|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| ''on conformal mapping of domains with variable boundaries'' | | ''on conformal mapping of domains with variable boundaries'' |
| | | |
| One of the main results in the theory of conformal mapping of domains with variable boundaries; obtained by C. Carathéodory [[#References|[1]]]. | | One of the main results in the theory of conformal mapping of domains with variable boundaries; obtained by C. Carathéodory [[#References|[1]]]. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c0203401.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c0203402.png" /> be a sequence of simply-connected domains of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c0203403.png" />-plane containing a fixed point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c0203404.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c0203405.png" />. If there exists a disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c0203406.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c0203407.png" />, belonging to all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c0203408.png" />, then the kernel of the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c0203409.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034010.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034011.png" /> is the largest domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034012.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034013.png" /> and such that for each compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034014.png" /> belonging to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034015.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034016.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034017.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034018.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034019.png" />. A largest domain is one which contains any other domain having the same property. If there is no such a disc, then by the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034020.png" /> of the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034022.png" /> one means the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034023.png" /> (in this case one says that the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034025.png" /> has a degenerate kernel). A sequence of domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034027.png" /> converges to a kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034028.png" /> if any subsequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034029.png" /> has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034030.png" /> as its kernel. | + | Let $B_n$, $n=1,2,\dots,$ be a sequence of simply-connected domains of the $z$-plane containing a fixed point $z_0$, $z_0\neq\infty$. If there exists a disc $|z-z_0|<\rho$, $\rho>0$, belonging to all $B_n$, then the kernel of the sequence $B_n$, $n=1,2,\dots,$ with respect to $z_0$ is the largest domain $B$ containing $z_0$ and such that for each compact set $E$ belonging to $B$ there is an $N$ such that $E$ belongs to $B_n$ for all $n\geq N$. A largest domain is one which contains any other domain having the same property. If there is no such a disc, then by the kernel $B$ of the sequence $B_n$, $n=1,2,\dots,$ one means the point $z_0$ (in this case one says that the sequence $B_n$, $n=1,2,\dots,$ has a degenerate kernel). A sequence of domains $B_n$, $n=1,2,\dots,$ converges to a kernel $B$ if any subsequence of $B_n$ has $B$ as its kernel. |
| | | |
− | Carathéodory's theorem. Suppose that one is given a sequence of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034034.png" /> that are regular and univalent in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034035.png" /> and that map this disc onto the domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034036.png" />, respectively. Then in order that the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034038.png" /> converges in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034039.png" /> to a finite function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034040.png" />, it is necessary and sufficient that the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034042.png" /> converges to a kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034043.png" /> which is either the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034044.png" /> or a domain containing more than one boundary point. Moreover, the convergence is uniform on compact sets in the interior of the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034045.png" />. If the limit function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034046.png" />, then it maps the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034047.png" /> univalently onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034048.png" />, and the inverse functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034049.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034050.png" /> are uniformly convergent on compact sets in the interior of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034051.png" /> to the inverse function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034052.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034053.png" />. | + | Carathéodory's theorem. Suppose that one is given a sequence of functions $z=f_n(\zeta)$, $f_n(\zeta_0)=z_0$, $f'_n(\zeta_0)>0$, $n=1,2,\dots,$ that are regular and univalent in the disc $|\zeta-\zeta_0|<1$ and that map this disc onto the domains $B_n$, respectively. Then in order that the sequence $f_n(\zeta)$, $n=1,2,\dots,$ converges in the disc $|\zeta-\zeta_0|<1$ to a finite function $f(\zeta)$, it is necessary and sufficient that the sequence $B_n$, $n=1,2,\dots,$ converges to a kernel $B$ which is either the point $z_0$ or a domain containing more than one boundary point. Moreover, the convergence is uniform on compact sets in the interior of the disc $|\zeta-\zeta_0|<1$. If the limit function $f(\zeta)\not\equiv\mathrm{const}$, then it maps the disc $|\zeta-\zeta_0|<1$ univalently onto $B$, and the inverse functions $\phi_n(z)$, $n=1,2,\dots,$ are uniformly convergent on compact sets in the interior of $B$ to the inverse function $\phi(z)$ of $f(\zeta)$. |
| | | |
− | The question of the convergence of univalent functions in multiply-connected domains is considered analogously. One such theorem is given below for unbounded domains. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034055.png" /> be a sequence of domains in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034056.png" />-plane containing some fixed neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034057.png" />. Then the kernel of the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034059.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034060.png" /> is the largest domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034061.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034062.png" /> and such that any closed subdomain of it is a subset of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034063.png" /> from some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034064.png" /> onwards. Convergence of the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034066.png" /> to the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034067.png" /> is defined as before. The following theorem holds [[#References|[2]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034068.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034069.png" /> be a sequence of domains in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034070.png" />-plane containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034071.png" /> and converging to a kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034072.png" />, and suppose that the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034074.png" /> map them univalently onto corresponding domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034075.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034076.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034079.png" />. Then in order that the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034080.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034081.png" /> converges uniformly on compact sets in the interior of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034082.png" /> to a univalent function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034083.png" />, it is necessary and sufficient that the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034084.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034085.png" /> possesses a kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034086.png" /> and converges to it. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034087.png" /> maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034088.png" /> univalently onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020340/c02034089.png" />. | + | The question of the convergence of univalent functions in multiply-connected domains is considered analogously. One such theorem is given below for unbounded domains. Let $B_n$, $n=1,2,\dots,$ be a sequence of domains in the $z$-plane containing some fixed neighbourhood of $z=\infty$. Then the kernel of the sequence $B_n$, $n=1,2,\dots,$ with respect to $z=\infty$ is the largest domain $B$ containing $z=\infty$ and such that any closed subdomain of it is a subset of all $B_n$ from some $n$ onwards. Convergence of the sequence $B_n$, $n=1,2,\dots,$ to the kernel $B$ is defined as before. The following theorem holds [[#References|[2]]]. Let $A_n$, $n=1,2,\dots,$ be a sequence of domains in the $z$-plane containing $z=\infty$ and converging to a kernel $A$, and suppose that the functions $\zeta=f_n(z)$, $n=1,2,\dots,$ map them univalently onto corresponding domains $B_n$ containing $\zeta=\infty$; $f_n(\infty)=\infty$, $f'_n(\infty)=1$, $n=1,2,\dots$. Then in order that the sequence $f_n(z)$, $n=1,2,\dots,$ converges uniformly on compact sets in the interior of $A$ to a univalent function $f(z)$, it is necessary and sufficient that the sequence $B_n$, $n=1,2,\dots,$ possesses a kernel $B$ and converges to it. In this case $\zeta=f(z)$ maps $A$ univalently onto $B$. |
| | | |
| It is possible to give other theorems on the convergence of a sequence of univalent functions, in dependence of the method of normalizing them (see [[#References|[2]]]). | | It is possible to give other theorems on the convergence of a sequence of univalent functions, in dependence of the method of normalizing them (see [[#References|[2]]]). |
Latest revision as of 21:37, 22 December 2018
on conformal mapping of domains with variable boundaries
One of the main results in the theory of conformal mapping of domains with variable boundaries; obtained by C. Carathéodory [1].
Let $B_n$, $n=1,2,\dots,$ be a sequence of simply-connected domains of the $z$-plane containing a fixed point $z_0$, $z_0\neq\infty$. If there exists a disc $|z-z_0|<\rho$, $\rho>0$, belonging to all $B_n$, then the kernel of the sequence $B_n$, $n=1,2,\dots,$ with respect to $z_0$ is the largest domain $B$ containing $z_0$ and such that for each compact set $E$ belonging to $B$ there is an $N$ such that $E$ belongs to $B_n$ for all $n\geq N$. A largest domain is one which contains any other domain having the same property. If there is no such a disc, then by the kernel $B$ of the sequence $B_n$, $n=1,2,\dots,$ one means the point $z_0$ (in this case one says that the sequence $B_n$, $n=1,2,\dots,$ has a degenerate kernel). A sequence of domains $B_n$, $n=1,2,\dots,$ converges to a kernel $B$ if any subsequence of $B_n$ has $B$ as its kernel.
Carathéodory's theorem. Suppose that one is given a sequence of functions $z=f_n(\zeta)$, $f_n(\zeta_0)=z_0$, $f'_n(\zeta_0)>0$, $n=1,2,\dots,$ that are regular and univalent in the disc $|\zeta-\zeta_0|<1$ and that map this disc onto the domains $B_n$, respectively. Then in order that the sequence $f_n(\zeta)$, $n=1,2,\dots,$ converges in the disc $|\zeta-\zeta_0|<1$ to a finite function $f(\zeta)$, it is necessary and sufficient that the sequence $B_n$, $n=1,2,\dots,$ converges to a kernel $B$ which is either the point $z_0$ or a domain containing more than one boundary point. Moreover, the convergence is uniform on compact sets in the interior of the disc $|\zeta-\zeta_0|<1$. If the limit function $f(\zeta)\not\equiv\mathrm{const}$, then it maps the disc $|\zeta-\zeta_0|<1$ univalently onto $B$, and the inverse functions $\phi_n(z)$, $n=1,2,\dots,$ are uniformly convergent on compact sets in the interior of $B$ to the inverse function $\phi(z)$ of $f(\zeta)$.
The question of the convergence of univalent functions in multiply-connected domains is considered analogously. One such theorem is given below for unbounded domains. Let $B_n$, $n=1,2,\dots,$ be a sequence of domains in the $z$-plane containing some fixed neighbourhood of $z=\infty$. Then the kernel of the sequence $B_n$, $n=1,2,\dots,$ with respect to $z=\infty$ is the largest domain $B$ containing $z=\infty$ and such that any closed subdomain of it is a subset of all $B_n$ from some $n$ onwards. Convergence of the sequence $B_n$, $n=1,2,\dots,$ to the kernel $B$ is defined as before. The following theorem holds [2]. Let $A_n$, $n=1,2,\dots,$ be a sequence of domains in the $z$-plane containing $z=\infty$ and converging to a kernel $A$, and suppose that the functions $\zeta=f_n(z)$, $n=1,2,\dots,$ map them univalently onto corresponding domains $B_n$ containing $\zeta=\infty$; $f_n(\infty)=\infty$, $f'_n(\infty)=1$, $n=1,2,\dots$. Then in order that the sequence $f_n(z)$, $n=1,2,\dots,$ converges uniformly on compact sets in the interior of $A$ to a univalent function $f(z)$, it is necessary and sufficient that the sequence $B_n$, $n=1,2,\dots,$ possesses a kernel $B$ and converges to it. In this case $\zeta=f(z)$ maps $A$ univalently onto $B$.
It is possible to give other theorems on the convergence of a sequence of univalent functions, in dependence of the method of normalizing them (see [2]).
References
[1] | C. Carathéodory, "Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten" Math. Ann. , 72 (1912) pp. 107–144 |
[2] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
References
[a1] | P.L. Duren, "Univalent functions" , Springer (1983) pp. Chapt. 3 |
How to Cite This Entry:
Carathéodory theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carath%C3%A9odory_theorem&oldid=22251
This article was adapted from an original article by G.V. Kuz'mina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article