Namespaces
Variants
Actions

Difference between revisions of "Inessential mapping"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (TeX done)
 
Line 1: Line 1:
 
''homotopically-trivial mapping''
 
''homotopically-trivial mapping''
  
A continuous mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i0508201.png" /> of a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i0508202.png" /> into the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i0508203.png" />-dimensional ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i0508204.png" /> such that there is a continuous mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i0508205.png" /> that coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i0508206.png" /> on the inverse image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i0508207.png" /> of the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i0508208.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i0508209.png" /> and takes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i05082010.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i05082011.png" /> (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i05082012.png" />). When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i05082013.png" /> is a normal Hausdorff space, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i05082014.png" /> if and only if every continuous mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i05082015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i05082016.png" /> is inessential (Aleksandrov's theorem).
+
A continuous mapping $f : X \to Q^n$ of a topological space $X$ into the $n$-dimensional ball $Q^n$ such that there is a continuous mapping $g : X \to Q^n$ that coincides with $f$ on the inverse image $f^{-1} S^{n-1}$ of the boundary $S^{n-1}$ of $Q^n$ and takes $X$ into $S^{n-1}$ (that is, $gX \subseteq S^{n-1}$). When $X$ is a normal Hausdorff space, then $\dim X < n$ if and only if every continuous mapping $f : X \to Q^n$, $n = 1, 2, \dots ,$ is inessential (Aleksandrov's theorem).
  
A continuous mapping of a topological space into the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i05082017.png" />-dimensional sphere is called inessential if it is homotopic to the constant mapping.
+
A continuous mapping of a topological space into the $n$-dimensional sphere is called inessential if it is homotopic to the constant mapping.
  
  
  
 
====Comments====
 
====Comments====
The term  "homotopically-trivial mapping"  is not used in the context <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050820/i05082018.png" />. See [[#References|[a1]]], [[#References|[a2]]] and [[#References|[a3]]].
+
The term  "homotopically-trivial mapping"  is not used in the context $f : X \to Q^n$. See [[#References|[a1]]], [[#References|[a2]]] and [[#References|[a3]]].
  
 
Generally, a mapping which is homotopic to a constant mapping is called nullhomotopic or homotopically trivial; in [[#References|[a3]]] they are called inessential. See also [[Essential mapping|Essential mapping]].
 
Generally, a mapping which is homotopic to a constant mapping is called nullhomotopic or homotopically trivial; in [[#References|[a3]]] they are called inessential. See also [[Essential mapping|Essential mapping]].
Line 14: Line 14:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.S. Aleksandrov,  "Topologie" , '''1''' , Springer  (1974)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Engelking,  "Dimension theory" , PWN  (1977)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W. Hurevicz,  G. Wallman,  "Dimension theory" , Princeton Univ. Press  (1948)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.S. Aleksandrov,  "Topologie" , '''1''' , Springer  (1974)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Engelking,  "Dimension theory" , PWN  (1977)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W. Hurevicz,  G. Wallman,  "Dimension theory" , Princeton Univ. Press  (1948)</TD></TR></table>
 +
 +
{{TEX|done}}

Latest revision as of 06:26, 14 January 2017

homotopically-trivial mapping

A continuous mapping $f : X \to Q^n$ of a topological space $X$ into the $n$-dimensional ball $Q^n$ such that there is a continuous mapping $g : X \to Q^n$ that coincides with $f$ on the inverse image $f^{-1} S^{n-1}$ of the boundary $S^{n-1}$ of $Q^n$ and takes $X$ into $S^{n-1}$ (that is, $gX \subseteq S^{n-1}$). When $X$ is a normal Hausdorff space, then $\dim X < n$ if and only if every continuous mapping $f : X \to Q^n$, $n = 1, 2, \dots ,$ is inessential (Aleksandrov's theorem).

A continuous mapping of a topological space into the $n$-dimensional sphere is called inessential if it is homotopic to the constant mapping.


Comments

The term "homotopically-trivial mapping" is not used in the context $f : X \to Q^n$. See [a1], [a2] and [a3].

Generally, a mapping which is homotopic to a constant mapping is called nullhomotopic or homotopically trivial; in [a3] they are called inessential. See also Essential mapping.

References

[a1] P.S. Aleksandrov, "Topologie" , 1 , Springer (1974)
[a2] R. Engelking, "Dimension theory" , PWN (1977)
[a3] W. Hurevicz, G. Wallman, "Dimension theory" , Princeton Univ. Press (1948)
How to Cite This Entry:
Inessential mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Inessential_mapping&oldid=17383
This article was adapted from an original article by B.A. Pasynkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article