Namespaces
Variants
Actions

Difference between revisions of "Bimodule"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (link)
Line 1: Line 1:
 
''double module''
 
''double module''
  
An Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163101.png" /> that is a left module over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163102.png" /> and a right module over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163103.png" />, and is such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163104.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163105.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163106.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163107.png" />. One says that this is the situation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163108.png" />, or that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163109.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631010.png" />-bimodule. The bimodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631011.png" /> may be regarded as a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631012.png" />-module, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631013.png" /> is the ring which is dually isomorphic (anti-isomorphic) to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631014.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631015.png" /> denotes the tensor product over the ring of integers, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631016.png" />. For every left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631017.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631018.png" /> one has the situation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631020.png" /> is the ring of endomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631021.png" />. Any ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631022.png" /> can be given the natural structure of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631023.png" />-bimodule.
+
An Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163101.png" /> that is a left module over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163102.png" /> and a right module over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163103.png" />, and is such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163104.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163105.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163106.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163107.png" />. One says that this is the situation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163108.png" />, or that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b0163109.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631010.png" />-bimodule. The bimodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631011.png" /> may be regarded as a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631012.png" />-module, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631013.png" /> is the [[opposite ring]] (dually isomorphic, anti-isomorphic) to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631014.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631015.png" /> denotes the tensor product over the ring of integers, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631016.png" />. For every left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631017.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631018.png" /> one has the situation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631020.png" /> is the ring of endomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631021.png" />. Any ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631022.png" /> can be given the natural structure of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016310/b01631023.png" />-bimodule.
  
  

Revision as of 22:29, 30 November 2014

double module

An Abelian group that is a left module over a ring and a right module over a ring , and is such that for all , , . One says that this is the situation , or that is an -bimodule. The bimodule may be regarded as a left -module, where is the opposite ring (dually isomorphic, anti-isomorphic) to , while denotes the tensor product over the ring of integers, and . For every left -module one has the situation , where is the ring of endomorphisms of . Any ring can be given the natural structure of an -bimodule.


Comments

A bimodule morphism is a mapping from a bimodule into a bimodule that is left -linear and right -linear. The category of -bimodules with bimodule morphisms is a Grothendieck category.

The centre of an -bimodule (also called an -bimodule) is defined to be the set . Clearly is a two-sided -module.

How to Cite This Entry:
Bimodule. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bimodule&oldid=13998
This article was adapted from an original article by L.A. Skornyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article