Difference between revisions of "Everett interpolation formula"
(→References: Everett (1900)) |
(This is throwback, due to L. J. Comrie) |
||
Line 25: | Line 25: | ||
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665017.png" /> is used to find both values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665018.png" />. | and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665017.png" /> is used to find both values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665018.png" />. | ||
− | + | For manual calculation in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665019.png" />, L. J. Comrie introduced '''throwback'''. It is advisable to approximate the coefficient of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665020.png" /> in (2) by | |
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665021.png" /></td> </tr></table> | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665021.png" /></td> </tr></table> | ||
Line 44: | Line 44: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)</TD></TR> | ||
+ | </table> | ||
Line 55: | Line 58: | ||
<TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126</TD></TR> | <TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126</TD></TR> | ||
<TR><TD valign="top">[a2]</TD> <TD valign="top"> A.J. Thomson, "Table of the coefficients of Everett's central difference interpolation formula" , Cambridge Univ. Press (1965)</TD></TR> | <TR><TD valign="top">[a2]</TD> <TD valign="top"> A.J. Thomson, "Table of the coefficients of Everett's central difference interpolation formula" , Cambridge Univ. Press (1965)</TD></TR> | ||
− | <TR><TD valign="top">[b1]</TD> <TD valign="top"> J. D. Everett, "On interpolation formulae", ''Quarterly J.'' '''32''' (1900) 306-313 {{ZBL|32.0271.01}}</TD></TR> | + | <TR><TD valign="top">[b1]</TD> <TD valign="top"> L. J. Comrie, "Inverse interpolation and scientific applications of the national accounting machine", Suppl. JR statist. Soc. London '''3''' (1936) 87-114 {{ZBL|63.1136.02}}}</TD></TR> |
− | <TR><TD valign="top">[ | + | <TR><TD valign="top">[b2]</TD> <TD valign="top"> J. D. Everett, "On interpolation formulae", ''Quarterly J.'' '''32''' (1900) 306-313 {{ZBL|32.0271.01}}</TD></TR> |
+ | <TR><TD valign="top">[b3]</TD> <TD valign="top"> Maurice V. Wilkes, "A short introduction to numerical analysis", Cambridge University Press (1966) ISBN 0-521-09412-7 {{ZBL|0149.10902}}</TD</TR> | ||
</table> | </table> |
Revision as of 16:40, 3 January 2015
A method of writing the interpolation polynomial obtained from the Gauss interpolation formula for forward interpolation at with respect to the nodes
, that is,
![]() |
![]() |
without finite differences of odd order, which are eliminated by means of the relation
![]() |
Adding like terms yields Everett's interpolation formula
![]() | (1) |
where and
![]() | (2) |
![]() |
Compared with other versions of the interpolation polynomial, formula (1) reduces approximately by half the amount of work required to solve the problem of table condensation; for example, when a given table of the values of a function at is to be used to draw up a table of the values of the same function at
,
, where
is an integer, the values
for
are computed be means of the formula
![]() |
and is used to find both values
.
For manual calculation in the case , L. J. Comrie introduced throwback. It is advisable to approximate the coefficient of
in (2) by
![]() |
and instead of to compute
![]() |
The parameter can be chosen, for example, from the condition that the principal part of
![]() |
where
![]() |
has a minimum value. In this case .
References
[1] | I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian) |
[2] | N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian) |
Comments
References
[a1] | P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126 |
[a2] | A.J. Thomson, "Table of the coefficients of Everett's central difference interpolation formula" , Cambridge Univ. Press (1965) |
[b1] | L. J. Comrie, "Inverse interpolation and scientific applications of the national accounting machine", Suppl. JR statist. Soc. London 3 (1936) 87-114 Zbl 63.1136.02} |
[b2] | J. D. Everett, "On interpolation formulae", Quarterly J. 32 (1900) 306-313 Zbl 32.0271.01 |
[b3] | Maurice V. Wilkes, "A short introduction to numerical analysis", Cambridge University Press (1966) ISBN 0-521-09412-7 Zbl 0149.10902</TD |
Everett interpolation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Everett_interpolation_formula&oldid=36054