Difference between revisions of "Monotone function"
m (ce) |
(related concepts) |
||
Line 26: | Line 26: | ||
A monotone function of many variables, increasing or decreasing at some point, is defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483016.png" /> be defined on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483017.png" />-dimensional closed cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483018.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483019.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483020.png" /> be a [[Level set|level set]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483021.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483022.png" /> is called increasing (respectively, decreasing) at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483023.png" /> if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483024.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483025.png" /> not separated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483026.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483027.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483028.png" />, the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483029.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483030.png" />) holds, and for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483031.png" /> that is separated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483032.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483033.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483034.png" />, the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483035.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483036.png" />) holds. A function that is increasing or decreasing at some point is called monotone at that point. | A monotone function of many variables, increasing or decreasing at some point, is defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483016.png" /> be defined on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483017.png" />-dimensional closed cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483018.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483019.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483020.png" /> be a [[Level set|level set]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483021.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483022.png" /> is called increasing (respectively, decreasing) at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483023.png" /> if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483024.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483025.png" /> not separated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483026.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483027.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483028.png" />, the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483029.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483030.png" />) holds, and for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483031.png" /> that is separated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483032.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483033.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483034.png" />, the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483035.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483036.png" />) holds. A function that is increasing or decreasing at some point is called monotone at that point. | ||
+ | |||
+ | ====Comments==== | ||
+ | For the concept in [[non-linear functional analysis]], see [[Monotone operator]]. For the concept in general [[partially ordered set]]s, see [[Monotone mapping]]. |
Revision as of 18:22, 15 November 2014
A function of one variable, defined on a subset of the real numbers, whose increment , for , does not change sign, that is, is either always negative or always positive. If is strictly greater (less) than zero when , then the function is called strictly monotone (see Increasing function; Decreasing function). The various types of monotone functions are represented in the following table.
<tbody> </tbody>
|
If at each point of an interval has a derivative that does not change sign (respectively, is of constant sign), then is monotone (strictly monotone) on this interval.
The idea of a monotone function can be generalized to functions of various classes. For example, a function defined on is called monotone if the condition implies that everywhere either or everywhere. A monotone function in the algebra of logic is defined similarly.
A monotone function of many variables, increasing or decreasing at some point, is defined as follows. Let be defined on the -dimensional closed cube , let and let be a level set of . The function is called increasing (respectively, decreasing) at if for any and any not separated in by from , the relation (respectively, ) holds, and for any that is separated in by from , the relation (respectively, ) holds. A function that is increasing or decreasing at some point is called monotone at that point.
Comments
For the concept in non-linear functional analysis, see Monotone operator. For the concept in general partially ordered sets, see Monotone mapping.
Monotone function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Monotone_function&oldid=34524