Namespaces
Variants
Actions

Difference between revisions of "Legendre symbol"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(LaTeX)
 
Line 1: Line 1:
An [[Arithmetic function|arithmetic function]] of the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l0580601.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l0580602.png" />, defined for odd prime numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l0580603.png" /> and integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l0580604.png" /> not divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l0580605.png" />. The Legendre symbol is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l0580606.png" />. The Legendre symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l0580607.png" /> if the [[Congruence|congruence]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l0580608.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l0580609.png" /> is solvable; otherwise, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806010.png" />. The Legendre symbol is sometimes defined for numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806011.png" /> divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806012.png" /> by putting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806013.png" /> in this case. The Legendre symbol has the following properties:
+
An [[arithmetic function]] of the numbers $a$ and $p$, defined for odd prime numbers $p$ and integers $a$ not divisible by $p$. The Legendre symbol is denoted by $\left({\frac{a}{p}}\right)$. The Legendre symbol $\left({\frac{a}{p}}\right) = +1$ if the [[congruence]] $x^2 \equiv a \pmod p$ is solvable; otherwise, $\left({\frac{a}{p}}\right) = -1$. The Legendre symbol is sometimes defined for numbers $a$ divisible by $p$ by putting $\left({\frac{a}{p}}\right) = 0$ in this case. The Legendre symbol has the following properties:
  
1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806014.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806015.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806016.png" />;
+
1) if $a \equiv b \pmod p$, then $\left({\frac{a}{p}}\right) = \left({\frac{b}{p}}\right)$;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806017.png" />;
+
2) $\left({\frac{1}{p}}\right) = 1$;
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806018.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806019.png" />;
+
3) $\left({\frac{a}{p}}\right) \equiv a^{(p-1)/2} \pmod p$;
  
4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806020.png" />;
+
4) $\left({\frac{ab}{p}}\right) = \left({\frac{a}{p}}\right) \left({\frac{b}{p}}\right)$;
  
5) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806021.png" />;
+
5) $\left({\frac{-1}{p}}\right) = (-1)^{(p-1)/2}$;
  
6) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806022.png" />;
+
6) $\left({\frac{2}{p}}\right) = (-1)^{(p^2-1)/8}$;
  
7) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806024.png" /> are odd prime numbers, then
+
7) if $p$ and $q$ are odd prime numbers, then
 +
$$
 +
\left({\frac{p}{q}}\right) = \left({\frac{q}{p}}\right) (-1)^{(p-1)/2 \cdot (q-1)/2} \ .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806025.png" /></td> </tr></table>
+
The last fact, first proved by C.F. Gauss (1796), is called the [[quadratic reciprocity law]]. The above properties make it possible to calculate the Legendre symbol easily, without resorting to solving congruences. For example,
 +
$$
 +
\left({\frac{438}{593}}\right) = \left({\frac{2}{593}}\right)\left({\frac{3}{593}}\right)\left({\frac{73}{593}}\right) = (+1)\left({\frac{593}{3}}\right)\left({\frac{593}{73}}\right) = \left({\frac{2}{3}}\right)\left({\frac{9}{73}}\right) = (-1)(+1) = -1
 +
$$
  
The last fact, first proved by C.F. Gauss (1796), is called the quadratic reciprocity law. The above properties make it possible to calculate the Legendre symbol easily, without resorting to solving congruences. For example,
+
The calculation of the Legendre symbol is facilitated still more by the use of the [[Jacobi symbol]]. For fixed $p$ the Legendre symbol is a real character of the multiplicative group of residue classes modulo $p$ (cf. [[Character of a group|Character of a group]]).
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806026.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806027.png" /></td> </tr></table>
 
 
 
The calculation of the Legendre symbol is facilitated still more by the use of the [[Jacobi symbol|Jacobi symbol]]. For fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806028.png" /> the Legendre symbol is a real character of the multiplicative group of residue classes modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058060/l05806029.png" /> (cf. [[Character of a group|Character of a group]]).
 
  
 
It was introduced by A.M. Legendre in 1785.
 
It was introduced by A.M. Legendre in 1785.

Latest revision as of 18:03, 19 December 2014

An arithmetic function of the numbers $a$ and $p$, defined for odd prime numbers $p$ and integers $a$ not divisible by $p$. The Legendre symbol is denoted by $\left({\frac{a}{p}}\right)$. The Legendre symbol $\left({\frac{a}{p}}\right) = +1$ if the congruence $x^2 \equiv a \pmod p$ is solvable; otherwise, $\left({\frac{a}{p}}\right) = -1$. The Legendre symbol is sometimes defined for numbers $a$ divisible by $p$ by putting $\left({\frac{a}{p}}\right) = 0$ in this case. The Legendre symbol has the following properties:

1) if $a \equiv b \pmod p$, then $\left({\frac{a}{p}}\right) = \left({\frac{b}{p}}\right)$;

2) $\left({\frac{1}{p}}\right) = 1$;

3) $\left({\frac{a}{p}}\right) \equiv a^{(p-1)/2} \pmod p$;

4) $\left({\frac{ab}{p}}\right) = \left({\frac{a}{p}}\right) \left({\frac{b}{p}}\right)$;

5) $\left({\frac{-1}{p}}\right) = (-1)^{(p-1)/2}$;

6) $\left({\frac{2}{p}}\right) = (-1)^{(p^2-1)/8}$;

7) if $p$ and $q$ are odd prime numbers, then $$ \left({\frac{p}{q}}\right) = \left({\frac{q}{p}}\right) (-1)^{(p-1)/2 \cdot (q-1)/2} \ . $$

The last fact, first proved by C.F. Gauss (1796), is called the quadratic reciprocity law. The above properties make it possible to calculate the Legendre symbol easily, without resorting to solving congruences. For example, $$ \left({\frac{438}{593}}\right) = \left({\frac{2}{593}}\right)\left({\frac{3}{593}}\right)\left({\frac{73}{593}}\right) = (+1)\left({\frac{593}{3}}\right)\left({\frac{593}{73}}\right) = \left({\frac{2}{3}}\right)\left({\frac{9}{73}}\right) = (-1)(+1) = -1 $$

The calculation of the Legendre symbol is facilitated still more by the use of the Jacobi symbol. For fixed $p$ the Legendre symbol is a real character of the multiplicative group of residue classes modulo $p$ (cf. Character of a group).

It was introduced by A.M. Legendre in 1785.

References

[1] I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)


Comments

References

[a1] G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979)
How to Cite This Entry:
Legendre symbol. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Legendre_symbol&oldid=14735
This article was adapted from an original article by Yu.V. Nesterenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article