Difference between revisions of "Poisson equation"
(Importing text file) |
(TeX) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | A partial differential equation which is satisfied by the [[Potential|potential]] of a mass distribution inside domains occupied by the masses creating this potential. For the [[Newton potential|Newton potential]] in the space | + | {{TEX|done}} |
+ | A partial differential equation which is satisfied by the [[Potential|potential]] of a mass distribution inside domains occupied by the masses creating this potential. For the [[Newton potential|Newton potential]] in the space $\mathbf R^n$, $n\geq3$, and the [[Logarithmic potential|logarithmic potential]] in $\mathbf R^3$ the Poisson equation has the form | ||
− | + | $$\Delta u=\sum_{i=1}^n\frac{\partial^2u}{\partial x_i^2}=-\sigma(S^n)\rho(x_1,\dots,x_n),$$ | |
− | where | + | where $\rho=\rho(x_1,\dots,x_n)$ is the density of the mass distribution, $\sigma(S^n)=n\pi^{n/2}/\Gamma(n/2+1)$ is the area of the unit sphere $S^n$ in $\mathbf R^n$ and $\Gamma(n/2+1)$ is the value of the gamma-function. |
Poisson's equation is a basic example of a non-homogeneous equation of elliptic type. The equation was first considered by S. Poisson (1812). | Poisson's equation is a basic example of a non-homogeneous equation of elliptic type. The equation was first considered by S. Poisson (1812). | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Bitsadze, "Equations of mathematical physics" , MIR (1980) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience (1965) (Translated from German)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Bitsadze, "Equations of mathematical physics" , MIR (1980) (Translated from Russian) {{MR|0587310}} {{MR|0581247}} {{ZBL|0499.35002}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience (1965) (Translated from German) {{MR|0195654}} {{ZBL|}} </TD></TR></table> |
====Comments==== | ====Comments==== | ||
− | The map | + | The map $u\mapsto\Delta(u)$ defines a morphism from the sheaf of local differences of superharmonic functions into a sheaf of measures on $\mathbf R^n$. This remark leads to a treatment of the Poisson problem in the framework of harmonic spaces (cf. [[Harmonic space|Harmonic space]]), see [[#References|[a1]]]. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.-Y. Maeda, "Dirichlet integrals on harmonic spaces" , ''Lect. notes in math.'' , '''803''' , Springer (1980)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S.D. Poisson, "Remarques sur une équation qui se présente dans la théorie des attractions des sphéroïdes" ''Nouveau Bull. Soc. Philomathique de Paris'' , '''3''' (1813) pp. 388–392</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Rudin, "Function theory in the unit ball in | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.-Y. Maeda, "Dirichlet integrals on harmonic spaces" , ''Lect. notes in math.'' , '''803''' , Springer (1980) {{MR|0576059}} {{ZBL|0426.31001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S.D. Poisson, "Remarques sur une équation qui se présente dans la théorie des attractions des sphéroïdes" ''Nouveau Bull. Soc. Philomathique de Paris'' , '''3''' (1813) pp. 388–392 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Rudin, "Function theory in the unit ball in $\mathbf C^n$" , Springer (1980) {{MR|601594}} {{ZBL|0495.32001}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> O.D. Kellogg, "Foundations of potential theory" , F. Ungar (1929) (Re-issue: Springer, 1967) {{MR|0222317}} {{MR|1522134}} {{ZBL|0152.31301}} {{ZBL|0053.07301}} </TD></TR></table> |
Latest revision as of 06:54, 27 August 2014
A partial differential equation which is satisfied by the potential of a mass distribution inside domains occupied by the masses creating this potential. For the Newton potential in the space $\mathbf R^n$, $n\geq3$, and the logarithmic potential in $\mathbf R^3$ the Poisson equation has the form
$$\Delta u=\sum_{i=1}^n\frac{\partial^2u}{\partial x_i^2}=-\sigma(S^n)\rho(x_1,\dots,x_n),$$
where $\rho=\rho(x_1,\dots,x_n)$ is the density of the mass distribution, $\sigma(S^n)=n\pi^{n/2}/\Gamma(n/2+1)$ is the area of the unit sphere $S^n$ in $\mathbf R^n$ and $\Gamma(n/2+1)$ is the value of the gamma-function.
Poisson's equation is a basic example of a non-homogeneous equation of elliptic type. The equation was first considered by S. Poisson (1812).
References
[1] | A.V. Bitsadze, "Equations of mathematical physics" , MIR (1980) (Translated from Russian) MR0587310 MR0581247 Zbl 0499.35002 |
[2] | R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German) MR0195654 |
Comments
The map $u\mapsto\Delta(u)$ defines a morphism from the sheaf of local differences of superharmonic functions into a sheaf of measures on $\mathbf R^n$. This remark leads to a treatment of the Poisson problem in the framework of harmonic spaces (cf. Harmonic space), see [a1].
References
[a1] | F.-Y. Maeda, "Dirichlet integrals on harmonic spaces" , Lect. notes in math. , 803 , Springer (1980) MR0576059 Zbl 0426.31001 |
[a2] | S.D. Poisson, "Remarques sur une équation qui se présente dans la théorie des attractions des sphéroïdes" Nouveau Bull. Soc. Philomathique de Paris , 3 (1813) pp. 388–392 |
[a3] | W. Rudin, "Function theory in the unit ball in $\mathbf C^n$" , Springer (1980) MR601594 Zbl 0495.32001 |
[a4] | O.D. Kellogg, "Foundations of potential theory" , F. Ungar (1929) (Re-issue: Springer, 1967) MR0222317 MR1522134 Zbl 0152.31301 Zbl 0053.07301 |
Poisson equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_equation&oldid=14096