Namespaces
Variants
Actions

Difference between revisions of "Order topology"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (link)
Line 12: Line 12:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o0700809.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o0700809.png" /></td> </tr></table>
  
as a subbase for the closed sets, but in general it is different. On a complete linearly ordered set, the order topology is characterized by order convergence: that is, a net (see [[Generalized sequence|Generalized sequence]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008010.png" /> converges to a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008011.png" /> if and only if there are an increasing net <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008012.png" /> and a decreasing net <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008013.png" />, indexed by the same directed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008014.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008015.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008017.png" />.
+
as a [[subbase]] for the closed sets, but in general it is different. On a complete linearly ordered set, the order topology is characterized by order convergence: that is, a net (see [[Generalized sequence|Generalized sequence]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008010.png" /> converges to a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008011.png" /> if and only if there are an increasing net <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008012.png" /> and a decreasing net <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008013.png" />, indexed by the same directed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008014.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008015.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070080/o07008017.png" />.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Birkhoff,  "Lattice theory" , ''Colloq. Publ.'' , '''25''' , Amer. Math. Soc.  (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  O. Frink,  "Topology in lattices"  ''Trans. Amer. Math. Soc.'' , '''51'''  (1942)  pp. 569–582</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.J. Ward,  "On relations between certain intrinsic topologies in partially ordered sets"  ''Proc. Cambridge Philos. Soc.'' , '''51'''  (1955)  pp. 254–261</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Birkhoff,  "Lattice theory" , ''Colloq. Publ.'' , '''25''' , Amer. Math. Soc.  (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  O. Frink,  "Topology in lattices"  ''Trans. Amer. Math. Soc.'' , '''51'''  (1942)  pp. 569–582</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  A.J. Ward,  "On relations between certain intrinsic topologies in partially ordered sets"  ''Proc. Cambridge Philos. Soc.'' , '''51'''  (1955)  pp. 254–261</TD></TR></table>

Revision as of 19:24, 19 October 2016

The topology on a linearly ordered set , with linear order , which has a base consisting of all possible intervals of .


Comments

Here "interval" is used in the sense of "open interval" , i.e. a set of the form

where (or possibly and/or ). The order topology may be considered on partially ordered as well as linearly ordered sets; on a linearly ordered set it coincides with the interval topology which has the closed intervals

as a subbase for the closed sets, but in general it is different. On a complete linearly ordered set, the order topology is characterized by order convergence: that is, a net (see Generalized sequence) converges to a point if and only if there are an increasing net and a decreasing net , indexed by the same directed set , such that for all and .

References

[a1] G. Birkhoff, "Lattice theory" , Colloq. Publ. , 25 , Amer. Math. Soc. (1973)
[a2] O. Frink, "Topology in lattices" Trans. Amer. Math. Soc. , 51 (1942) pp. 569–582
[a3] A.J. Ward, "On relations between certain intrinsic topologies in partially ordered sets" Proc. Cambridge Philos. Soc. , 51 (1955) pp. 254–261
How to Cite This Entry:
Order topology. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Order_topology&oldid=15011
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article