Namespaces
Variants
Actions

Difference between revisions of "Thread"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
''of an inverse spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092710/t0927101.png" />''
+
{{TEX|done}}
 +
''of an inverse spectrum $\{X_\alpha,\omega_\alpha^\beta:\alpha\in\mathfrak A\}$''
  
A system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092710/t0927102.png" /> of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092710/t0927103.png" /> (one point from every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092710/t0927104.png" />), that is, a point of the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092710/t0927105.png" /> of the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092710/t0927106.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092710/t0927107.png" /> whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092710/t0927108.png" />.
+
A system $x=\{x_\alpha\}$ of points $x_\alpha\in X_\alpha$ (one point from every $X_\alpha$), that is, a point of the product $\prod_{\alpha\in\mathfrak A}X_\alpha$ of the sets $X_\alpha$, such that $\omega_\alpha^\beta(x_\beta)=x_\alpha$ whenever $\beta>\alpha$.
  
  

Latest revision as of 17:16, 28 November 2018

of an inverse spectrum $\{X_\alpha,\omega_\alpha^\beta:\alpha\in\mathfrak A\}$

A system $x=\{x_\alpha\}$ of points $x_\alpha\in X_\alpha$ (one point from every $X_\alpha$), that is, a point of the product $\prod_{\alpha\in\mathfrak A}X_\alpha$ of the sets $X_\alpha$, such that $\omega_\alpha^\beta(x_\beta)=x_\alpha$ whenever $\beta>\alpha$.


Comments

The sets of threads of an inverse spectrum (or projective system, or inverse system) is called the (projective, inverse) limit of that spectrum (see the editorial comments to Limit).

References

[a1] R. Engelking, "General topology" , Heldermann (1989)
How to Cite This Entry:
Thread. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Thread&oldid=13432
This article was adapted from an original article by B.A. Pasynkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article