Difference between revisions of "Jacobi symbol"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | + | {{TEX|done}} | |
+ | $$\left(\frac aP\right)$$ | ||
− | + | A function defined for all integers $a$ coprime to a given odd integer $P>1$ as follows: Let $P=p_1\ldots p_r$ be an expansion of $P$ into prime factors (not necessarily different), then | |
− | + | $$\left(\frac aP\right)=\left(\frac{a}{p_1}\right)\ldots\left(\frac{a}{p_r}\right),$$ | |
− | |||
− | |||
where | where | ||
− | + | $$\left(\frac{a}{p_i}\right)$$ | |
is the [[Legendre symbol|Legendre symbol]]. | is the [[Legendre symbol|Legendre symbol]]. | ||
Line 15: | Line 14: | ||
The Jacobi symbol is a generalization of the Legendre symbol and has similar properties. In particular, the reciprocity law: | The Jacobi symbol is a generalization of the Legendre symbol and has similar properties. In particular, the reciprocity law: | ||
− | + | $$\left(\frac PQ\right)\left(\frac QP\right)=(-1)^{(P-1)/2\cdot(Q-1)/2}$$ | |
− | holds, where | + | holds, where $P$ and $Q$ are positive odd coprime numbers, and the supplementary formulas |
− | + | $$\left(\frac{-1}{P}\right)=(-1)^{(P-1)/2},\quad\left(\frac 2P\right)=(-1)^{(P^2-1)/8}$$ | |
are true. | are true. | ||
Line 31: | Line 30: | ||
====Comments==== | ====Comments==== | ||
− | Considered as a function on | + | Considered as a function on $(\mathbf Z/p\mathbf Z)^*$, the Jacobi symbol is an example of a real character. This real character plays an important role in the decomposition of rational primes in a [[Quadratic field|quadratic field]] (see [[#References|[a1]]]). |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.B. Zagier, "Zetafunktionen und quadratische Körper" , Springer (1981)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.B. Zagier, "Zetafunktionen und quadratische Körper" , Springer (1981)</TD></TR></table> |
Revision as of 19:32, 14 August 2014
$$\left(\frac aP\right)$$
A function defined for all integers $a$ coprime to a given odd integer $P>1$ as follows: Let $P=p_1\ldots p_r$ be an expansion of $P$ into prime factors (not necessarily different), then
$$\left(\frac aP\right)=\left(\frac{a}{p_1}\right)\ldots\left(\frac{a}{p_r}\right),$$
where
$$\left(\frac{a}{p_i}\right)$$
is the Legendre symbol.
The Jacobi symbol is a generalization of the Legendre symbol and has similar properties. In particular, the reciprocity law:
$$\left(\frac PQ\right)\left(\frac QP\right)=(-1)^{(P-1)/2\cdot(Q-1)/2}$$
holds, where $P$ and $Q$ are positive odd coprime numbers, and the supplementary formulas
$$\left(\frac{-1}{P}\right)=(-1)^{(P-1)/2},\quad\left(\frac 2P\right)=(-1)^{(P^2-1)/8}$$
are true.
The Jacobi symbol was introduced by C.G.J. Jacobi (1837).
References
[1] | C.G.J. Jacobi, "Gesammelte Werke" , 1–7 , Reimer (1881–1891) |
[2] | P.G.L. Dirichlet, "Vorlesungen über Zahlentheorie" , Vieweg (1894) |
[3] | P. Bachmann, "Niedere Zahlentheorie" , 1–2 , Teubner (1902–1910) |
Comments
Considered as a function on $(\mathbf Z/p\mathbf Z)^*$, the Jacobi symbol is an example of a real character. This real character plays an important role in the decomposition of rational primes in a quadratic field (see [a1]).
References
[a1] | D.B. Zagier, "Zetafunktionen und quadratische Körper" , Springer (1981) |
Jacobi symbol. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobi_symbol&oldid=11678