Namespaces
Variants
Actions

Difference between revisions of "Euclidean space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX done and links)
Line 1: Line 1:
A space the properties of which are described by the axioms of [[Euclidean geometry|Euclidean geometry]]. In a more general sense, a Euclidean space is a finite-dimensional real [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036380/e0363801.png" /> with an [[Inner product|inner product]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036380/e0363802.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036380/e0363803.png" />, which in a suitably chosen (Cartesian) coordinate system
+
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036380/e0363804.png" /></td> </tr></table>
+
A space the properties of which are described by the axioms of [[Euclidean geometry]]. In a more general sense, a Euclidean space is a finite-dimensional real [[vector space]] $\mathbb{R}^n$ with an [[inner product]] $(x,y)$, $x,y\in\mathbb{R}^n$, which in a suitably chosen ([[Cartesian orthogonal coordinate system|Cartesian]]) coordinate system $x=(x_1,\ldots,x_n)$ and $y=(y_1,\dots,y_n)$ is given by the formula \begin{equation} (x,y)=\sum_{i=1}^{n}x_i y_i. \end{equation}
  
is given by the formula
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036380/e0363805.png" /></td> </tr></table>
 
  
 +
====Comments====
  
 +
Sometimes the phrase  "Euclidean space"  stands for the case $n=3$, as opposed to the case $n=2$  "Euclidean plane", see [[#References|[1]]], Chapts. 8, 9.
  
====Comments====
 
Sometimes the phrase  "Euclidean space"  stands for the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036380/e0363806.png" />, as opposed to the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036380/e0363807.png" /> — Euclidean plane.
 
  
See, e.g., [[#References|[a1]]], Chapts. 8, 9.
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''I''' , Springer  (1987)</TD></TR></table>
+
 
 +
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''I''' , Springer  (1987). {{DOI|10.1007/978-3-540-93815-6}}</TD></TR></table>

Revision as of 09:13, 28 April 2016


A space the properties of which are described by the axioms of Euclidean geometry. In a more general sense, a Euclidean space is a finite-dimensional real vector space $\mathbb{R}^n$ with an inner product $(x,y)$, $x,y\in\mathbb{R}^n$, which in a suitably chosen (Cartesian) coordinate system $x=(x_1,\ldots,x_n)$ and $y=(y_1,\dots,y_n)$ is given by the formula \begin{equation} (x,y)=\sum_{i=1}^{n}x_i y_i. \end{equation}


Comments

Sometimes the phrase "Euclidean space" stands for the case $n=3$, as opposed to the case $n=2$ "Euclidean plane", see [1], Chapts. 8, 9.


References

[1] M. Berger, "Geometry" , I , Springer (1987). DOI 10.1007/978-3-540-93815-6
How to Cite This Entry:
Euclidean space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euclidean_space&oldid=13577
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article