Namespaces
Variants
Actions

Difference between revisions of "Combinatorial geometry(2)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (link)
Line 3: Line 3:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232702.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232702.png" /></td> </tr></table>
  
defined for all subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232703.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232704.png" /> (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232705.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232706.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232707.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232708.png" />, but not necessarily <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232709.png" />), and satisfying the conditions: 1) for the empty set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327010.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327011.png" /> for each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327012.png" />; and 3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327014.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327015.png" /> but <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327016.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327017.png" /> (the  "exchange"  property). The closed sets, or subspaces, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327018.png" /> form a geometric lattice (cf. [[Semi-Dedekind lattice|Semi-Dedekind lattice]]). A subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327019.png" /> is independent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327020.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327021.png" />; all maximal independent sets, or bases, have the same cardinality. The direct sum of combinatorial geometries and the restriction of a combinatorial geometry to a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327022.png" /> are defined in the usual way. The cardinality of the bases of the restriction of a combinatorial geometry to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327023.png" /> is called the rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327025.png" />. The rank function satisfies the condition
+
defined for all subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232703.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232704.png" /> (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232705.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232706.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232707.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232708.png" />, but not necessarily <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232709.png" />), and satisfying the conditions: 1) for the empty set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327010.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327011.png" /> for each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327012.png" />; and 3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327014.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327015.png" /> but <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327016.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327017.png" /> (the  "exchange"  property). The closed sets, or subspaces, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327018.png" /> form a [[geometric lattice]] (cf. [[Semi-Dedekind lattice|Semi-Dedekind lattice]]). A subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327019.png" /> is independent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327020.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327021.png" />; all maximal independent sets, or bases, have the same cardinality. The direct sum of combinatorial geometries and the restriction of a combinatorial geometry to a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327022.png" /> are defined in the usual way. The cardinality of the bases of the restriction of a combinatorial geometry to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327023.png" /> is called the rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327025.png" />. The rank function satisfies the condition
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327026.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327026.png" /></td> </tr></table>

Revision as of 21:14, 3 January 2015

A finite set together with a closure relation

defined for all subsets of (that is, , implies and , but not necessarily ), and satisfying the conditions: 1) for the empty set ; 2) for each element ; and 3) if and and if but , then (the "exchange" property). The closed sets, or subspaces, form a geometric lattice (cf. Semi-Dedekind lattice). A subset is independent if for all ; all maximal independent sets, or bases, have the same cardinality. The direct sum of combinatorial geometries and the restriction of a combinatorial geometry to a subset are defined in the usual way. The cardinality of the bases of the restriction of a combinatorial geometry to is called the rank of . The rank function satisfies the condition

A subset for which is said to be dependent; the minimal dependent sets of a combinatorial geometry are called circuits. By dropping conditions 1) and 2) in the definition of a combinatorial geometry one obtains the definition of a pre-geometry or matroid. Infinite combinatorial geometries are also considered, but here it is required that the bases be finite.

Example of a combinatorial geometry. A subset of a vector space with the relation

defined for all , where is the linear subspace in spanned by .

One of the fundamental problems in the theory of combinatorial geometries is the so-called critical problem. For the combinatorial geometry defined by a set in an -dimensional projective space over a Galois field, this problem consists in the determination of the smallest positive integer (the critical exponent) for which there exists a family of hyperplanes distinguishing . (A family of hyperplanes distinguishes a set if for every there is at least one hyperplane not containing .)

References

[1] H. Whitney, "On the abstract properties of linear dependence" Amer. J. Math. , 57 (1935) pp. 509–533
[2] H.H. Crapo, G.C. Rota, "On the foundations of combinatorial theory: combinatorial geometries" , M.I.T. (1970)
[3] W.T. Tutte, "Introduction to the theory of matroids" , American Elsevier (1971)
[4] R.J. Wilson, "Introduction to graph theory" , Oliver & Boyd (1972)
[5] K.A. Rybnikov, "Introduction to combinatorial analysis" , Moscow (1972) (In Russian)
[6] D.J.A. Welsh, "Matroid theory" , Acad. Press (1976)
[7] R. von Randow, "Introduction to the theory of matroids" , Springer (1975)
[8] N. White (ed.) , Theory of matroids , Cambridge Univ. Press (1986)
[9] K.A. Rybnikov (ed.) , Combinatorial analysis: exercises and problems , Moscow (1982) (In Russian)
How to Cite This Entry:
Combinatorial geometry(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Combinatorial_geometry(2)&oldid=15806
This article was adapted from an original article by A.M. Revyakin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article