Namespaces
Variants
Actions

Difference between revisions of "Koebe function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
 +
{{TEX|done}}
 
The function
 
The function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055650/k0556501.png" /></td> </tr></table>
+
$$w=f(z)=f_\theta(z)=\frac{z}{(1-e^{i\theta}z)^2}=z+\sum_{n=2}^\infty ne^{i(n-1)\theta}z^n,$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055650/k0556502.png" />. This function was first studied by P. Koebe [[#References|[1]]]. The Koebe function maps the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055650/k0556503.png" /> onto the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055650/k0556504.png" />-plane with a slit along the ray starting at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055650/k0556505.png" />, its extension containing the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055650/k0556506.png" />. The Koebe function is an extremal function in a number of problems in the theory of univalent functions (cf. [[Bieberbach conjecture|Bieberbach conjecture]]; [[Univalent function|Univalent function]]).
+
where $\theta\in[0,2\pi)$. This function was first studied by P. Koebe [[#References|[1]]]. The Koebe function maps the disc $|z|<1$ onto the $w$-plane with a slit along the ray starting at the point $-e^{-i\theta}/4$, its extension containing the point $w=0$. The Koebe function is an extremal function in a number of problems in the theory of univalent functions (cf. [[Bieberbach conjecture|Bieberbach conjecture]]; [[Univalent function|Univalent function]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P. Koebe,  "Ueber die Uniformisierung beliebiger analytischen Kurven"  ''Math. Ann.'' , '''69'''  (1910)  pp. 1–81</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W.K. Hayman,  "Coefficient problems for univalent functions and related function classes"  ''J. London Math. Soc.'' , '''40''' :  3  (1965)  pp. 385–406</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P. Koebe,  "Ueber die Uniformisierung beliebiger analytischen Kurven"  ''Math. Ann.'' , '''69'''  (1910)  pp. 1–81</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W.K. Hayman,  "Coefficient problems for univalent functions and related function classes"  ''J. London Math. Soc.'' , '''40''' :  3  (1965)  pp. 385–406</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR></table>

Revision as of 09:57, 20 September 2014

The function

$$w=f(z)=f_\theta(z)=\frac{z}{(1-e^{i\theta}z)^2}=z+\sum_{n=2}^\infty ne^{i(n-1)\theta}z^n,$$

where $\theta\in[0,2\pi)$. This function was first studied by P. Koebe [1]. The Koebe function maps the disc $|z|<1$ onto the $w$-plane with a slit along the ray starting at the point $-e^{-i\theta}/4$, its extension containing the point $w=0$. The Koebe function is an extremal function in a number of problems in the theory of univalent functions (cf. Bieberbach conjecture; Univalent function).

References

[1] P. Koebe, "Ueber die Uniformisierung beliebiger analytischen Kurven" Math. Ann. , 69 (1910) pp. 1–81
[2] W.K. Hayman, "Coefficient problems for univalent functions and related function classes" J. London Math. Soc. , 40 : 3 (1965) pp. 385–406
[3] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)
How to Cite This Entry:
Koebe function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Koebe_function&oldid=19034
This article was adapted from an original article by E.G. Goluzina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article