Difference between revisions of "Symmetric algebra"
m (link) |
(TeX partly done) |
||
Line 1: | Line 1: | ||
− | A generalization of a polynomial algebra. If | + | A generalization of a polynomial algebra. If $M$ is a [[unital module]] over a commutative associative ring $A$ with an identity, then the symmetric algebra of $M$ is the algebra $S(M) = T(M)/I$, where $T(M)$ is the [[tensor algebra]] of $M$ and $I$ is the ideal generated by the elements of the form $x \otimes y - y \otimes x$ ($x,y \in M$). A symmetric algebra is a commutative associative $A$-algebra with an identity. It is graded: |
− | + | $$ | |
− | + | S(M) = \bigoplus_{p \ge 0} S^p(M) | |
− | + | $$ | |
− | where | + | where $S^p(M) = T^p(M)/(T^p(M)\cap I)$, and $S^0(M) = A$, $S^1(M) = M$. The module $S^p(M)$ is called the $p$-th symmetric power of the module $M$. If $M$ is a free module with finite basis $x_1,\ldots,x_n$, then the correspondence $x_i \mapsto X_i$ ($i=1,\ldots,n$) extends to an isomorphism of $S(M)$ onto the polynomial algebra $A[X_1,\ldots,X_n]$ (see [[Ring of polynomials]]). |
− | |||
− | |||
+ | For any homomorphism $f:M \to N$ of $A$-modules, the $p$-th tensor power $T^p(f)$ induces a homomorphism $S^p(f) : S^p(M) \to S^p(N)$ (the $p$-th symmetric power of the homomorphism $f$). A homomorphism $S(f) : S(M) \to S(N)$ of $A$-algebras is obtained. The correspondences $f \mapsto S^p(f)$ and $f \mapsto S(f)$ are, respectively, covariant functors from the category of $A$-modules into itself and into the category of $A$-algebras. For any two $A$-modules $M$ and $N$ there is a natural isomorphism $S(M\oplus N) = S(M) \otimes_A S(N)$. | ||
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159043.png" /> is a vector space over a field of characteristic 0, then the symmetrization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159044.png" /> (cf. [[Symmetrization (of tensors)|Symmetrization (of tensors)]]) defines an isomorphism from the symmetric algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159045.png" /> onto the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159046.png" /> of symmetric contravariant tensors over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159047.png" /> relative to symmetric multiplication: | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159043.png" /> is a vector space over a field of characteristic 0, then the symmetrization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159044.png" /> (cf. [[Symmetrization (of tensors)|Symmetrization (of tensors)]]) defines an isomorphism from the symmetric algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159045.png" /> onto the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159046.png" /> of symmetric contravariant tensors over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091590/s09159047.png" /> relative to symmetric multiplication: | ||
Line 12: | Line 11: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Eléments de mathématique" , '''2. Algèbre''' , Hermann (1964) pp. Chapt. IV-VI</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Kostrikin, Yu.I. Manin, "Linear algebra and geometry" , Gordon & Breach (1989) (Translated from Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Eléments de mathématique" , '''2. Algèbre''' , Hermann (1964) pp. Chapt. IV-VI</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Kostrikin, Yu.I. Manin, "Linear algebra and geometry" , Gordon & Breach (1989) (Translated from Russian)</TD></TR> | ||
+ | </table> | ||
Revision as of 17:19, 11 April 2017
A generalization of a polynomial algebra. If $M$ is a unital module over a commutative associative ring $A$ with an identity, then the symmetric algebra of $M$ is the algebra $S(M) = T(M)/I$, where $T(M)$ is the tensor algebra of $M$ and $I$ is the ideal generated by the elements of the form $x \otimes y - y \otimes x$ ($x,y \in M$). A symmetric algebra is a commutative associative $A$-algebra with an identity. It is graded: $$ S(M) = \bigoplus_{p \ge 0} S^p(M) $$ where $S^p(M) = T^p(M)/(T^p(M)\cap I)$, and $S^0(M) = A$, $S^1(M) = M$. The module $S^p(M)$ is called the $p$-th symmetric power of the module $M$. If $M$ is a free module with finite basis $x_1,\ldots,x_n$, then the correspondence $x_i \mapsto X_i$ ($i=1,\ldots,n$) extends to an isomorphism of $S(M)$ onto the polynomial algebra $A[X_1,\ldots,X_n]$ (see Ring of polynomials).
For any homomorphism $f:M \to N$ of $A$-modules, the $p$-th tensor power $T^p(f)$ induces a homomorphism $S^p(f) : S^p(M) \to S^p(N)$ (the $p$-th symmetric power of the homomorphism $f$). A homomorphism $S(f) : S(M) \to S(N)$ of $A$-algebras is obtained. The correspondences $f \mapsto S^p(f)$ and $f \mapsto S(f)$ are, respectively, covariant functors from the category of $A$-modules into itself and into the category of $A$-algebras. For any two $A$-modules $M$ and $N$ there is a natural isomorphism $S(M\oplus N) = S(M) \otimes_A S(N)$. If is a vector space over a field of characteristic 0, then the symmetrization (cf. Symmetrization (of tensors)) defines an isomorphism from the symmetric algebra onto the algebra of symmetric contravariant tensors over relative to symmetric multiplication:
References
[1] | N. Bourbaki, "Eléments de mathématique" , 2. Algèbre , Hermann (1964) pp. Chapt. IV-VI |
[2] | A.I. Kostrikin, Yu.I. Manin, "Linear algebra and geometry" , Gordon & Breach (1989) (Translated from Russian) |
Comments
The functor from -modules to commutative unitary -algebras solves the following universal problem. Let be an -module and a commutative unitary -algebra. For each homomorphism of -modules there is a unique homomorphism of -algebras such that restricted to coincides with . Thus, is a left-adjoint functor of the underlying functor from the category of commutative unitary -algebras to the category of -modules.
Symmetric algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symmetric_algebra&oldid=40936