Difference between revisions of "Banach-Steinhaus theorem"
(Importing text file) |
(TeX) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | A general appellation for several results concerning the linear-topological properties of the space of continuous linear mappings of one linear topological space into another. Let | + | {{TEX|done}} |
+ | A general appellation for several results concerning the linear-topological properties of the space of continuous linear mappings of one linear topological space into another. Let $E$ and $F$ be locally convex linear topological spaces, where $E$ is a [[Barrelled space|barrelled space]], or let $E$ and $F$ be linear topological spaces, where $E$ is a [[Baire space|Baire space]]. The following propositions are then valid. 1) Any subset of the set $L(E,F)$ of continuous linear mappings of $E$ into $F$ which is bounded in the topology of simple convergence is equicontinuous (the uniform boundedness principle); 2) If a filter $P$ in $L(E,F)$ contains a set bounded in the topology of simple convergence, and converges in the topology of simple convergence to some mapping $v$ of $E$ into $F$, then $v$ is a continuous linear mapping of $E$ into $F$, and $P$ converges uniformly to $v$ on each compact subset of $E$ [[#References|[2]]], [[#References|[3]]]. | ||
− | These general results make it possible to render the classical results of S. Banach and H. Steinhaus [[#References|[1]]] more precise: Let | + | These general results make it possible to render the classical results of S. Banach and H. Steinhaus [[#References|[1]]] more precise: Let $E$ and $F$ be Banach spaces and let $M$ be a subset of the second category in $E$. Then, 1) if $H\subset L(E,F)$ and $\sup\{\|u(x)\|\colon u\in H\}$ is finite for all $x\in M$, then $\sup\{\|u\|\colon u\in H\}<\infty$; 2) if $u_n$ is a sequence of continuous linear mappings of $E$ into $F$, and if the sequence $u_n(x)$ converges in $F$ for all $x\in M$, then $u_n$ converges uniformly on any compact subset of $E$ to a continuous linear mapping $v$ of $E$ into $F$. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Banach, H. Steinhaus, "Sur le principe de la condensation de singularités" ''Fund. Math.'' , '''9''' (1927) pp. 50–61</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Topological vector spaces" , Addison-Wesley (1977) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H.H. Schaefer, "Topological vector spaces" , Macmillan (1966)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Banach, H. Steinhaus, "Sur le principe de la condensation de singularités" ''Fund. Math.'' , '''9''' (1927) pp. 50–61</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Topological vector spaces" , Addison-Wesley (1977) (Translated from French) {{MR|0583191}} {{ZBL|1106.46003}} {{ZBL|1115.46002}} {{ZBL|0622.46001}} {{ZBL|0482.46001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H.H. Schaefer, "Topological vector spaces" , Macmillan (1966) {{MR|0193469}} {{ZBL|0141.30503}} </TD></TR></table> |
Line 12: | Line 13: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Köthe, "Topological vector spaces" , '''1''' , Springer (1969)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.L. Kelley, I. Namioka, "Linear topological spaces" , Springer (1963)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Köthe, "Topological vector spaces" , '''1''' , Springer (1969) {{MR|0248498}} {{MR|0178335}} {{ZBL|0179.17001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.L. Kelley, I. Namioka, "Linear topological spaces" , Springer (1963) {{MR|0166578}} {{ZBL|0115.09902}} </TD></TR></table> |
Latest revision as of 11:05, 19 August 2014
A general appellation for several results concerning the linear-topological properties of the space of continuous linear mappings of one linear topological space into another. Let $E$ and $F$ be locally convex linear topological spaces, where $E$ is a barrelled space, or let $E$ and $F$ be linear topological spaces, where $E$ is a Baire space. The following propositions are then valid. 1) Any subset of the set $L(E,F)$ of continuous linear mappings of $E$ into $F$ which is bounded in the topology of simple convergence is equicontinuous (the uniform boundedness principle); 2) If a filter $P$ in $L(E,F)$ contains a set bounded in the topology of simple convergence, and converges in the topology of simple convergence to some mapping $v$ of $E$ into $F$, then $v$ is a continuous linear mapping of $E$ into $F$, and $P$ converges uniformly to $v$ on each compact subset of $E$ [2], [3].
These general results make it possible to render the classical results of S. Banach and H. Steinhaus [1] more precise: Let $E$ and $F$ be Banach spaces and let $M$ be a subset of the second category in $E$. Then, 1) if $H\subset L(E,F)$ and $\sup\{\|u(x)\|\colon u\in H\}$ is finite for all $x\in M$, then $\sup\{\|u\|\colon u\in H\}<\infty$; 2) if $u_n$ is a sequence of continuous linear mappings of $E$ into $F$, and if the sequence $u_n(x)$ converges in $F$ for all $x\in M$, then $u_n$ converges uniformly on any compact subset of $E$ to a continuous linear mapping $v$ of $E$ into $F$.
References
[1] | S. Banach, H. Steinhaus, "Sur le principe de la condensation de singularités" Fund. Math. , 9 (1927) pp. 50–61 |
[2] | N. Bourbaki, "Elements of mathematics. Topological vector spaces" , Addison-Wesley (1977) (Translated from French) MR0583191 Zbl 1106.46003 Zbl 1115.46002 Zbl 0622.46001 Zbl 0482.46001 |
[3] | H.H. Schaefer, "Topological vector spaces" , Macmillan (1966) MR0193469 Zbl 0141.30503 |
Comments
References
[a1] | G. Köthe, "Topological vector spaces" , 1 , Springer (1969) MR0248498 MR0178335 Zbl 0179.17001 |
[a2] | J.L. Kelley, I. Namioka, "Linear topological spaces" , Springer (1963) MR0166578 Zbl 0115.09902 |
Banach-Steinhaus theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Banach-Steinhaus_theorem&oldid=15513