Namespaces
Variants
Actions

Difference between revisions of "Incomplete beta-function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
 +
{{TEX|done}}
 
The function defined by the formula
 
The function defined by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i0504601.png" /></td> </tr></table>
+
$$I_x(a,b)=\frac1{B(a,b)}\int\limits_0^xt^{a-1}(1-t)^{b-1}dt,$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i0504602.png" /></td> </tr></table>
+
$$0\leq x\leq1,\quad a>0,\quad b>0,$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i0504603.png" /></td> </tr></table>
+
$$B(a,b)=\int\limits_0^1t^{a-1}(1-t)^{b-1}dt=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$
  
is the [[Beta-function|beta-function]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i0504604.png" /> is an integer, then
+
is the [[Beta-function|beta-function]]. If $a$ is an integer, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i0504605.png" /></td> </tr></table>
+
$$1-I_x(a,b)=\frac{(1-x)^b}{B(a,b)}\sum_{i=0}^{a-1}(-1)^i\begin{pmatrix}a-1\\i\end{pmatrix}\frac{(1-x)^i}{b+i}=$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i0504606.png" /></td> </tr></table>
+
$$=(1-x)^{a+b-1}\sum_{i=0}^{a-1}\begin{pmatrix}a+b-1\\i\end{pmatrix}\left(\frac x{1-x}\right)^i.$$
  
 
Series representation:
 
Series representation:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i0504607.png" /></td> </tr></table>
+
$$I_x(a,b)=\frac{x^a(1-x)^b}{aB(a,b)}\left\lbrace1+\sum_{n=0}^\infty\frac{B(a+1,n+1)}{B(a+b,n+1)}x^{n+1}\right\rbrace,$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i0504608.png" /></td> </tr></table>
+
$$0<x<1.$$
  
 
Continued fraction representation:
 
Continued fraction representation:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i0504609.png" /></td> </tr></table>
+
$$I_x(a,b)=\frac{x^a(1-x)^b}{aB(a,b)}\left\lbrace\frac{1|}{|1}+\frac{d_1|}{|1}+\frac{d_2|}{|1}+\dots\right\rbrace,$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046010.png" /></td> </tr></table>
+
$$d_{2m+1}=-\frac{(a+m)(a+b+m)x}{(a+2m)(a+2m+1)},$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046011.png" /></td> </tr></table>
+
$$d_{2m}=\frac{m(b-m)x}{(a+2m-1)(a+2m)}.$$
  
Asymptotic representation for large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046013.png" />:
+
Asymptotic representation for large $a$ and $b$:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046014.png" /></td> </tr></table>
+
$$I_x(a,b)=\Phi\left\lbrace3\frac{(bx)^{1/3}\left(1-\frac1{9b}\right)-[a(1-x)]^{1/3}\left(1-\frac1{9a}\right)}{\sqrt{\frac{[a(1-x)]^{2/3}}a+\frac{(bx)^{2/3}}b}}\right\rbrace+$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046015.png" /></td> </tr></table>
+
$${}+O\left(\frac1{\min{(a,b)}}\right),$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046016.png" /></td> </tr></table>
+
$$\Phi(z)=\frac1{\sqrt{2\pi}}\int\limits_{-\infty}^ze^{-t^2/2}dt.$$
  
Asymptotic representation for large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046017.png" /> and bounded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046018.png" />:
+
Asymptotic representation for large $b$ and bounded $a$:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046019.png" /></td> </tr></table>
+
$$I_x(a,b)=I\left(\frac{x(2b+a-1)}{2-x},a\right)+O(b^{-2}),$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046020.png" /></td> </tr></table>
+
$$I(z,a)=\frac1{\Gamma(a)}\int\limits_0^ze^{-t}t^{a-1}dt.$$
  
 
Connection with the [[Hypergeometric function|hypergeometric function]]:
 
Connection with the [[Hypergeometric function|hypergeometric function]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046021.png" /></td> </tr></table>
+
$$I_x(a,b)=\frac{x^a}{aB(x,a)}F(a,1-b;a+1;x).$$
  
 
Recurrence relations:
 
Recurrence relations:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046022.png" /></td> </tr></table>
+
$$I_x(a,b)=1-I_{1-x}(b,a),$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046023.png" /></td> </tr></table>
+
$$I_x(a,b)=xI_x(a-1,b)+(1-x)I_x(a,b-1),$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050460/i05046024.png" /></td> </tr></table>
+
$$I_x(a,a)=\frac12I_{1-y}\left(a,\frac12\right),\quad y=4\left(x-\frac12\right)^2,\quad0<x\leq\frac12.$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Abramowitz,  I.A. Stegun,  "Handbook of mathematical functions" , Dover, reprint  (1973)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  K. Pearson,  "Tables of the incomplete beta-function" , Cambridge Univ. Press  (1932)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Abramowitz,  I.A. Stegun,  "Handbook of mathematical functions" , Dover, reprint  (1973)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  K. Pearson,  "Tables of the incomplete beta-function" , Cambridge Univ. Press  (1932)</TD></TR></table>

Latest revision as of 15:50, 31 March 2017

The function defined by the formula

$$I_x(a,b)=\frac1{B(a,b)}\int\limits_0^xt^{a-1}(1-t)^{b-1}dt,$$

$$0\leq x\leq1,\quad a>0,\quad b>0,$$

where

$$B(a,b)=\int\limits_0^1t^{a-1}(1-t)^{b-1}dt=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

is the beta-function. If $a$ is an integer, then

$$1-I_x(a,b)=\frac{(1-x)^b}{B(a,b)}\sum_{i=0}^{a-1}(-1)^i\begin{pmatrix}a-1\\i\end{pmatrix}\frac{(1-x)^i}{b+i}=$$

$$=(1-x)^{a+b-1}\sum_{i=0}^{a-1}\begin{pmatrix}a+b-1\\i\end{pmatrix}\left(\frac x{1-x}\right)^i.$$

Series representation:

$$I_x(a,b)=\frac{x^a(1-x)^b}{aB(a,b)}\left\lbrace1+\sum_{n=0}^\infty\frac{B(a+1,n+1)}{B(a+b,n+1)}x^{n+1}\right\rbrace,$$

$$0<x<1.$$

Continued fraction representation:

$$I_x(a,b)=\frac{x^a(1-x)^b}{aB(a,b)}\left\lbrace\frac{1|}{|1}+\frac{d_1|}{|1}+\frac{d_2|}{|1}+\dots\right\rbrace,$$

where

$$d_{2m+1}=-\frac{(a+m)(a+b+m)x}{(a+2m)(a+2m+1)},$$

$$d_{2m}=\frac{m(b-m)x}{(a+2m-1)(a+2m)}.$$

Asymptotic representation for large $a$ and $b$:

$$I_x(a,b)=\Phi\left\lbrace3\frac{(bx)^{1/3}\left(1-\frac1{9b}\right)-[a(1-x)]^{1/3}\left(1-\frac1{9a}\right)}{\sqrt{\frac{[a(1-x)]^{2/3}}a+\frac{(bx)^{2/3}}b}}\right\rbrace+$$

$${}+O\left(\frac1{\min{(a,b)}}\right),$$

where

$$\Phi(z)=\frac1{\sqrt{2\pi}}\int\limits_{-\infty}^ze^{-t^2/2}dt.$$

Asymptotic representation for large $b$ and bounded $a$:

$$I_x(a,b)=I\left(\frac{x(2b+a-1)}{2-x},a\right)+O(b^{-2}),$$

where

$$I(z,a)=\frac1{\Gamma(a)}\int\limits_0^ze^{-t}t^{a-1}dt.$$

Connection with the hypergeometric function:

$$I_x(a,b)=\frac{x^a}{aB(x,a)}F(a,1-b;a+1;x).$$

Recurrence relations:

$$I_x(a,b)=1-I_{1-x}(b,a),$$

$$I_x(a,b)=xI_x(a-1,b)+(1-x)I_x(a,b-1),$$

$$I_x(a,a)=\frac12I_{1-y}\left(a,\frac12\right),\quad y=4\left(x-\frac12\right)^2,\quad0<x\leq\frac12.$$

References

[1] M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1973)
[2] K. Pearson, "Tables of the incomplete beta-function" , Cambridge Univ. Press (1932)
How to Cite This Entry:
Incomplete beta-function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Incomplete_beta-function&oldid=16063
This article was adapted from an original article by V.I. Pagurova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article