Namespaces
Variants
Actions

Difference between revisions of "Ferrari method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (adding some links, ZBL, MSC)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
A method for reducing the solution of an equation of degree 4 to the solution of one cubic and two quadratic equations; it was discovered by L. Ferrari (published in 1545).
+
{{MSC|12Exx}}
 +
{{TEX|done}}
  
The Ferrari method for the equation
+
The <i> Ferrari method </i> is a method for reducing the solution of an equation of degree 4 over the complex numbers (or, more generally, over any field of [[Characteristic_of_a_field|characteristic]] $\ne 2,3$) to the
 +
solution of one cubic and two quadratic equations; it was discovered
 +
by L. Ferrari (published in 1545).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f0384601.png" /></td> </tr></table>
+
The Ferrari method for the equation
 +
$$y^4 + a y^3 + by^2 + cy + d = 0$$
 +
consists in the
 +
following. By the substitution $y=x-a/4$ the given equation can be reduced
 +
to
 +
$$x^4+px^2 + qx +r = 0,\label{1}$$
 +
which contains no term in $x^3$. If one introduces an auxiliary
 +
parameter $\def\a{\alpha}\a$, the left-hand side of (1) can be written as
 +
$$x^4+px^2+qx+r =$$
  
consists in the following. By the substitution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f0384602.png" /> the given equation can be reduced to
+
$$=(x^2+\frac{p}{2}+\a)^2-\big[2\a x^2 - qx +\big(\a^2+p\a+\frac{p^2}{4}-r\big)\big].\label{2}$$
 +
One then chooses a value of $\a$ such that the quadratic [[Polynomial|trinomial]] in
 +
square brackets is a perfect square. For this the [[Quadratic equation|discriminant of the
 +
quadratic trinomial]] must vanish. This gives a
 +
[[Cubic equation|cubic equation]] for $\a$,
 +
$$q^2-4\cdot2\a\big(\a^2+p\a+\frac{p^2}{4}-r\big)=0.$$
 +
Let $\a_0$ be one of the
 +
roots of this equation. For $\a=\a_0$ the polynomial in square brackets in
 +
(2) has one double root,
 +
$$x_0 = \frac{q}{4\a_0},$$
 +
which leads to the equation
 +
$$\big(x^2+\frac{p}{2}+\a_0\big)^2 - 2\a_0(x-x_0)^2 = 0.$$
 +
This
 +
equation of degree 4 splits into two [[Quadratic equation|quadratic equations]]. The roots of
 +
these equations are also the roots of (1).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f0384603.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
====References====
 
+
{|
which contains no term in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f0384604.png" />. If one introduces an auxiliary parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f0384605.png" />, the left-hand side of (1) can be written as
+
|-
 
+
|valign="top"|{{Ref|Ku}}||valign="top"| A.G. Kurosh, "Higher algebra", MIR (1972) (Translated from Russian)   {{ZBL|0237.13001}}
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f0384606.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f0384607.png" /></td> </tr></table>
 
 
 
One then chooses a value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f0384608.png" /> such that the expression in square brackets is a perfect square. For this the discriminant of the quadratic trinomial must vanish. This gives a [[Cubic equation|cubic equation]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f0384609.png" />,
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f03846010.png" /></td> </tr></table>
 
 
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f03846011.png" /> be one of the roots of this equation. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f03846012.png" /> the polynomial in square brackets in (2) has one double root,
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f03846013.png" /></td> </tr></table>
 
 
 
which leads to the equation
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038460/f03846014.png" /></td> </tr></table>
 
  
This equation of degree 4 splits into two quadratic equations. The roots of these equations are also the roots of (1).
+
|-
 
+
|}
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.G. Kurosh,  "Higher algebra" , MIR  (1972)  (Translated from Russian)</TD></TR></table>
 

Latest revision as of 13:05, 17 December 2014

2020 Mathematics Subject Classification: Primary: 12Exx [MSN][ZBL]

The Ferrari method is a method for reducing the solution of an equation of degree 4 over the complex numbers (or, more generally, over any field of characteristic $\ne 2,3$) to the solution of one cubic and two quadratic equations; it was discovered by L. Ferrari (published in 1545).

The Ferrari method for the equation $$y^4 + a y^3 + by^2 + cy + d = 0$$ consists in the following. By the substitution $y=x-a/4$ the given equation can be reduced to $$x^4+px^2 + qx +r = 0,\label{1}$$ which contains no term in $x^3$. If one introduces an auxiliary parameter $\def\a{\alpha}\a$, the left-hand side of (1) can be written as $$x^4+px^2+qx+r =$$

$$=(x^2+\frac{p}{2}+\a)^2-\big[2\a x^2 - qx +\big(\a^2+p\a+\frac{p^2}{4}-r\big)\big].\label{2}$$ One then chooses a value of $\a$ such that the quadratic trinomial in square brackets is a perfect square. For this the discriminant of the quadratic trinomial must vanish. This gives a cubic equation for $\a$, $$q^2-4\cdot2\a\big(\a^2+p\a+\frac{p^2}{4}-r\big)=0.$$ Let $\a_0$ be one of the roots of this equation. For $\a=\a_0$ the polynomial in square brackets in (2) has one double root, $$x_0 = \frac{q}{4\a_0},$$ which leads to the equation $$\big(x^2+\frac{p}{2}+\a_0\big)^2 - 2\a_0(x-x_0)^2 = 0.$$ This equation of degree 4 splits into two quadratic equations. The roots of these equations are also the roots of (1).

References

[Ku] A.G. Kurosh, "Higher algebra", MIR (1972) (Translated from Russian) Zbl 0237.13001
How to Cite This Entry:
Ferrari method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ferrari_method&oldid=14615
This article was adapted from an original article by I.V. Proskuryakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article