidence 0.999

178. r0776707.png ; $L = K ( \sqrt { \alpha } , \sqrt { b } )$ ; confidence 0.629

179. s085590325.png ; $H ^ { i } ( X , O _ { \overline { X } } ) = 0$ ; confidence 0.534

180. s085590453.png ; $f _ { \lambda } ( z ) = F ( z , \lambda )$ ; confidence 0.997

181. s085590327.png ; $H ^ { n - 1 } ( X , O _ { \overline { X } } )$ ; confidence 0.718

182. s085590403.png ; $y = \sum _ { i } \alpha _ { i } x ^ { i / n }$ ; confidence 0.722

183. s08706047.png ; $n \geq \operatorname { sr } ( R ) + 1$ ; confidence 0.511

184. s08706046.png ; $K _ { 1 } ( R ) = GL _ { n } ( R ) / E _ { n } ( R )$ ; confidence 0.156

185. t130130106.png ; $T _ { i } \in \operatorname { add } T$ ; confidence 0.665

186. u09540036.png ; $\lambda = ( m _ { 1 } , \dots , m _ { s } )$ ; confidence 0.450

187. w09759011.png ; $I = \operatorname { ind } _ { k } ( D )$ ; confidence 0.955

188. a01164094.png ; $b _ { 2 } ( V ) \geq \rho + 2 p _ { g } ( V )$ ; confidence 0.767

189. a014170114.png ; $f ( x ) = j ( x , \gamma ) f ( x \gamma )$ ; confidence 0.623

190. a01417072.png ; $| \phi ( x ) | \geq | \phi ( x _ { 0 } ) |$ ; confidence 0.992

191. c02593092.png ; $\Lambda \in \mathfrak { g } ^ { * }$ ; confidence 0.899

192. d03070025.png ; $\phi : \tilde { X } \rightarrow X$ ; confidence 0.732

193. d03070055.png ; $H ^ { * } ( X _ { \diamond } , \Theta )$ ; confidence 0.861

194. d030700202.png ; $M X _ { 0 } , \alpha \subset M X _ { 0 }$ ; confidence 0.868

195. c0214607.png ; $( \eta _ { 1 } , \ldots , \eta _ { n } )$ ; confidence 0.232

196. d031830255.png ; $\partial _ { i } : R \rightarrow R$ ; confidence 0.993

197. d031830390.png ; $A \in k \{ y _ { 1 } , \dots , y _ { n } \}$ ; confidence 0.407

198. d03183027.png ; $a _ { \tau \langle V \rangle } ( V )$ ; confidence 0.402

199. d034120227.png ; $\Gamma ( X \backslash Y , O _ { X } )$ ; confidence 0.983

200. c02502011.png ; $f : X \rightarrow \overline { R }$ ; confidence 0.994

201. d03412066.png ; $\{ H _ { r } ( X , A ) , f * , \partial \}$ ; confidence 0.923

202. d034120506.png ; $F = \prod _ { \alpha } F _ { \alpha }$ ; confidence 0.991

203. c0272709.png ; $g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } \neq 0$ ; confidence 0.254

204. e036960198.png ; $y ^ { \prime } + \alpha _ { 1 } y = 0$ ; confidence 0.639

205. f04082093.png ; $\alpha ( Z _ { 1 } , \ldots , Z _ { n } )$ ; confidence 0.480

206. f040820169.png ; $\alpha + b = F _ { \pi } ( \alpha , b )$ ; confidence 0.393

207. c02489024.png ; $\beta _ { 1 } , \ldots , \beta _ { n }$ ; confidence 0.525

208. i0523504.png ; $\alpha \delta - \beta \gamma = 1$ ; confidence 0.999

209. i0523502.png ; $X \rightarrow \alpha X + \beta y$ ; confidence 0.474

210. j05427089.png ; $Kan ^ { - 1 } ( g ) = \mathfrak { g } - 1$ ; confidence 0.529

211. k1200301.png ; $\operatorname { Ric } ( \omega )$ ; confidence 0.997

212. l05843089.png ; $\mathfrak { g } _ { \alpha } \neq 0$ ; confidence 0.985

213. l05848090.png ; $L ( G ) \subset \mathfrak { d } ( V )$ ; confidence 0.673

214. l0587208.png ; $( x ^ { [ p ] } ) = ( \text { ad } x ) ^ { p }$ ; confidence 0.500

215. l05925088.png ; $\operatorname { dim } ( 1 - t ) V = 1$ ; confidence 0.998

216. m06451037.png ; $\chi : h _ { M } \rightarrow h _ { N }$ ; confidence 0.488

217. p07267028.png ; $k ( k ) = \operatorname { Pic } ( X )$ ; confidence 0.992

218. q07631033.png ; $x _ { i l } | x _ { k j } = x _ { k } ; x _ { i l }$ ; confidence 0.069

219. r07764012.png ; $\sum _ { i = 1 } ^ { n } k _ { i } ^ { - 1 } > 1$ ; confidence 0.994

220. r081030102.png ; $\Delta \backslash \Delta _ { 0 }$ ; confidence 0.556

221. s085590274.png ; $\phi _ { \alpha } ( \alpha ) \neq 0$ ; confidence 0.873

222. s085590223.png ; $( U ^ { n } ( \zeta , R ) , f _ { \zeta } )$ ; confidence 0.977

223. u09524066.png ; $0 \leq a \leq \{ n a \} \leq b \leq 1$ ; confidence 0.463

224. w120090110.png ; $\lambda \in \Lambda ^ { + } ( n , r )$ ; confidence 1.000

225. a01145036.png ; $\operatorname { iv } ( X ) / P ( X )$ ; confidence 0.590

226. a01153014.png ; $\alpha 1 , \ldots , \alpha _ { x }$ ; confidence 0.154

227. a0115307.png ; $f ( b _ { 1 } , \dots , b _ { n } ) \neq 0$ ; confidence 0.554

228. a01164059.png ; $| D | \geq n - \pi + p _ { x } ( V ) + 1 - i$ ; confidence 0.785

229. a01174012.png ; $\operatorname { PLG } ( n + 1 , k )$ ; confidence 0.708

230. a01417028.png ; $\{ z \rightarrow z + n : n \in Z \}$ ; confidence 0.948

231. c02347040.png ; $\{ R ^ { \alpha } : \alpha \in I \}$ ; confidence 0.997

232. d034120298.png ; $F = \overline { C } \backslash G$ ; confidence 0.990

233. d034120344.png ; $\Lambda _ { \zeta } F ( z , \zeta )$ ; confidence 0.938

234. d034120518.png ; $\alpha \text { pr } F _ { \alpha }$ ; confidence 0.862

235. d034120242.png ; $H ^ { p } ( X , F ) = H ^ { p + 1 } ( X , F ) = 0$ ; confidence 0.996

236. e036960169.png ; $( F \langle \alpha \rangle / F )$ ; confidence 0.388

237. f04055041.png ; $G _ { n , n _ { 1 } } = Gr _ { n _ { 1 } } ( V )$ ; confidence 0.649

238. h0479703.png ; $\mu : A \otimes A \rightarrow A$ ; confidence 0.952

239. h047970118.png ; $\mu : A \rightarrow A \otimes A$ ; confidence 0.952

240. i05235024.png ; $f ( x , y ) = a x ^ { 2 } + 2 b x y + c y ^ { 2 }$ ; confidence 0.986

241. j05427061.png ; $\{ a b c \} = ( a b ) c + ( b c ) a - ( c a ) b$ ; confidence 0.872

242. j05427080.png ; $[ \alpha , \mathfrak { g } - 1 ] = 0$ ; confidence 0.882

243. k12003036.png ; $F _ { M } : G \rightarrow C ^ { * }$ ; confidence 0.933

244. k12003017.png ; $c _ { 1 } ( S ) ^ { 2 } \leq 3 _ { C 2 } ( S )$ ; confidence 0.319

245. l058510234.png ; $\alpha _ { j i } = \alpha _ { i j } = 0$ ; confidence 0.722

246. l058510118.png ; $g = \operatorname { so } ( 2 n , k )$ ; confidence 0.273

247. l058510201.png ; $g = \operatorname { so } ( 2 n , C )$ ; confidence 0.268

248. l05852018.png ; $\mathfrak { g } _ { i } ^ { \prime }$ ; confidence 0.212

249. g04503014.png ; $\operatorname { lim } V _ { k } = k$ ; confidence 0.978

250. l05872087.png ; $\operatorname { Der } _ { k } ( A )$ ; confidence 0.991

251. m06451089.png ; $( S , \operatorname { Pic } X / S )$ ; confidence 0.976

252. m06451011.png ; $\{ X _ { S } : s \in S , X _ { S } \in A \}$ ; confidence 0.842

253. m06451017.png ; $f ^ { * } : M ( S ) \rightarrow M ( T )$ ; confidence 0.973

254. m06451092.png ; $\operatorname { Pic } ^ { 0 } X / S$ ; confidence 0.620

255. m06451031.png ; $S = \operatorname { Spec } K = pt$ ; confidence 0.383

256. o07001018.png ; $\pi _ { X , G } : X \rightarrow X / G$ ; confidence 0.693

257. p07472082.png ; $\Gamma \times E \rightarrow E$ ; confidence 0.998

258. q07631031.png ; $x _ { j } ; x _ { k } j = q x _ { k } ; x _ { j }$ ; confidence 0.084

259. q07631017.png ; $m ( \alpha \otimes b ) = \alpha b$ ; confidence 0.443

260. r0809006.png ; $\lambda : G _ { m } \rightarrow S$ ; confidence 0.380

261. s13004033.png ; $G = \operatorname { Sp } ( 2 g , R )$ ; confidence 0.940

262. a01220076.png ; $\alpha \in C ^ { \prime \prime }$ ; confidence 0.154

263. s08559025.png ; $\alpha = \phi _ { 1 } ( \tau _ { 1 } )$ ; confidence 0.853

264. s08559029.png ; $\alpha = \phi _ { 2 } ( \tau _ { 2 } )$ ; confidence 0.777

265. s085590323.png ; $H ^ { i } ( X , O _ { \overline { X } } )$ ; confidence 0.623

266. s13054070.png ; $K _ { 2 } Q = \coprod _ { p } \mu _ { p }$ ; confidence 0.907

267. w120090248.png ; $\Phi = \Phi ^ { + } \cup \Phi ^ { - }$ ; confidence 0.997

268. a01145057.png ; $\pi = \frac { ( m - 1 ) ( m - 2 ) } { 2 }$ ; confidence 0.999

269. a01145058.png ; $g = \frac { ( m - 1 ) ( m - 2 ) } { 2 } - d$ ; confidence 0.992

270. c02057067.png ; $H ^ { p } ( X , S ) = 0 , \quad p \geq 1$ ; confidence 0.983

271. d030700177.png ; $H ^ { 0 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.979

272. d030700232.png ; $K = \operatorname { Comm } ( V )$ ; confidence 0.897

273. d030700197.png ; $H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.977

274. d03070039.png ; $f : S ^ { \prime } \rightarrow S$ ; confidence 0.500

275. d030700154.png ; $H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) = 0$ ; confidence 0.958

276. d03070027.png ; $\pi \circ \phi = \tilde { \pi }$ ; confidence 0.616

277. d031830371.png ; $\partial A / \partial u \neq 0$ ; confidence 0.824

278. d031830375.png ; $\partial A / \partial v \neq 0$ ; confidence 0.669

279. d031830198.png ; $\partial F / \partial Y _ { i j }$ ; confidence 0.903

280. d031830338.png ; $B = \{ B _ { 1 } , \ldots , B _ { s } \}$ ; confidence 0.684

281. d031830297.png ; $= \partial A / \partial u _ { A }$ ; confidence 0.942

282. d034120445.png ; $( F , \sigma ( F , G ) ) ^ { \prime }$ ; confidence 0.998

283. d034120514.png ; $\prod _ { \alpha } F _ { \alpha }$ ; confidence 0.986

284. d034120469.png ; $\operatorname { ln } x _ { x } = 0$ ; confidence 0.810

285. e03696090.png ; $c \in F \{ ( y _ { j } ) _ { j \in J } \}$ ; confidence 0.942

286. e03696068.png ; $F _ { 0 } \{ ( y _ { j } ) _ { j \in J } \}$ ; confidence 0.745

287. f040820112.png ; $F ( X , Y ) = f ^ { - 1 } ( f ( X ) + f ( Y ) )$ ; confidence 0.999

288. g1300202.png ; $\operatorname { log } \alpha$ ; confidence 0.981

289. g13002015.png ; $F ( z ) = P ( e ^ { z } , e ^ { \beta z } )$ ; confidence 0.998

290. h047410131.png ; $F = F ( x , y , \dot { x } , \dot { y } )$ ; confidence 0.994

291. h047690123.png ; $G = \operatorname { Spin } ( 7 )$ ; confidence 0.999

292. h047970140.png ; $A = K [ [ X _ { 1 } , \dots , X _ { x } ] ]$ ; confidence 0.230

293. i0501008.png ; $\phi ( x _ { 1 } , \ldots , x _ { x } )$ ; confidence 0.259

294. d031850348.png ; $\phi _ { 1 } , \ldots , \phi _ { m }$ ; confidence 0.611

295. l05876024.png ; $\psi _ { k i } ( e ) = \delta _ { k i }$ ; confidence 0.977

296. p07267035.png ; $S = \operatorname { Spec } ( k )$ ; confidence 0.869

297. p07472041.png ; $\Gamma = \Gamma _ { \alpha , S }$ ; confidence 0.986

298. r07763082.png ; $\phi _ { 1 } , \ldots , \phi _ { d }$ ; confidence 0.566

299. r07763048.png ; $\delta _ { \phi } \in P _ { \phi }$ ; confidence 0.999

300. r07763081.png ; $\chi _ { 1 } + \ldots + \chi _ { d }$ ; confidence 0.362

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/Algebraic Groups/3. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/Algebraic_Groups/3&oldid=44096