|
|
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| ''of intuitionistic arithmetic'' | | ''of intuitionistic arithmetic'' |
| | | |
− | A translation of formulas of intuitionistic arithmetic into formulas of the type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g0445401.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g0445402.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g0445403.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g0445404.png" /> are variables of various finite types. Provable formulas of arithmetic are translated into provable formulas of a quantifier-free theory of finite types. Thus, this translation reduces the consistency of intuitionistic arithmetic (and hence of classical arithmetic) to that of such a theory of finite types, as was Gödel's original aim. | + | A translation of formulas of intuitionistic arithmetic into formulas of the type $\exists x\forall yA(x,y,z)$, where $x$, $y$ and $z$ are variables of various finite types. Provable formulas of arithmetic are translated into provable formulas of a quantifier-free theory of finite types. Thus, this translation reduces the consistency of intuitionistic arithmetic (and hence of classical arithmetic) to that of such a theory of finite types, as was Gödel's original aim. |
| | | |
− | This type theory, call it <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g0445405.png" />, has an infinite list of variables of each type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g0445406.png" />: 1) a type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g0445407.png" /> (the type of natural numbers); and 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g0445408.png" /> are types, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g0445409.png" /> is a type (the type of functions which take <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454010.png" /> arguments of types <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454011.png" />, respectively, into a value of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454012.png" />). The language <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454013.png" /> contains terms of various types: a variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454014.png" /> of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454015.png" /> is a term of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454016.png" />, 0 is a term of type 0, and the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454017.png" /> which denotes the function of adding one to a natural number is a term of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454018.png" />. The remaining terms are formed by generation laws: [[Church lambda-abstraction|Church <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454019.png" />-abstraction]] and primitive recursion for functions of arbitrary type. The atomic formulas of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454020.png" /> are equalities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454021.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454023.png" /> are terms of type zero. The formulas of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454024.png" /> are obtained from atomic formulas with the aid of the logical connectives of propositional calculus: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454028.png" />. The postulates of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454029.png" /> are the axioms and derivation rules of intuitionistic propositional calculus, equality axioms, the [[Peano axioms|Peano axioms]] for 0 and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454030.png" />, equations of primitive recursion, the axiom of application of a function defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454031.png" />-abstraction, and, finally, the principle of mathematical induction, formulated as a derivation rule without the use of quantifiers. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454032.png" /> will denote the theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454033.png" /> completed by quantifiers in variables of arbitrary type and corresponding logical axioms and derivation rules for quantifiers. | + | This type theory, call it $T$, has an infinite list of variables of each type $t$: 1) a type $0$ (the type of natural numbers); and 2) if $t_0,\dots,t_k$ are types, then $(t_0,\dots,t_k)$ is a type (the type of functions which take $k$ arguments of types $t_1,\dots,t_k$, respectively, into a value of type $t_0$). The language $T$ contains terms of various types: a variable $x^t$ of type $t$ is a term of type $t$, 0 is a term of type 0, and the symbol $s$ which denotes the function of adding one to a natural number is a term of type $(0,0)$. The remaining terms are formed by generation laws: [[Church lambda-abstraction|Church $\lambda$-abstraction]] and primitive recursion for functions of arbitrary type. The atomic formulas of $T$ are equalities $(t=r)$, where $t$, $r$ are terms of type zero. The formulas of $T$ are obtained from atomic formulas with the aid of the logical connectives of propositional calculus: $\land$, $\lor$, $\supset$, $\neg$. The postulates of $T$ are the axioms and derivation rules of intuitionistic propositional calculus, equality axioms, the [[Peano axioms|Peano axioms]] for 0 and $s$, equations of primitive recursion, the axiom of application of a function defined by $\lambda$-abstraction, and, finally, the principle of mathematical induction, formulated as a derivation rule without the use of quantifiers. $T^+$ will denote the theory $T$ completed by quantifiers in variables of arbitrary type and corresponding logical axioms and derivation rules for quantifiers. |
| | | |
− | Gödel's interpretation translates any formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454034.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454035.png" /> (i.e. any formula of intuitionistic arithmetic as well) into a formula of the type | + | Gödel's interpretation translates any formula $F$ from $T^+$ (i.e. any formula of intuitionistic arithmetic as well) into a formula of the type |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454036.png" /></td> </tr></table>
| + | $$\exists x\forall yA(x,y,z),$$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454037.png" /> is a quantifier-free formula, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454040.png" /> are variables of different types, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454041.png" /> is the set of all free variables of the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454042.png" />. | + | where $A(x,y,z)$ is a quantifier-free formula, $x$, $y$, $z$ are variables of different types, and $z$ is the set of all free variables of the formula $F$. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454043.png" /> be a formula of intuitionistic arithmetic, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454044.png" /> be its Gödel interpretation. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454045.png" /> is deducible in formal intuitionistic arithmetic, it is possible to construct a term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454046.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454047.png" /> such that the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454048.png" /> is deducible in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454049.png" />. Thus, the consistency of arithmetic is reduced to demonstrating the consistency of the quantifier-free theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454050.png" />. | + | Let $F$ be a formula of intuitionistic arithmetic, and let $\exists x\forall yA(x,y,z)$ be its Gödel interpretation. If $F$ is deducible in formal intuitionistic arithmetic, it is possible to construct a term $t(z)$ of $T$ such that the formula $A(t(z),y,z)$ is deducible in $T$. Thus, the consistency of arithmetic is reduced to demonstrating the consistency of the quantifier-free theory $T$. |
| | | |
− | The intuitionistic semantics based on Gödel's interpretation is defined as follows: A formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454051.png" /> is considered to be true if it is possible to find a computable term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454052.png" /> such that the quantifier-free formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454053.png" /> is true for any computable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044540/g04454054.png" />. | + | The intuitionistic semantics based on Gödel's interpretation is defined as follows: A formula $F$ is considered to be true if it is possible to find a computable term $t(z)$ such that the quantifier-free formula $A(t(z),y,z)$ is true for any computable $z$. |
| | | |
| ====References==== | | ====References==== |
of intuitionistic arithmetic
A translation of formulas of intuitionistic arithmetic into formulas of the type $\exists x\forall yA(x,y,z)$, where $x$, $y$ and $z$ are variables of various finite types. Provable formulas of arithmetic are translated into provable formulas of a quantifier-free theory of finite types. Thus, this translation reduces the consistency of intuitionistic arithmetic (and hence of classical arithmetic) to that of such a theory of finite types, as was Gödel's original aim.
This type theory, call it $T$, has an infinite list of variables of each type $t$: 1) a type $0$ (the type of natural numbers); and 2) if $t_0,\dots,t_k$ are types, then $(t_0,\dots,t_k)$ is a type (the type of functions which take $k$ arguments of types $t_1,\dots,t_k$, respectively, into a value of type $t_0$). The language $T$ contains terms of various types: a variable $x^t$ of type $t$ is a term of type $t$, 0 is a term of type 0, and the symbol $s$ which denotes the function of adding one to a natural number is a term of type $(0,0)$. The remaining terms are formed by generation laws: Church $\lambda$-abstraction and primitive recursion for functions of arbitrary type. The atomic formulas of $T$ are equalities $(t=r)$, where $t$, $r$ are terms of type zero. The formulas of $T$ are obtained from atomic formulas with the aid of the logical connectives of propositional calculus: $\land$, $\lor$, $\supset$, $\neg$. The postulates of $T$ are the axioms and derivation rules of intuitionistic propositional calculus, equality axioms, the Peano axioms for 0 and $s$, equations of primitive recursion, the axiom of application of a function defined by $\lambda$-abstraction, and, finally, the principle of mathematical induction, formulated as a derivation rule without the use of quantifiers. $T^+$ will denote the theory $T$ completed by quantifiers in variables of arbitrary type and corresponding logical axioms and derivation rules for quantifiers.
Gödel's interpretation translates any formula $F$ from $T^+$ (i.e. any formula of intuitionistic arithmetic as well) into a formula of the type
$$\exists x\forall yA(x,y,z),$$
where $A(x,y,z)$ is a quantifier-free formula, $x$, $y$, $z$ are variables of different types, and $z$ is the set of all free variables of the formula $F$.
Let $F$ be a formula of intuitionistic arithmetic, and let $\exists x\forall yA(x,y,z)$ be its Gödel interpretation. If $F$ is deducible in formal intuitionistic arithmetic, it is possible to construct a term $t(z)$ of $T$ such that the formula $A(t(z),y,z)$ is deducible in $T$. Thus, the consistency of arithmetic is reduced to demonstrating the consistency of the quantifier-free theory $T$.
The intuitionistic semantics based on Gödel's interpretation is defined as follows: A formula $F$ is considered to be true if it is possible to find a computable term $t(z)$ such that the quantifier-free formula $A(t(z),y,z)$ is true for any computable $z$.
References
[1] | K. Gödel, "Ueber eine bisher noch nicht benützte Erweiterung des finiten Standpunktes" Dialectica , 12 (1958) pp. 280–287 |
In the West this interpretation is commonly called the Dialectica interpretation.
References
[a1] | E. Bishop, "Mathematics as a numerical language" A. Kino (ed.) J. Myhill (ed.) R.E. Vesley (ed.) , Intuitionism and Proof Theory , North-Holland (1970) pp. 53–71 |
[a2] | A.S. Troelstra (ed.) , Metamathematical investigations , Lect. notes in math. , 344 , Springer (1973) pp. 230ff |