|
|
Line 1: |
Line 1: |
− | ''entier, integer part of a (real) number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i0515801.png" />'' | + | {{TEX|done}} |
| + | ''entier, integer part of a (real) number $x$'' |
| | | |
− | The largest integer not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i0515802.png" />. It is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i0515803.png" /> or by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i0515804.png" />. It follows from the definition of an integer part that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i0515805.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i0515806.png" /> is an integer, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i0515807.png" />. Examples: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i0515808.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i0515809.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i05158010.png" />. The integral part is used in the factorization of, for example, the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i05158011.png" />, viz. | + | The largest integer not exceeding $x$. It is denoted by $[x]$ or by $E(x)$. It follows from the definition of an integer part that $[x]\leq x<[x]+1$. If $x$ is an integer, $[x]=x$. Examples: $[3.6]=3$; $[1/3]=0$, $[-13/5]=-5$. The integral part is used in the factorization of, for example, the number $n!=1\dots n$, viz. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i05158012.png" /></td> </tr></table>
| + | $$n!=\prod_{p\leq n}p^{\alpha(p)},$$ |
| | | |
− | where the product consists of all primes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i05158013.png" /> not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i05158014.png" />, and | + | where the product consists of all primes $p$ not exceeding $n$, and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i05158015.png" /></td> </tr></table>
| + | $$\alpha(p)=\left[\frac np\right]+\left[\frac{n}{p^2}\right]+\mathinner{\ldotp\ldotp\ldotp\ldotp}$$ |
| | | |
− | The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i05158016.png" /> of the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i05158017.png" /> is piecewise continuous (a step function) with jumps at the integers. Using the integral part one defines the fractional part of a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i05158018.png" />, denoted by the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i05158019.png" /> and given by | + | The function $y=[x]$ of the variable $x$ is piecewise continuous (a step function) with jumps at the integers. Using the integral part one defines the fractional part of a number $x$, denoted by the symbol $\{x\}$ and given by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i05158020.png" /></td> </tr></table>
| + | $$x-[x];\quad0\leq\{x\}<1.$$ |
| | | |
− | The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051580/i05158021.png" /> is a periodic and piecewise continuous. | + | The function $y=\{x\}$ is a periodic and piecewise continuous. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR></table> |
Revision as of 12:44, 27 August 2014
entier, integer part of a (real) number $x$
The largest integer not exceeding $x$. It is denoted by $[x]$ or by $E(x)$. It follows from the definition of an integer part that $[x]\leq x<[x]+1$. If $x$ is an integer, $[x]=x$. Examples: $[3.6]=3$; $[1/3]=0$, $[-13/5]=-5$. The integral part is used in the factorization of, for example, the number $n!=1\dots n$, viz.
$$n!=\prod_{p\leq n}p^{\alpha(p)},$$
where the product consists of all primes $p$ not exceeding $n$, and
$$\alpha(p)=\left[\frac np\right]+\left[\frac{n}{p^2}\right]+\mathinner{\ldotp\ldotp\ldotp\ldotp}$$
The function $y=[x]$ of the variable $x$ is piecewise continuous (a step function) with jumps at the integers. Using the integral part one defines the fractional part of a number $x$, denoted by the symbol $\{x\}$ and given by
$$x-[x];\quad0\leq\{x\}<1.$$
The function $y=\{x\}$ is a periodic and piecewise continuous.
References
[1] | I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) |
How to Cite This Entry:
Integral part. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_part&oldid=11468
This article was adapted from an original article by B.M. Bredikhin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article