Namespaces
Variants
Actions

Difference between revisions of "Quasi-character"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX done)
Line 1: Line 1:
A continuous [[Homomorphism|homomorphism]] from an Abelian [[Topological group|topological group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763901.png" /> into the multiplicative group of complex numbers. In this setting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763902.png" /> is often the multiplicative group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763903.png" /> of some local field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763904.png" />.
+
A continuous [[homomorphism]] from an Abelian [[topological group]] $G$ into the multiplicative group of complex numbers. In this setting $G$ is often the multiplicative group $K^*$ of some local field $K$.
  
The restriction of a quasi-character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763905.png" /> to any compact subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763906.png" /> is a character of this subgroup (cf. [[Character of a group|Character of a group]]). In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763907.png" /> is a norm on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763908.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763909.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639010.png" /> induces a character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639011.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639012.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639013.png" /> is, in the non-Archimedean case, the same as the group of units of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639014.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639015.png" />, then the quasi-character is said to be non-ramified. Any non-ramified quasi-character has the form
+
The restriction of a quasi-character $c$ to any compact subgroup of $G$ is a character of this subgroup (cf. [[Character of a group]]). In particular, if $\Vert\cdot\Vert$ is a norm on $K$ and $U = \{ a \in K^*\ :\ \Vert a \Vert=1 \}$, then $c$ induces a character of the group $U$, and $U$ is, in the non-Archimedean case, the same as the group of units of $K$. If $c(U) = \{1\}$, then the quasi-character is said to be ''non-ramified''. Any non-ramified quasi-character has the form
 +
$$
 +
c(a) = \Vert a \Vert^s = e^{s \log \Vert a \Vert} \ .
 +
$$
 +
In the general case a quasi-character of the group $K^*$ has the form $c = c_1\Vert a \Vert^s$, where $s$ is a complex number and $c_1$ is a character of $K^*$. The real part of $s$ is uniquely determined by the quasi-character $c$ and is called the real part of $c$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639016.png" /></td> </tr></table>
+
In the non-Archimedean case, for each quasi-character $c$ there is a positive integer $f$ such that
 +
$$
 +
c(1+\mathfrak{m}^f) = 1
 +
$$
 +
where $\mathfrak{m}$ is the [[maximal ideal]] in the ring of integers of $K$. The smallest number $f$ with this property is called the ''ramification degree'' of the quasi-character $c$, and the ideal $\mathfrak{m}^f$ is called the ''conductor'' of $c$.
  
In the general case a quasi-character of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639017.png" /> has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639019.png" /> is a complex number and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639020.png" /> is a character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639021.png" />. The real part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639022.png" /> is uniquely determined by the quasi-character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639023.png" /> and is called the real part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639024.png" />.
+
====References====
 +
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lang,  "Algebraic numbers" , Addison-Wesley  (1964) {{ZBL|0211.38501}}</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  I.R. Shafarevich,  "The zeta-function" , Moscow  (1969)  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Tate, “Fourier analysis in number fields and Hecke’s $\zeta$-functions" (Princeton, 1950), reprinted in Cassels, J.W.S., Fröhlich, A. (edd.)
 +
"Algebraic number theory". Academic Press (1967) {{ZBL|0153.07403}}</TD></TR>
 +
</table>
  
In the non-Archimedean case, for each quasi-character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639025.png" /> there is a positive integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639026.png" /> such that
+
{{TEX|done}
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639027.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639028.png" /> is the [[Maximal ideal|maximal ideal]] in the ring of integers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639029.png" />. The smallest number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639030.png" /> with this property is called the degree of ramification of the quasi-character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639031.png" />, and the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639032.png" /> is called the conductor of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639033.png" />.
 
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lang,  "Algebraic numbers" , Addison-Wesley  (1964)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.R. Shafarevich,  "The zeta-function" , Moscow  (1969)  (In Russian)</TD></TR></table>
 

Revision as of 20:06, 7 September 2017

A continuous homomorphism from an Abelian topological group $G$ into the multiplicative group of complex numbers. In this setting $G$ is often the multiplicative group $K^*$ of some local field $K$.

The restriction of a quasi-character $c$ to any compact subgroup of $G$ is a character of this subgroup (cf. Character of a group). In particular, if $\Vert\cdot\Vert$ is a norm on $K$ and $U = \{ a \in K^*\ :\ \Vert a \Vert=1 \}$, then $c$ induces a character of the group $U$, and $U$ is, in the non-Archimedean case, the same as the group of units of $K$. If $c(U) = \{1\}$, then the quasi-character is said to be non-ramified. Any non-ramified quasi-character has the form $$ c(a) = \Vert a \Vert^s = e^{s \log \Vert a \Vert} \ . $$ In the general case a quasi-character of the group $K^*$ has the form $c = c_1\Vert a \Vert^s$, where $s$ is a complex number and $c_1$ is a character of $K^*$. The real part of $s$ is uniquely determined by the quasi-character $c$ and is called the real part of $c$.

In the non-Archimedean case, for each quasi-character $c$ there is a positive integer $f$ such that $$ c(1+\mathfrak{m}^f) = 1 $$ where $\mathfrak{m}$ is the maximal ideal in the ring of integers of $K$. The smallest number $f$ with this property is called the ramification degree of the quasi-character $c$, and the ideal $\mathfrak{m}^f$ is called the conductor of $c$.

References

[1] S. Lang, "Algebraic numbers" , Addison-Wesley (1964) Zbl 0211.38501
[2] I.R. Shafarevich, "The zeta-function" , Moscow (1969) (In Russian)
[a1] J. Tate, “Fourier analysis in number fields and Hecke’s $\zeta$-functions" (Princeton, 1950), reprinted in Cassels, J.W.S., Fröhlich, A. (edd.) "Algebraic number theory". Academic Press (1967) Zbl 0153.07403

{{TEX|done}

How to Cite This Entry:
Quasi-character. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-character&oldid=16411
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article