Difference between revisions of "Chinese remainder theorem"
(Importing text file) |
m (link) |
||
Line 1: | Line 1: | ||
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221201.png" /> be a commutative ring with identity and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221202.png" /> be a collection of ideals in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221203.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221204.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221205.png" />. Then, given any set of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221206.png" />, there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221207.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221208.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221209.png" />. In the particular case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212010.png" /> is the ring of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212011.png" />, the Chinese remainder theorem states that for any set of pairwise coprime numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212012.png" /> there is an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212013.png" /> giving pre-assigned remainders on division by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212014.png" />. In this form the Chinese remainder theorem was known in ancient China; whence the name of the theorem. | + | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221201.png" /> be a commutative [[ring with identity]] and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221202.png" /> be a collection of ideals in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221203.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221204.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221205.png" />. Then, given any set of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221206.png" />, there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221207.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221208.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c0221209.png" />. In the particular case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212010.png" /> is the ring of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212011.png" />, the Chinese remainder theorem states that for any set of pairwise coprime numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212012.png" /> there is an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212013.png" /> giving pre-assigned remainders on division by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212014.png" />. In this form the Chinese remainder theorem was known in ancient China; whence the name of the theorem. |
The most frequent application of the Chinese remainder theorem is in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212015.png" /> is a [[Dedekind ring|Dedekind ring]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212016.png" />, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212017.png" /> are distinct prime ideals in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212018.png" />. (If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212019.png" /> satisfy the condition of the theorem, then so do <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212020.png" /> for any natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212021.png" />.) In this case, the Chinese remainder theorem implies that for any set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212022.png" /> there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212023.png" /> such that the decomposition of the principal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212024.png" /> into a product of prime ideals has the form | The most frequent application of the Chinese remainder theorem is in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212015.png" /> is a [[Dedekind ring|Dedekind ring]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212016.png" />, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212017.png" /> are distinct prime ideals in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212018.png" />. (If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212019.png" /> satisfy the condition of the theorem, then so do <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212020.png" /> for any natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212021.png" />.) In this case, the Chinese remainder theorem implies that for any set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212022.png" /> there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212023.png" /> such that the decomposition of the principal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022120/c02212024.png" /> into a product of prime ideals has the form |
Revision as of 16:09, 11 September 2016
Let be a commutative ring with identity and let be a collection of ideals in such that for any . Then, given any set of elements , there exists an such that , . In the particular case when is the ring of integers , the Chinese remainder theorem states that for any set of pairwise coprime numbers there is an integer giving pre-assigned remainders on division by . In this form the Chinese remainder theorem was known in ancient China; whence the name of the theorem.
The most frequent application of the Chinese remainder theorem is in the case when is a Dedekind ring and , where the are distinct prime ideals in . (If satisfy the condition of the theorem, then so do for any natural numbers .) In this case, the Chinese remainder theorem implies that for any set there exists an such that the decomposition of the principal ideal into a product of prime ideals has the form
where the ideals are pairwise distinct (the theorem on the independence of exponents).
References
[1] | A.I. Kostrikin, "Introduction to algebra" , Springer (1982) (Translated from Russian) |
[2] | S. Lang, "Algebra" , Addison-Wesley (1974) |
[3] | S. Lang, "Algebraic numbers" , Addison-Wesley (1964) |
Chinese remainder theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chinese_remainder_theorem&oldid=11578