Difference between revisions of "Everett interpolation formula"
(→References: Everett (1900)) |
(This is throwback, due to L. J. Comrie) |
||
Line 25: | Line 25: | ||
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665017.png" /> is used to find both values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665018.png" />. | and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665017.png" /> is used to find both values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665018.png" />. | ||
− | + | For manual calculation in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665019.png" />, L. J. Comrie introduced '''throwback'''. It is advisable to approximate the coefficient of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665020.png" /> in (2) by | |
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665021.png" /></td> </tr></table> | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036650/e03665021.png" /></td> </tr></table> | ||
Line 44: | Line 44: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)</TD></TR> | ||
+ | </table> | ||
Line 55: | Line 58: | ||
<TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126</TD></TR> | <TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126</TD></TR> | ||
<TR><TD valign="top">[a2]</TD> <TD valign="top"> A.J. Thomson, "Table of the coefficients of Everett's central difference interpolation formula" , Cambridge Univ. Press (1965)</TD></TR> | <TR><TD valign="top">[a2]</TD> <TD valign="top"> A.J. Thomson, "Table of the coefficients of Everett's central difference interpolation formula" , Cambridge Univ. Press (1965)</TD></TR> | ||
− | <TR><TD valign="top">[b1]</TD> <TD valign="top"> J. D. Everett, "On interpolation formulae", ''Quarterly J.'' '''32''' (1900) 306-313 {{ZBL|32.0271.01}}</TD></TR> | + | <TR><TD valign="top">[b1]</TD> <TD valign="top"> L. J. Comrie, "Inverse interpolation and scientific applications of the national accounting machine", Suppl. JR statist. Soc. London '''3''' (1936) 87-114 {{ZBL|63.1136.02}}}</TD></TR> |
− | <TR><TD valign="top">[ | + | <TR><TD valign="top">[b2]</TD> <TD valign="top"> J. D. Everett, "On interpolation formulae", ''Quarterly J.'' '''32''' (1900) 306-313 {{ZBL|32.0271.01}}</TD></TR> |
+ | <TR><TD valign="top">[b3]</TD> <TD valign="top"> Maurice V. Wilkes, "A short introduction to numerical analysis", Cambridge University Press (1966) ISBN 0-521-09412-7 {{ZBL|0149.10902}}</TD</TR> | ||
</table> | </table> |
Revision as of 16:40, 3 January 2015
A method of writing the interpolation polynomial obtained from the Gauss interpolation formula for forward interpolation at with respect to the nodes , that is,
without finite differences of odd order, which are eliminated by means of the relation
Adding like terms yields Everett's interpolation formula
(1) |
where and
(2) |
Compared with other versions of the interpolation polynomial, formula (1) reduces approximately by half the amount of work required to solve the problem of table condensation; for example, when a given table of the values of a function at is to be used to draw up a table of the values of the same function at , , where is an integer, the values for are computed be means of the formula
and is used to find both values .
For manual calculation in the case , L. J. Comrie introduced throwback. It is advisable to approximate the coefficient of in (2) by
and instead of to compute
The parameter can be chosen, for example, from the condition that the principal part of
where
has a minimum value. In this case .
References
[1] | I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian) |
[2] | N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian) |
Comments
References
[a1] | P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126 |
[a2] | A.J. Thomson, "Table of the coefficients of Everett's central difference interpolation formula" , Cambridge Univ. Press (1965) |
[b1] | L. J. Comrie, "Inverse interpolation and scientific applications of the national accounting machine", Suppl. JR statist. Soc. London 3 (1936) 87-114 Zbl 63.1136.02} |
[b2] | J. D. Everett, "On interpolation formulae", Quarterly J. 32 (1900) 306-313 Zbl 32.0271.01 |
[b3] | Maurice V. Wilkes, "A short introduction to numerical analysis", Cambridge University Press (1966) ISBN 0-521-09412-7 Zbl 0149.10902</TD |
Everett interpolation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Everett_interpolation_formula&oldid=36054