Difference between revisions of "Multiplicative system"
From Encyclopedia of Mathematics
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | An [[Orthonormal system|orthonormal system]] of functions | + | {{TEX|done}} |
+ | An [[Orthonormal system|orthonormal system]] of functions $\{\phi_n\}$ on $[a,b]$ satisfying the conditions: | ||
− | 1) for any two functions | + | 1) for any two functions $\phi_k$ and $\phi_l$ the system $\{\phi_n\}$ contains their product $\phi_m(x)=\phi_k(x)\phi_l(x)$; |
− | 2) for each function | + | 2) for each function $\phi_k$ the system $\{\phi_n\}$ contains the function $\phi_m(x)=1/\phi_k(x)$. |
− | Examples of multiplicative systems are the exponential system | + | Examples of multiplicative systems are the exponential system $\{e^{i2\pi nx}\}_{n=-\infty}^\infty$, which is orthogonal on $[0,1]$, and the [[Walsh system|Walsh system]] of functions. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H.F. Harmuth, "Transmission of information by orthogonal functions" , Springer (1972)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R.W. Zeek (ed.) A.E. Showalter (ed.) , ''Applications of Walsh functions (Proc. Symp. Washington, April 1971)'' , Univ. Maryland (1971)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H.F. Harmuth, "Transmission of information by orthogonal functions" , Springer (1972)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R.W. Zeek (ed.) A.E. Showalter (ed.) , ''Applications of Walsh functions (Proc. Symp. Washington, April 1971)'' , Univ. Maryland (1971)</TD></TR></table> |
Latest revision as of 14:57, 19 August 2014
An orthonormal system of functions $\{\phi_n\}$ on $[a,b]$ satisfying the conditions:
1) for any two functions $\phi_k$ and $\phi_l$ the system $\{\phi_n\}$ contains their product $\phi_m(x)=\phi_k(x)\phi_l(x)$;
2) for each function $\phi_k$ the system $\{\phi_n\}$ contains the function $\phi_m(x)=1/\phi_k(x)$.
Examples of multiplicative systems are the exponential system $\{e^{i2\pi nx}\}_{n=-\infty}^\infty$, which is orthogonal on $[0,1]$, and the Walsh system of functions.
References
[1] | S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951) |
[2] | H.F. Harmuth, "Transmission of information by orthogonal functions" , Springer (1972) |
[3] | R.W. Zeek (ed.) A.E. Showalter (ed.) , Applications of Walsh functions (Proc. Symp. Washington, April 1971) , Univ. Maryland (1971) |
How to Cite This Entry:
Multiplicative system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multiplicative_system&oldid=13287
Multiplicative system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multiplicative_system&oldid=13287
This article was adapted from an original article by A.V. Efimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article