Namespaces
Variants
Actions

Difference between revisions of "Normal solvability"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m
Line 6: Line 6:
  
 
====Comments====
 
====Comments====
 
 
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Goldberg,  "Unbounded linear operators" , McGraw-Hill  (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  T. Kato,  "Perturbation theory for linear operators" , Springer  (1980)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  P.P. Zabreiko (ed.)  A.I. Koshelev (ed.)  M.A. Krasnoselskii (ed.)  S.G. Mikhlin (ed.)  L.S. Rakovshchik (ed.)  V.Ya. Stet'senko (ed.)  T.O. Shaposhnikova (ed.)  R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff  (1975)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Goldberg,  "Unbounded linear operators" , McGraw-Hill  (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  T. Kato,  "Perturbation theory for linear operators" , Springer  (1980)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  P.P. Zabreiko (ed.)  A.I. Koshelev (ed.)  M.A. Krasnoselskii (ed.)  S.G. Mikhlin (ed.)  L.S. Rakovshchik (ed.)  V.Ya. Stet'senko (ed.)  T.O. Shaposhnikova (ed.)  R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff  (1975)  (Translated from Russian)</TD></TR></table>

Revision as of 20:19, 31 October 2016

of an integral equation

The property that a linear integral equation is solvable if and only if its right-hand side is orthogonal to all solutions of the corresponding homogeneous adjoint equation. Under appropriate conditions a Fredholm equation, a singular integral equation and an integral equation of convolution type are normally solvable.


Comments

References

[a1] S. Goldberg, "Unbounded linear operators" , McGraw-Hill (1966)
[a2] T. Kato, "Perturbation theory for linear operators" , Springer (1980)
[a3] P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) (Translated from Russian)
How to Cite This Entry:
Normal solvability. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_solvability&oldid=17680
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article