|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | A limit value along some path. More exactly, a complex number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a0137901.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a0137902.png" /> is called an asymptotic value for a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a0137903.png" /> of the complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a0137904.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a0137905.png" /> of the closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a0137906.png" /> of its domain of definition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a0137907.png" /> if there exists a path <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a0137908.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a0137909.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379011.png" />, terminating at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379012.png" />, i.e. so that | + | {{TEX|done}} |
| + | A limit value along some path. More exactly, a complex number $\alpha$ or $\alpha=\infty$ is called an asymptotic value for a function $f(z)$ of the complex variable $z$ at a point $a$ of the closure $\overline D$ of its domain of definition $D$ if there exists a path $L$: $z=z(t)$, $0\leq t<1$, $L\subset D$, terminating at $a$, i.e. so that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379013.png" /></td> </tr></table>
| + | \[ \lim_{t → 1 - 0} z(t) = a \] |
| | | |
| along which | | along which |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379014.png" /></td> </tr></table>
| + | $$\lim_{z\to a}f(z)=\alpha,\quad z\in L.$$ |
| | | |
− | For instance, at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379015.png" /> the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379016.png" /> has the asymptotic values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379018.png" /> along the paths <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379019.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379021.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379022.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379024.png" />, respectively. Sets of asymptotic values play an important role in the theory of limit sets (cf. [[Limit set|Limit set]]). | + | For instance, at the point $a=\infty$ the function $f(z)=e^z$ has the asymptotic values $\alpha_1=0$ and $\alpha_2=\infty$ along the paths $L_1$: $z=-t$, $0\leq t<+\infty$, and $L_2$: $z=t$, $0\leq t<+\infty$, respectively. Sets of asymptotic values play an important role in the theory of limit sets (cf. [[Limit set|Limit set]]). |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379025.png" /> has two different asymptotic values at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379027.png" /> is called a point of indeterminacy for the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379028.png" />. For any function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379029.png" />, defined in a simply-connected plane domain, the set of points of indeterminacy is at most countable. | + | If $f(z)$ has two different asymptotic values at $a$, $a$ is called a point of indeterminacy for the function $f(z)$. For any function $f(z)$, defined in a simply-connected plane domain, the set of points of indeterminacy is at most countable. |
| | | |
− | The above definition of asymptotic value refers to asymptotic point values. If the limit set of a curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379030.png" /> is a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379031.png" /> rather than a single point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379032.png" />, one also speaks of the asymptotic value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379033.png" /> associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379034.png" />. | + | The above definition of asymptotic value refers to asymptotic point values. If the limit set of a curve $L$ is a set $E\subset\partial D$ rather than a single point $a\in\partial D$, one also speaks of the asymptotic value $A(f,E)$ associated with $E$. |
| | | |
| ====References==== | | ====References==== |
Line 19: |
Line 20: |
| | | |
| ====Comments==== | | ====Comments==== |
− | The most famous results on asymptotic values is the Denjoy–Carleman–Ahlfors theorem. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379035.png" /> be an entire function with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379036.png" /> distinct (finite) asymptotic values at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379037.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379038.png" /> must be of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013790/a01379039.png" />. This result was conjectured by A. Denjoy (1907). The first complete proof was given by L. Ahlfors (1929), after T. Carleman had obtained a less sharp result. See, for example, [[#References|[a1]]], Sect. 60. | + | The most famous results on asymptotic values is the Denjoy–Carleman–Ahlfors theorem. Let $f(z)$ be an entire function with $n$ distinct (finite) asymptotic values at the point $\infty$. Then $f(z)$ must be of order $\geq n/2$. This result was conjectured by A. Denjoy (1907). The first complete proof was given by L. Ahlfors (1929), after T. Carleman had obtained a less sharp result. See, for example, [[#References|[a1]]], Sect. 60. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Dinghas, "Vorlesungen über Funktionentheorie" , Springer (1961)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Dinghas, "Vorlesungen über Funktionentheorie" , Springer (1961)</TD></TR></table> |
A limit value along some path. More exactly, a complex number $\alpha$ or $\alpha=\infty$ is called an asymptotic value for a function $f(z)$ of the complex variable $z$ at a point $a$ of the closure $\overline D$ of its domain of definition $D$ if there exists a path $L$: $z=z(t)$, $0\leq t<1$, $L\subset D$, terminating at $a$, i.e. so that
\[ \lim_{t → 1 - 0} z(t) = a \]
along which
$$\lim_{z\to a}f(z)=\alpha,\quad z\in L.$$
For instance, at the point $a=\infty$ the function $f(z)=e^z$ has the asymptotic values $\alpha_1=0$ and $\alpha_2=\infty$ along the paths $L_1$: $z=-t$, $0\leq t<+\infty$, and $L_2$: $z=t$, $0\leq t<+\infty$, respectively. Sets of asymptotic values play an important role in the theory of limit sets (cf. Limit set).
If $f(z)$ has two different asymptotic values at $a$, $a$ is called a point of indeterminacy for the function $f(z)$. For any function $f(z)$, defined in a simply-connected plane domain, the set of points of indeterminacy is at most countable.
The above definition of asymptotic value refers to asymptotic point values. If the limit set of a curve $L$ is a set $E\subset\partial D$ rather than a single point $a\in\partial D$, one also speaks of the asymptotic value $A(f,E)$ associated with $E$.
References
[1] | E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets" , Cambridge Univ. Press (1966) pp. Chapt. 1;6 |
[2] | G.R. MacLane, "Asymptotic values of holomorphic functions" , Rice Univ. Studies, Math. Monographs , 49 : 1 , Rice Univ. , Houston (1963) |
The most famous results on asymptotic values is the Denjoy–Carleman–Ahlfors theorem. Let $f(z)$ be an entire function with $n$ distinct (finite) asymptotic values at the point $\infty$. Then $f(z)$ must be of order $\geq n/2$. This result was conjectured by A. Denjoy (1907). The first complete proof was given by L. Ahlfors (1929), after T. Carleman had obtained a less sharp result. See, for example, [a1], Sect. 60.
References
[a1] | A. Dinghas, "Vorlesungen über Funktionentheorie" , Springer (1961) |