|
|
Line 1: |
Line 1: |
− | A continuous [[Homomorphism|homomorphism]] from an Abelian [[Topological group|topological group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763901.png" /> into the multiplicative group of complex numbers. In this setting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763902.png" /> is often the multiplicative group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763903.png" /> of some local field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763904.png" />. | + | A continuous [[homomorphism]] from an Abelian [[topological group]] $G$ into the multiplicative group of complex numbers. In this setting $G$ is often the multiplicative group $K^*$ of some local field $K$. |
| | | |
− | The restriction of a quasi-character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763905.png" /> to any compact subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763906.png" /> is a character of this subgroup (cf. [[Character of a group|Character of a group]]). In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763907.png" /> is a norm on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763908.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q0763909.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639010.png" /> induces a character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639011.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639012.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639013.png" /> is, in the non-Archimedean case, the same as the group of units of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639014.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639015.png" />, then the quasi-character is said to be non-ramified. Any non-ramified quasi-character has the form | + | The restriction of a quasi-character $c$ to any compact subgroup of $G$ is a character of this subgroup (cf. [[Character of a group]]). In particular, if $\Vert\cdot\Vert$ is a norm on $K$ and $U = \{ a \in K^*\ :\ \Vert a \Vert=1 \}$, then $c$ induces a character of the group $U$, and $U$ is, in the non-Archimedean case, the same as the group of units of $K$. If $c(U) = \{1\}$, then the quasi-character is said to be ''non-ramified''. Any non-ramified quasi-character has the form |
| + | $$ |
| + | c(a) = \Vert a \Vert^s = e^{s \log \Vert a \Vert} \ . |
| + | $$ |
| + | In the general case a quasi-character of the group $K^*$ has the form $c = c_1\Vert a \Vert^s$, where $s$ is a complex number and $c_1$ is a character of $K^*$. The real part of $s$ is uniquely determined by the quasi-character $c$ and is called the real part of $c$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639016.png" /></td> </tr></table>
| + | In the non-Archimedean case, for each quasi-character $c$ there is a positive integer $f$ such that |
| + | $$ |
| + | c(1+\mathfrak{m}^f) = 1 |
| + | $$ |
| + | where $\mathfrak{m}$ is the [[maximal ideal]] in the ring of integers of $K$. The smallest number $f$ with this property is called the ''ramification degree'' of the quasi-character $c$, and the ideal $\mathfrak{m}^f$ is called the ''conductor'' of $c$. |
| | | |
− | In the general case a quasi-character of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639017.png" /> has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639019.png" /> is a complex number and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639020.png" /> is a character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639021.png" />. The real part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639022.png" /> is uniquely determined by the quasi-character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639023.png" /> and is called the real part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639024.png" />.
| + | ====References==== |
| + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebraic numbers" , Addison-Wesley (1964) {{ZBL|0211.38501}}</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> I.R. Shafarevich, "The zeta-function" , Moscow (1969) (In Russian)</TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Tate, “Fourier analysis in number fields and Hecke’s $\zeta$-functions" (Princeton, 1950), reprinted in Cassels, J.W.S., Fröhlich, A. (edd.) |
| + | "Algebraic number theory". Academic Press (1967) {{ZBL|0153.07403}}</TD></TR> |
| + | </table> |
| | | |
− | In the non-Archimedean case, for each quasi-character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639025.png" /> there is a positive integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639026.png" /> such that
| + | {{TEX|done} |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639027.png" /></td> </tr></table>
| |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639028.png" /> is the [[Maximal ideal|maximal ideal]] in the ring of integers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639029.png" />. The smallest number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639030.png" /> with this property is called the degree of ramification of the quasi-character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639031.png" />, and the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639032.png" /> is called the conductor of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076390/q07639033.png" />.
| |
− | | |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebraic numbers" , Addison-Wesley (1964)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.R. Shafarevich, "The zeta-function" , Moscow (1969) (In Russian)</TD></TR></table>
| |
A continuous homomorphism from an Abelian topological group $G$ into the multiplicative group of complex numbers. In this setting $G$ is often the multiplicative group $K^*$ of some local field $K$.
The restriction of a quasi-character $c$ to any compact subgroup of $G$ is a character of this subgroup (cf. Character of a group). In particular, if $\Vert\cdot\Vert$ is a norm on $K$ and $U = \{ a \in K^*\ :\ \Vert a \Vert=1 \}$, then $c$ induces a character of the group $U$, and $U$ is, in the non-Archimedean case, the same as the group of units of $K$. If $c(U) = \{1\}$, then the quasi-character is said to be non-ramified. Any non-ramified quasi-character has the form
$$
c(a) = \Vert a \Vert^s = e^{s \log \Vert a \Vert} \ .
$$
In the general case a quasi-character of the group $K^*$ has the form $c = c_1\Vert a \Vert^s$, where $s$ is a complex number and $c_1$ is a character of $K^*$. The real part of $s$ is uniquely determined by the quasi-character $c$ and is called the real part of $c$.
In the non-Archimedean case, for each quasi-character $c$ there is a positive integer $f$ such that
$$
c(1+\mathfrak{m}^f) = 1
$$
where $\mathfrak{m}$ is the maximal ideal in the ring of integers of $K$. The smallest number $f$ with this property is called the ramification degree of the quasi-character $c$, and the ideal $\mathfrak{m}^f$ is called the conductor of $c$.
References
[1] | S. Lang, "Algebraic numbers" , Addison-Wesley (1964) Zbl 0211.38501 |
[2] | I.R. Shafarevich, "The zeta-function" , Moscow (1969) (In Russian) |
[a1] | J. Tate, “Fourier analysis in number fields and Hecke’s $\zeta$-functions" (Princeton, 1950), reprinted in Cassels, J.W.S., Fröhlich, A. (edd.)
"Algebraic number theory". Academic Press (1967) Zbl 0153.07403 |
{{TEX|done}