Difference between revisions of "Grothendieck functor"
(Importing text file) |
(TeX done) |
||
Line 1: | Line 1: | ||
− | An imbedding functor (cf. [[Imbedding of categories|Imbedding of categories]]) from a category | + | An imbedding functor (cf. [[Imbedding of categories|Imbedding of categories]]) from a category $\mathcal{C}$ into the category $\hat{\mathcal{C}}$ of contravariant functors defined on $\mathcal{C}$ and taking values in the category of sets $\mathsf{Ens}$. Let $X$ be an object in a category $\mathcal{C}$; the mapping $Y \mapsto \mathrm{Hom}_{\mathcal{C}}(Y,X)$ defines a contravariant functor $h_X$ from $\mathcal{C}$ into the category of sets. For any object $F$ of $\hat{\mathcal{C}}$ there exists a natural bijection $F(X) \leftrightarrow \mathrm{Hom}_{\hat{\mathcal{C}}}(h_X,F)$ (Yoneda's lemma). Hence, in particular |
+ | $$ | ||
+ | \mathrm{Hom}_{\hat{\mathcal{C}}}(h_X,h_Y) \leftrightarrow \mathrm{Hom}_{\mathcal{C}}(X,Y) \ . | ||
+ | $$ | ||
− | + | Accordingly, the mapping $X \mapsto h_X$ defines a full imbedding $h : \mathcal{C} \rightarrow \hat{\mathcal{C}}$, which is known as the Grothendieck functor. Using the Grothendieck functor it is possible to define algebraic structures on objects of a category (cf. [[Group object]]; [[Group scheme]]). | |
− | |||
− | Accordingly, the mapping | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Bucur, A. Deleanu, "Introduction to the theory of categories and functors" , Wiley (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Grothendieck, "Technique de descente et théorèmes d'existence en géométrie algébrique, II" ''Sem. Bourbaki'' , '''Exp. 195''' (1960)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> I. Bucur, A. Deleanu, "Introduction to the theory of categories and functors" , Wiley (1968)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> A. Grothendieck, "Technique de descente et théorèmes d'existence en géométrie algébrique, II" ''Sem. Bourbaki'' , '''Exp. 195''' (1960)</TD></TR> | ||
+ | </table> | ||
Line 14: | Line 18: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Yoneda, "On the homology theory of modules" ''J. Fac. Sci. Tokyo. Sec. I'' , '''7''' (1954) pp. 193–227</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Yoneda, "On the homology theory of modules" ''J. Fac. Sci. Tokyo. Sec. I'' , '''7''' (1954) pp. 193–227</TD></TR> | ||
+ | </table> |
Latest revision as of 19:18, 7 March 2017
An imbedding functor (cf. Imbedding of categories) from a category $\mathcal{C}$ into the category $\hat{\mathcal{C}}$ of contravariant functors defined on $\mathcal{C}$ and taking values in the category of sets $\mathsf{Ens}$. Let $X$ be an object in a category $\mathcal{C}$; the mapping $Y \mapsto \mathrm{Hom}_{\mathcal{C}}(Y,X)$ defines a contravariant functor $h_X$ from $\mathcal{C}$ into the category of sets. For any object $F$ of $\hat{\mathcal{C}}$ there exists a natural bijection $F(X) \leftrightarrow \mathrm{Hom}_{\hat{\mathcal{C}}}(h_X,F)$ (Yoneda's lemma). Hence, in particular $$ \mathrm{Hom}_{\hat{\mathcal{C}}}(h_X,h_Y) \leftrightarrow \mathrm{Hom}_{\mathcal{C}}(X,Y) \ . $$
Accordingly, the mapping $X \mapsto h_X$ defines a full imbedding $h : \mathcal{C} \rightarrow \hat{\mathcal{C}}$, which is known as the Grothendieck functor. Using the Grothendieck functor it is possible to define algebraic structures on objects of a category (cf. Group object; Group scheme).
References
[1] | I. Bucur, A. Deleanu, "Introduction to the theory of categories and functors" , Wiley (1968) |
[2] | A. Grothendieck, "Technique de descente et théorèmes d'existence en géométrie algébrique, II" Sem. Bourbaki , Exp. 195 (1960) |
Comments
In the English literature, the Grothendieck functor is commonly called the Yoneda embedding or the Yoneda–Grothendieck embedding.
References
[a1] | S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7 |
[a2] | N. Yoneda, "On the homology theory of modules" J. Fac. Sci. Tokyo. Sec. I , 7 (1954) pp. 193–227 |
Grothendieck functor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Grothendieck_functor&oldid=11791